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Spike-Timing Codes Enhance the Representation of
Multiple Simultaneous Sound-Localization Cues in the
Inferior Colliculus

Steven M. Chase and Eric D. Young

Center for Hearing Sciences and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205

To preserve multiple streams of independent information that converge onto a neuron, the information must be re-represented more
efficiently in the neural response. Here we analyze the increase in the representational capacity of spike timing over rate codes using
sound localization cues as an example.

The inferior colliculus receives convergent input from multiple auditory brainstem nuclei, including sound localization information
such as interaural level differences (ILDs), interaural timing differences (ITDs), and spectral cues. Virtual space techniques were used to
create stimulus sets varying in two sound-localization parameters each. Information about the cues was quantified using a spike distance
metric that allows one to separate contributions to the information arising from spike rate and spike timing.

Spike timing enhances the representation of spectral and ILD cues at timescales averaging 12 ms. ITD information, however, is carried
by a rate code. Comparing responses to frozen and random noise shows that the temporal information is mainly attributable to phase
locking to temporal stimulus features, with an additional first-spike latency component. With rate-based codes, there is significant
confounding of information about two cues presented simultaneously, meaning that the cues cannot be decoded independently. Spike-
timing-based codes reduce this confounded information. Furthermore, the relative representation of the cues often changes as a function

of the time resolution of the code, implying that information about multiple cues can be multiplexed onto individual spike trains.
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Introduction

Often, single neurons in sensory systems respond to multiple
stimulus features. Depending on how these features are coded in
the neural response, the brain may or may not have access to each
individual feature. This leads to a natural question: how can mul-
tiple stimulus features be multiplexed onto the responses of sin-
gle neurons?

This question is of particular relevance in the auditory system.
The central nucleus of the inferior colliculus (ICC) receives as-
cending input from nearly every major brainstem nucleus (Roth
etal., 1978; Adams, 1979; Brunso-Bechtold et al., 1981; Oliver et
al., 1997) and is one of the first sites of convergence for the three
major sound-localization cues: interaural level differences
(ILDs), interaural timing differences (ITDs), and monaural spec-
tral cues (SNs for spectral notches). Previous work has shown
that single ICC neurons display a range of sensitivity to localiza-
tion cues, and most of the neural responses are modulated by
more than one cue (Benevento and Coleman, 1970; Caird and
Klinke, 1987; Delgutte et al., 1995, 1999; Chase and Young, 2005).
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This work, however, has all been based on the assumption of a
rate code. Although it is known that spike timing can also carry
information in the auditory system (Rieke et al., 1992; Middle-
brooks et al., 1994; Bandyopadhyay and Young, 2004; Nelken et
al., 2005), it is not known how spike timing contributes to the
representation of sound-localization cues in the ICC.

In this study, the coding of multiple localization cues in the
spike trains of single ICC neurons is investigated using informa-
tion theoretic techniques. Virtual-space stimulus sets were con-
structed that vary independently in two sound-localization pa-
rameters. Using a spike distance metric (SDM) developed by
Victor and Purpura (1997), estimates of the mutual information
(MI) between particular localization cues and the spike trains are
computed at several different time resolutions. This approach
allows one to separate out the contributions to information aris-
ing from spike timing and spike rate.

The results show that spike-timing codes enhance the repre-
sentation of all of the localization cues to some degree, with the
exception of ITD, which is represented mainly by a rate code.
Furthermore, the gain in timing information is almost entirely
attributable to phase locking to temporal stimulus features, such
as the envelope. The analysis allows the time resolution of the
temporal representation to be determined, suggesting that a tem-
poral decoder would have to be sensitive to spike-timing coinci-
dences of ~12 ms to extract maximum information. Temporal
coding increases the degrees of freedom of the spike code in such
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a way that multiple stimulus features can be independently rep-
resented, which is not possible with only a rate code (Chase and
Young, 2005).

Materials and Methods

This work is a new analysis of previously published data (Chase and
Young, 2005); the surgical procedure, recording protocol, and stimulus
design were described in that paper and will be presented only briefly
here.

Surgical procedure. Acute recording experiments were performed on
adult cats with clean external ears, obtained from Liberty Labs (Waverly,
NY). Animals were anesthetized for surgery with xylazine (1 mg/kg, i.m.)
and ketamine (40 mg/kg, i.m.). The cat was decerebrated by transecting
the brain between the superior colliculus and the thalamus. After decer-
ebration, anesthesia was discontinued. Throughout the experiment, the
cat’s temperature was maintained between 37.5 and 38.5°C with a
feedback-controlled heating pad.

The superior approach to the IC was achieved by aspirating occipital
cortex and, when necessary, removing part of the bony tentorium. The
ear canals were exposed and fitted with ear tubes for sound delivery, and
the bullae on both sides were vented with 30 cm of polyethylene (PE 90)
tubing. At the end of the experiment, the cat was killed with an overdose
of barbiturate anesthetic. All procedures were performed in accordance
with the guidelines of the Institutional Animal Care and Use Committee
of the Johns Hopkins University.

Recording procedure. All recordings were made in a sound-attenuating
chamber. Sounds were presented on speakