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Estrogen Induces Estrogen Receptor �-Dependent cAMP
Response Element-Binding Protein Phosphorylation via
Mitogen Activated Protein Kinase Pathway in Basal
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In addition to classical genomic mechanisms, estrogen also exerts nonclassical effects via a signal transduction system on neurons. To
study whether estrogen has a nonclassical effect on basal forebrain cholinergic system, we measured the intensity of cAMP response
element-binding protein (CREB) phosphorylation (pCREB) in cholinergic neurons after administration of 17�-estradiol to ovariecto-
mized (OVX) mice. A significant time-dependent increase in the number of pCREB-positive cholinergic cells was detected after estrogen
administration in the medial septum-diagonal band (MS-DB) and the substantia innominata (SI). The increase was first observed 15 min
after estrogen administration. The role of classical estrogen receptors (ERs) was evaluated using ER knock-out mice in vivo. The estrogen-
induced CREB phosphorylation in cholinergic neurons was present in ER� knock-out mice but completely absent in ER� knock-out mice
in MS-DB and SI. A series of in vitro studies demonstrated that estrogen acted directly on cholinergic neurons. Selective blockade of the
mitogen activated protein kinase (MAPK) pathway in vivo completely prevented estrogen-induced CREB phosphorylation in cholinergic
neurons in MS-DB and SI. In contrast, blockade of protein kinase A (PKA) was effective only in SI. Finally, studies in intact female mice
revealed levels of CREB phosphorylation within cholinergic neurons that were similar to those of estrogen-treated OVX mice. These
observations demonstrate an ER�-mediated nonclassical effect of estrogen on the cholinergic neurons and that these actions are present
under physiological conditions. They also reveal the role of MAPK and PKA–MAPK pathway activation in nonclassical estrogen signaling
in the basal forebrain cholinergic neurons in vivo.
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Introduction
The basal forebrain cholinergic system (BFC) provides a substan-
tial source of cholinergic projections to the cortex and hippocam-
pus and plays a pivotal role in cortical arousal, attention, and
cognitive functions (Beninger et al., 1989; Zaborszky et al., 1999).
Recent investigations demonstrate that estrogen regulates the
function of cholinergic neurons that project to the cortex and
hippocampus (McEwen, 2002; Gabor et al., 2003). Disruption of

BFC produces a deficit in attention and learning as well as a
decline in reference memory, and BFC neurons are particularly
vulnerable in Alzheimer’s and Parkinson’s diseases (Whitehouse
et al., 1982; Coyle et al., 1983; Wenk et al., 1998). Among many
different factors controlling the vulnerability of cholinergic neu-
rons, the gonadal steroid estrogen is one of the essential contrib-
utors. In fact, administration of estrogen can restore synaptic
connectivity in the cerebral cortex after the loss of subcortical
cholinergic input without rescuing BFC cells against excitotoxic
cell death (Aggarwal and Gibbs, 2000; Horvath et al., 2002).
Moreover, gender differences in Alzheimer’s and Parkinson’s dis-
eases suggest a possible role of gonadal steroids in cytoprotection
(Leranth et al., 2000; Maccioni et al., 2001; Gibbs, 2003;
Saunders-Pullman, 2003; Baum, 2005). Although estrogenic ef-
fects on the expression of cholinergic enzymes were among the
first nonreproductive gonadal steroid actions disclosed in the
nervous system (Gibbs et al., 1997, 2004), its molecular mecha-
nisms in cholinergic neurons are still unknown.

Estrogen receptors (ERs) are present in cholinergic neurons,
with mainly ER� found in BFC neurons (Shughrue et al., 2000;
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Prof. Allan Herbison, Dr. Péter Batáry, and Attila Kaszás for valuable comments on this manuscript. We thank Dr.
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Kalesnykas et al., 2005). Generally, estrogen affects neurons two
different ways: either via direct DNA-binding and transcriptional
activity of liganded ERs (classical effect) or via rapid intracellular
signaling pathways activation through protein kinase A (PKA)
and mitogen activated protein kinase (MAPK) (Carlstrom et al.,
2001; Kim et al., 2002; Guerra et al., 2004; Vasudevan et al., 2005;
Zhao et al., 2005). We define this action of estrogen as nonclassi-
cal effect, because this downstream process indirectly acts on
gene transcription via signaling pathways. The common target of
many signaling pathways is a key transcription factor, the cAMP
response element (CRE)-binding protein (CREB). Cellular sig-
naling mechanisms activate the phosphorylation of CREB
(pCREB), which is required for CREB to become a transcrip-
tional regulator (Gonzalez et al., 1989; Mayr and Montminy,
2001). Previous findings suggest a crucial role of CREB-regulated
transcriptional machinery in the control of neuronal vulnerabil-
ity (Tao et al., 1998; Pugazhenthi et al., 2000; Lonze and Ginty,
2002; Saini et al., 2004).

A precise understanding of the effects of estrogen on any neu-
ronal cell type requires information on the estrogen-sensitive
classical and nonclassical effects. In the present study, we focused
on the estrogen-induced nonclassical actions. Using CREB phos-
phorylation as an index of intracellular alterations, we character-
ized the estrogen-induced signaling in BFC neurons. Our find-
ings demonstrate direct, estrogen-induced, ER�-mediated CREB
phosphorylation via the PKA–MAPK pathway in BFC neurons.

Materials and Methods
Animals. The animal breeding and experiments were performed based on
of rules of Local Animal Care Committee at the Eötvös Loránd University
in accordance with the European Union conform Hungarian Act of An-
imal Care and Experimentation. Wild-type (WT) C57BL6/J mice and
estrogen receptor � or � knock-out (KO) mice [ER�KO (Lubahn et al.,
1993) or ER�KO (Krege et al., 1998)] were maintained under a 12 h
light/dark cycle at 20°C, and they were supplied with water and food ad
libitum.

In vivo studies. Adult female 45- to 60-d-old wild-type (C57BL/6J)
mice were bilaterally ovariectomized (OVX) under Avertin anesthesia.
On postovariectomy day 14, animals received a subcutaneous injection
of 33 ng/g 17�-estradiol (E2) in 0.1 ml of ethyl-oleate vehicle (Sigma,
Budapest, Hungary) or vehicle alone (V) between 8:00 and 10:00 A.M. In
our previous studies, 33 ng/g E2 rapidly (�15 min) induced CREB phos-
phorylation in the CNS (Abraham et al., 2003); therefore, animals were
killed 15 min, 1 h, or 4 h later by an overdose of Avertin (0.015 ml/g).
Blood was taken for E2 radioimmunoassay (RIA), and mice were tran-
scardially perfused with ice-cold 4% paraformaldehyde, pH 7.6 (Merck,
Budapest, Hungary), in PBS solution. Brains were postfixed for 2 h at 4°C
and cryoprotected in Tris-phosphate-buffered solution (TBS; pH 7.6)
containing 30% sucrose (Sigma) overnight at 4°C. Coronal sections, 30
�m thick, were cut on a freezing microtome, and four sets of sections
were collected in TBS.

Based on PCR analysis, female homozygous ER�KO mice, ER�KO
mice, and wild-type siblings from both strains were selected. The exper-
imental protocol was similar to those described above, with the exception
that all of these mice were killed at 15 min after E2 injection.

In a separate experiment, we administered a selective PKA inhibitor
N-[2-( p-bromocinnamylamino)ethyl]-5- isoquinolinesulfonamide di-
hydrochloride (H-89; Sigma) [0.67 �g/�l in 10% dimethylsulfoxide
(DMSO) in artificial CSF (ACSF) containing the following (in mM): 147
Na �, 3.5 K �, 2 Ca 2�, 1 Mg 2�, pH 7.3] or a mitogen-activated protein
kinase kinase 1/2 (MEK1/2) inhibitor 1,4-diamino-2,3-dicyano-1,4-
bis[2-amino-phenylthio]butadiene (U0126; Cell Signaling Technology,
Beverly, MA) (0.1 �g/�l in 10% DMSO in ACSF) to OVX female wild-
type mice. Two weeks after OVX, inhibitors were injected into the lateral
ventricle (anteroposterior, �0.82; lateral, 1.50; dorsoventral, �1.50 to
1.70 from dura) under halothane (1.5% in air) anesthesia. Control

groups received 10% DMSO in ACSF. Thirty minutes after injection of
inhibitors or DMSO, animals received 33 ng/g E2 or V subcutaneously,
and they were killed by an overdose of Avertin (0.015 ml/g) and perfused
15 min after E2 injection. The dose of the inhibitors and timing was
established previously (Cervo et al., 1997; Han and Holtzman, 2000;
Rahmouni et al., 2004).

To assess the role of CREB phosphorylation in cholinergic neurons
under physiological conditions, female wild-type mice were OVX or
sham operated (SHAM), and they were perfused 2 weeks later. The es-
trous stage of SHAM mice was assessed by examination of daily vaginal
smear, and mice in proestrus were selected for perfusion.

Acute brain slice preparation for assessing CREB phosphorylation in
vitro. An acute brain slice protocol was performed as described previ-
ously (Abraham et al., 2003). Female wild-type 45- to 60-d-old mice were
OVX. On postovariectomy day 14, animals were decapitated at �9:00
A.M., and brains were rapidly removed and placed in oxygenated, ice-
cold cutting solution for 5 min containing the following (in mM): 118
NaCl, 3 KCl, 6 MgCl2, 0.5 CaCl2, 25 NaHCO3, 10 HEPES, and 11 glucose,
pH 7.4, when saturated with 95% O2 and 5% CO2 (Sigma). Coronal slices
were cut in the horizontal plane (300 �m) with a vibratome (VT1000;
Leica, Nussloch, Germany), and they were preincubated for 1 h in nor-
mal ACSF solution saturated with 95% O2 and 5% CO2 containing the
following (in mM): 118 NaCl, 3 KCl, 10 HEPES, 1.2 MgCl2, 2.5 CaCl2, 25
NaHCO3, 11 glucose, with or without 0.5 �M tetrodotoxin (TTX; Sigma).
Slices were transferred into ACSF containing 100 nM E2 in ethanol or into
�0.01% ethyl-alcohol solution as vehicle. Slices pretreated with TTX also
received TTX in the incubating solution. Fifteen minutes later, slices were
fixed in 4% paraformaldehyde at 4°C overnight. The following day, slices
were transferred into TBS containing 30% sucrose, and four sets of 30
�m coronal sections were cut on a freezing microtome and collected
into TBS.

Immunohistochemistry. Free-floating, double-labeling, peroxidase-
based immunohistochemistry was performed in the same manner as we
reported previously with a slight modification (Abraham et al., 2003). In
brief, sections were incubated with one of the primary antibodies
(pCREB, 1:100; CREB, 1:100; Cell Signaling Technology) for 48 h at 4°C.
Subsequently, sections were incubated with biotinylated goat anti-rabbit
IgG (1:200; Vector Laboratories, Burlingame, CA) for 2 h. This was fol-
lowed by treatment with Vector avidin– biotin–HRP complex (Vector
Standard Elite kit, 1:200; Vector Laboratories) for 2 h. Peroxidase label-
ing was visualized by nickel-diaminobenzidine (DAB) tetrahydrochlo-
ride, using glucose oxidase. Sections were then processed for choline-
acetyl-transferase (ChAT; 1:2000; Chemicon, Temecula, CA)
peroxidase-based immunoreactivity (IR) (biotinylated goat anti-rabbit
IgG, 1:200; avidin– biotin–HRP complex, 1:200 Vector Laboratories)
and revealed using DAB only. The specificities of antibodies have been
reported previously in rodent species (McNulty et al., 1998; von Gall et
al., 1998) (Cell Signaling Technology data). The omission of primary
antibodies resulted in a complete absence of immunoreactivity.

Estrogen RIA. Plasma estrogen concentrations were determined by
RIA using a Third Generation Estradiol kit (DSL-39100; Diagnostic Sys-
tem Laboratories, Dallas, TX). The detection limit of estrogen was 0.6
pg/ml from 100 �l of plasma, the intra-assay coefficient of variation was
3.5%, and the interassay coefficient of variation was 4.1%.

Analysis. The number of immunoreactive cells was counted by an
Olympus BX51 (Olympus Optical, Hamburg, Germany) microscope,
using 20 and 40� objectives. Cholinergic neurons were only assigned to
be representing CREB/pCREB, if the nucleus displayed a uniform
black-IR product. Using the Paxinos and Franklin (2001) atlas, the fol-
lowing structures were selected for analysis: medial septum– diagonal
band (MS-DB; plate 23–25), substantia innominata (SI; plate 34 –35),
and striatum (STR; plate 23–25). Two or three sections from each struc-
ture were selected, and the numbers of single (ChAT) and double-labeled
(ChAT plus CREB or ChAT plus pCREB) neurons were determined by
an investigator blind to the experimental groupings. CREB and pCREB
expressions in ChAT-immunoreactive neurons were calculated as the
percentage of total number of ChAT-immunoreactive neurons for each
structure separately.

Statistical analysis. Data are expressed as mean � SEM, and square
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root was transformed for ANOVA. To examine the differences between
the groups of proestrus and intact mice, one-way ANOVA was used with
Tukey’s post hoc test. Two-way ANOVA with Tukey’s post hoc test was
used to determine differences between groups in all of the other experi-
ments (Statistica 7.0; StatSoft, Tulsa, OK).

Results
Exogenously administered estrogen or ovariectomy
effectively alters the plasma estradiol concentration
The reliability of the experimental groups was verified by the fact
that E2 administration or ovariectomy effectively altered the
plasma estradiol concentration. Treatment of OVX female mice
with 33 ng/g E2 increased the plasma estradiol concentration to a
supraphysiological level at all time points: 15 min (vehicle, 3.42 �
1.44 pg/ml; E2, 854.39 � 197.45 pg/ml; p � 0.05), 1 h (vehicle,
2.37 � 1.51 pg/ml; E2, 492.91 � 80.89 pg/ml; p � 0.05), and 4 h
(vehicle, 6.01 � 0.38 pg/ml; E2, 225.35 � 92.54 pg/ml; p � 0.05).
The plasma estradiol concentration in OVX mice was signifi-
cantly lower than that in SHAM-operated animals in the stage of
proestrus (OVX, 4.5 � 0.56 pg/ml; SHAM, 49.52 � 5.57 pg/ml;
p � 0.05).

Estrogen rapidly induces CREB phosphorylation in
cholinergic neurons in vivo
CREB-IR and pCREB-IR were clearly nuclear and easily detected
in cholinergic neurons with double-labeling immunocytochem-
istry (Fig. 1A). Administration of 33 ng/g E2 to OVX wild-type
female mice resulted in a significant increase in pCREB-IR by
cholinergic neurons 15 min after E2 injection ( p � 0.01), peaked
at 1 h ( p � 0.01), and returned to the baseline at 4 h in MS-DB
(Fig. 1B). In SI, E2-induced CREB phosphorylation in cholin-
ergic neurons was significant at 15 min ( p � 0.01), but there was
no significant difference in the CREB phosphorylation in cholin-
ergic neurons at either 1 or 4 h after treatments (Fig. 1C). E2 had
no effect in STR (Fig. 1D). The expression of CREB in cholinergic
neurons and the total number of cholinergic cells were not altered
by E2 treatment or by time in STR, SI, and MS-DB (Table 1).

Effect of estrogen on CREB phosphorylation in cholinergic
neurons is mediated by ER�
To disclose that estrogen-dependent phosphorylation of CREB in
cholinergic neurons requires one of the classical ERs, we used
OVX WT, ER�KO, and ER�KO mice in our additional investi-
gations. We administered 33 ng/g E2 and evaluated the pCREB
expression in cholinergic neurons at 15 min, when CREB phos-
phorylation in cholinergic neurons was significant in MS-DB and
SI. Similarly to the WT mice, the treatment of WT littermates of
the knock-out animals with 33 ng/g E2 significantly increased
pCREB expression in cholinergic neurons in MS-DB and SI (Fig.
2A,B) but not in STR (Fig. 2B). Although reduced in magnitude
in MS-DB (compared with WT; p � 0.05) (Fig. 2A), this response
was maintained in ER�KO mice in MS-DB ( p � 0.01) (Fig. 2A)
and SI ( p � 0.01) (Fig. 2B). In contrast, E2 failed to induce CREB
phosphorylation in ER�KO mice in MS-DB and SI (Fig. 2A,B).
Levels of pCREB in cholinergic neurons of vehicle-treated mice
were not significantly different in the three animal groups (Fig.
2A–C). The level of CREB within cholinergic neurons and the
total number of cholinergic neurons were not altered by estrogen
treatment (data not shown).

E2-induced CREB phosphorylation in cholinergic neurons is
sensitive to TTX
To confirm that E2-induced CREB phosphorylation is the result
of direct action of E2 on cholinergic cells, we investigated TTX
sensitivity of CREB phosphorylation in SI and MS-DB. Experi-
ments were done on acute brain slices. The number of cholinergic
neurons (MS-DB, 118.2 � 4.2; SI, 66.1 � 3.4; STR, 196.4 � 1.6)
and the percentage of cholinergic neurons containing CREB-IR
(MS-DB, 93.3 � 1.2; SI, 98.3 � 0.6; STR, 90.1 � 1.2) in slices were
similar to those in the in vivo experiments at basal conditions.
Although the basal level of pCREB was slightly higher in slices
than in the in vivo experiments, treatment of brain slices with 100
nM E2 for 15 min significantly elevated pCREB expression within
cholinergic neurons of MS-DB ( p � 0.01) (Fig. 3B) and SI ( p �
0.01) (Fig. 3C). E2-induced CREB phosphorylation was not ef-
fected in MS-DB ( p � 0.01) (Fig. 3B) and SI ( p � 0.01) (Fig. 3C)
by TTX, which synaptically isolates cholinergic neurons. The
number of cholinergic neurons expressing CREB was not
changed by E2 or TTX (data not shown).

PKA inhibitor blocks the E2-induced CREB phosphorylation
in cholinergic neurons in SI
To study the role of the cAMP–PKA pathway in E2-induced
CREB phosphorylation in cholinergic neurons, we injected the
selective PKA inhibitor H-89 into the lateral ventricle 30 min
before E2 administration. Similarly to the previously described in
vitro and in vivo experiments, pCREB-IR of cholinergic neurons
was significantly higher after intracerebroventricular vehicle and
subcutaneous E2 administration in MS-DB ( p � 0.01) (Fig. 4A)
and in SI ( p � 0.01) (Fig. 4B), and there was no effect in STR
(Fig. 4C) at 15 min. Intracerebroventricular administration of
H-89 blocked the E2-induced CREB activation in the SI ( p �
0.01) (Fig. 4B) but not in MS-DB (Fig. 4A). The level of CREB
expression of cholinergic neurons was not altered by treatments
in either of the areas examined (data not shown).

MEK1/2 inhibitor blocks the E2-induced CREB
phosphorylation in cholinergic neurons in both MS-DB
and SI
To demonstrate whether the E2-induced CREB phosphorylation
requires MAPK pathway in cholinergic neurons, we adminis-

Figure 1. Estrogen rapidly induces CREB phosphorylation within cholinergic neurons in a
time-dependent manner in vivo. The photomicrograph (A) shows clear nuclear localized
CREB-IR (black) within ChAT-immunopositive neuron (brown). Scale bar, 10 �m. Bar graphs
show the percentage of cholinergic neurons expressing pCREB in the medial septum– diagonal
band (B), substantia innominata (C), and striatum (D) in wild-type mice treated with vehicle or
estrogen. **p � 0.01; n � 6 – 8 in all groups. Data are presented as mean � SEM.
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tered the MEK1/2 [the activating kinase for ERK1/2 (extracellular
signal-regulated kinase)] inhibitor U0126 into the lateral ventri-
cle 30 min before E2 injection. Similarly to previously described

experiments, E2 induced CREB phosphorylation in cholinergic
neurons in MS-DB ( p � 0.01) (Fig. 5A) and SI ( p � 0.01) (Fig.
5B), and there was no effect in STR (Fig. 5C). In contrast, intra-

Table 1. Estrogen (33 ng/g) had no effect on CREB expression within cholinergic neurons and the total number of ChAT-positive neurons in STR, MS-DB, and SI of WT mice 15
min, 1 h, or 4 h after treatment

Area Treatment

Time

15 min 1 h 4 h

% Total % Total % Total

STR Vehicle 91.6 � 1.6 197.0 � 21 90.9 � 0.6 196.0 � 2.9 91.8 � 1.2 198.2 � 2.1
E2 89.4 � 0.5 195.2 � 1.2 90.1 � 0.9 195.2 � 2.2 89.5 � 1.7 196.1 � 1.8

MS-DB Vehicle 95.2 � 0.5 120.6 � 3.6 90.2 � 1.1 119.3 � 1.9 90.6 � 1.6 117.3 � 1.2
E2 92.6 � 0.2 117.1 � 2.2 92.6 � 1.4 120.0 � 2.6 91.5 � 1.8 121.9 � 2.9

SI Vehicle 99.8 � 0.1 67.2 � 4.2 99.2 � 0.2 70.3 � 4.1 99.1 � 0.2 71.2 � 3.5
E2 97.9 � 0.2 69.4 � 5.3 99.1 � 0.1 69.6 � 3.9 99.3 � 0.1 72.6 � 3.7

Data in the first column of each time point demonstrate the percentage of ChAT-immunopositive neurons expressing CREB (�SEM) (%). Data in the second column of each time point demonstrate the total number of ChAT-immunopositive
neurons (�SEM) (Total); n � 5-7.

Figure 2. Estrogen requires ER� to induce CREB phosphorylation within cholinergic neurons
in vivo. Bar graphs show the percentage of cholinergic neurons expressing pCREB in the medial
septum– diagonal band (A), substantia innominata (B), or striatum (C) in wild-type, ER�KO,
and ER�KO mice 15 min after vehicle or estrogen administration. **p � 0.01; *p � 0.05; n �
4 – 8 in all groups. Data are presented as mean � SEM.

Figure 3. In the in vitro studies, estrogen rapidly and directly induces CREB phosphorylation
within cholinergic neurons. The photomicrograph (A) presents nuclear pCREB-IR (black) within a
cholinergic neuron (ChAT-IR; brown). Scale bar, 10 �m. Bar graphs show the percentage of cholin-
ergicneuronsexpressingpCREBinthemedialseptum– diagonalband(B), substantia innominata(C),
or striatum (D) 15 min after vehicle or estrogen treatment in the presence of ACSF or 0.5 �M TTX in
ACSF (TTX). **p � 0.01; n � 6 – 8 in all groups. Data are presented as mean � SEM.

Figure 4. PKA dependence of estrogen-induced CREB phosphorylation within cholinergic
cells shows a region difference in vivo. Bar graphs show the percentage of cholinergic neurons
expressing pCREB within the medial septum– diagonal band (A), substantia innominata (B), or
striatum (C) in the presence of intracerebroventricularly administered DMSO or PKA inhibitor
(H-89) 15 min after vehicle or estrogen injection. **p � 0.01; n � 5– 6. Data are presented as
mean � SEM.

Figure 5. Estrogen-induced CREB phosphorylation within cholinergic cells is dependent on
MAPK activation in vivo. Bar graphs show the percentage of cholinergic neurons expressing
pCREB within the medial septum– diagonal band (A), substantia innominata (B), or striatum
(C) in the presence of intracerebroventricularly administered DMSO or MEK1/2 inhibitor
(U0126) 15 min after vehicle or estrogen injection. **p � 0.01; n � 5– 6. Data are presented as
mean � SEM.
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cerebroventricular administration of U0126 completely blocked
the E2-induced CREB phosphorylation within cholinergic neu-
rons in both MS-DB and SI (Fig. 5A,B). The level of CREB ex-
pression by cholinergic neurons was not altered in this experi-
ment (data not shown).

Levels of pCREB in cholinergic neurons remain elevated in
intact female mice during proestrus
To verify that rapid increase in the E2-induced CREB phosphor-
ylation in cholinergic neurons could occur under normal physi-
ological elevation in estrogen level, we compared OVX mice to
intact SHAM-operated proestrus females. In intact proestrus
mice, the level of pCREB in MS-DB ( p � 0.01) and SI ( p � 0.01)
was significantly higher than in OVX animals, but there was no
effect in STR (Fig. 6A). CREB expressions within cholinergic
neurons and the number of cholinergic neurons were not altered
by OVX (Fig. 6B,C).

Discussion
We report here that E2 can rapidly (�15 min) induce CREB
phosphorylation in cholinergic neurons in vivo in SI and MS-DB
on an ER�-mediated pathway. TTX insensitivity of E2-induced
CREB phosphorylation confirms that this is a direct effect of E2
on cholinergic cells. Estrogen appears to induce CREB phosphor-
ylation via the MAPK pathway in MS-DB and SI. Blocking PKA
resulted in inhibition of estrogen-induced CREB phosphoryla-
tion in SI but not in MS-DB, suggesting the existence of region-
specific estrogen-induced PKA-dependent CREB phosphoryla-
tion in BFC neurons.

The possible mechanism of estrogen-induced CREB
phosphorylation in basal forebrain cholinergic neurons
A great body of evidence suggests that estrogen exerts nonclassi-
cal effects in a variety of cell types. In immune cells (Karpuzoglu-
Sahin et al., 2001; Grimaldi et al., 2005), smooth muscle cells
(Rossi et al., 2002; Hertelendy and Zakar, 2004), and endothelial
cells, estrogen can rapidly alter the availability of second messen-
gers (Zhu and Smart, 2003; Simoncini et al., 2004). Stimulation of
the second messenger system may result in activation of tran-
scription factors such as CREB. It is important to note that the
rapidness of the actions of estrogen on CREB phosphorylation

(�15 min) suggests a nonclassical mechanism, because studies
demonstrated that blockade of protein synthesis or gene tran-
scription are ineffective in altering CREB phosphorylation in
such a narrow time frame (Falkenstein et al., 2000).

In the CNS, CREB can be phosphorylated via synaptic activa-
tion (Matthies et al., 1997; Lee et al., 2005). Because the cholin-
ergic neurons are not the only ones containing classical ERs in the
septal region and SI (Shughrue et al., 2000), it is likely that
estrogen-induced CREB phosphorylation in cholinergic cells was
initiated via transsynaptic processes. However, we demonstrated
that TTX could not eliminate the estrogen-induced CREB acti-
vation, and thus our data suggest that estrogen acts directly on
cholinergic neurons.

In the nervous system, quantitative immunohistochemical
studies demonstrated that E2 can initiate CREB phosphorylation
in vitro and in vivo as well. In vivo studies reveal that E2 can induce
CREB phosphorylation in dorsal root ganglion cells (Purves-
Tyson and Keast, 2004), anteroventral periventricular nucleus
(Gu et al., 1996), bed nucleus of the stria terminalis (Zhou et al.,
1996), medial preoptic area (Abraham et al., 2004), and hip-
pocampus (Abraham and Herbison, 2005). However, little atten-
tion was given to the neuronal cell type specificity of estrogen-
induced CREB phosphorylation. Previously, we demonstrated
that estrogen can directly and rapidly induce the phosphorylation
of CREB in gonadotropin-releasing hormone (GnRH) neurons
via ER� (Abraham et al., 2003), and here we demonstrated that
estrogen increases the pCREB expression in basal forebrain cho-
linergic neurons as well. However, there is a significant difference
in E2-induced CREB phosphorylation between the two neuronal
cell types. In GnRH neurons, CREB phosphorylation remained
significantly elevated 4 h after E2 treatment (Abraham et al.,
2003). In contrast, the time profile of estrogen-induced CREB
phosphorylation in BFC cells was more transient (peaked at 15
min or 1 h), and there was no effect at 4 h. This time profile of
CREB activation may reflect a substantial difference in the
estrogen-sensitive signaling process, which induces CREB phos-
phorylation in cholinergic neurons compared with GnRH neu-
rons. The origin of cell type differences in estrogen-induced
CREB phosphorylation can be derived from the different expres-
sion of ERs between GnRH and cholinergic neurons. Although
GnRH neurons predominantly express ER� (Herbison and Pape,
2001), cholinergic neurons mainly express ER� (Shughrue et al.,
2000; Kalesnykas et al., 2005), and indeed we found that estrogen-
induced increase in pCREB-IR in cholinergic neurons was com-
pletely blocked in ER�KO mice. Furthermore, in the striatum,
where no ER� is present in cholinergic neurons (Shughrue et al.,
2000), E2 failed to increase CREB phosphorylation in these neu-
rons. Surprisingly, estrogen-induced CREB phosphorylation was
partially suppressed in ER�KO compared with WT mice in MS-
DB. One possible explanation is that ER� expression decreases in
ER�KO mice. Recently, Bora et al. (2005) demonstrated that the
level of ER� mRNA decreased in the septal region in ER�KO
mice, which may implicate a partial effect of estrogen on CREB
phosphorylation in MS-DB in ER�KO mice. Nevertheless, we
showed that the rapid, E2-induced phosphorylation of CREB is
critically dependent on ER� in vivo.

In terms of estrogen-induced CREB phosphorylation, we
found that cholinergic neurons are different not only from GnRH
neurons, but they show an area specific activation pattern and
signaling in different cholinergic regions. Although estrogen in-
duces phosphorylation of CREB in cholinergic neurons in
MS-DB with an apparent maximal increase at 1 h, in the SI, the
estrogen-induced CREB phosphorylation was significant only at

Figure 6. Phosphorylation of CREB is elevated in intact female mice during proestrus, com-
pared with OVX control in vivo. Bar graphs demonstrate percentage of cholinergic neurons
expressing pCREB (A), CREB (B), or the number of ChAT-immunopositive cells (C) in the medial
septum– diagonal band, striatum, and substantia innominata. **p � 0.01; n � 5– 6 in all
groups. Data are presented as mean � SEM.
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15 min. The region specificity suggests that different signaling
mechanisms exist in cholinergic neurons on a topographical ba-
sis. Therefore, we investigated the role of PKA and MAPK path-
ways, because these pathways show estrogen sensitivity and are
potential regulators of CREB phosphorylation. We demonstrated
that estrogen-induced CREB phosphorylation in cholinergic
neurons was completely blocked by the inhibition of p42/44
MAPK via blocking MEK1/2 in both SI and MS-DB, but blocking
PKA was effective only in SI. Because PKA can activate the MAPK
pathway and consequently CREB phosphorylation, we suggest
that estrogen can induce CREB phosphorylation via a coupled
PKA–MAPK pathway in SI but involves only the MAPK pathway
in MS-DB. Such a difference may play a role in the different time
profile of estrogen-induced CREB phosphorylation observed in
cholinergic neurons of the different regions.

Our results indicate that ER� and the PKA–MAPK pathway
plays an important role in estrogen-induced CREB phosphoryla-
tion in cholinergic neurons; however, the precise mechanism for
activation of the PKA–MAPK signaling system via liganded ER�
is unknown. Several examples of ER actions have been reported
to involve phosphatidyl inositol 3-kinase, Src kinases, and
G-protein-coupled receptors leading to consequent activation of
PKA, MEK1/2, and CREB (Honda et al., 2000; Carlstrom et al.,
2001; Zhao et al., 2005). Additional studies are needed to deter-
mine how the liganded ER� activates the PKA–MAPK pathway
in cholinergic neurons.

The possible functional consequences of estrogen-induced
CREB phosphorylation in basal forebrain
cholinergic neurons
The most pressing question of the effects of estrogen on CREB
phosphorylation in cholinergic neurons is its physiological rele-
vance. The level of pCREB was higher in proestrus SHAM mice
than in OVX animals in cholinergic neurons of MS-DB and SI,
indicating that circulating, physiological concentration of estro-
gen can affect the cholinergic system via CREB phosphorylation.

One aspect of these data may clarify the role of BFC in the
estrogen sensitivity of the hippocampal functions. Estrogen may
stimulate acetylcholine release in the hippocampus via acting on
cholinergic cells of MS-DB (Gibbs et al., 1997) and thereby influ-
ences GABAergic synapses in the hippocampus (Rudick et al.,
2003). However, additional experiments are needed to evaluate
the role of CREB in the estrogen-induced increase in acetylcho-
line synthesis and cholinergic functions of medial septal cholin-
ergic neurons.

The other aspect may relate to the cytoprotective actions of
estrogen. It is well known that cholinergic cells within the sub-
stantia innominata are highly vulnerable in some neurodegen-
erative models such as Alzheimer’s disease, hypoxia, and isch-
emia (Whitehouse et al., 1982; Coyle et al., 1983; Brandel et al.,
1991; Wenk and Willard, 1998), and estrogen has ameliorative
effects in such degenerative diseases. Some findings indicate that
classical ERs mediate these ameliorative actions, because they can
be blocked by ER antagonists, and these are absent in ER�KO
animals (Wilson et al., 2000; Dubal et al., 2001). Although the
role of ER-mediated CREB activation is uncertain in estrogen-
induced protective mechanisms, CREB has been linked as a key
transcription factor in many neuroprotective effects (Finkbeiner
et al., 1997; Walton and Dragunow, 2000). A number of gene-
coding proteins with antiapoptotic effects such as Bcl2, Bclxl, and
BDNF (Tao et al., 1998; Pugazhenthi et al., 2000; Saini et al.,
2004) contain CRE in its promoters, suggesting an important role
for CREB-regulated transcriptional activity in neuronal survival.

It remains to be determined whether the estrogen-sensitive CRE-
mediated transcription has a role in neuronal survival in the BFC
system.

In summary, this study demonstrates that estrogen has a non-
classical effect in a nonreproductive neuronal population, involv-
ing cholinergic neurons, and provides the first in vivo evidence
for the presence of functionally active ER� in nonclassical actions
in cholinergic neurons. Furthermore, these findings reveal a
region-specific role of PKA–MAPK signaling system in E2-
induced CREB phosphorylation in cholinergic neurons. Finally,
these observations suggest that estrogen-induced nonclassical ac-
tions have physiological importance in the cholinergic functions.
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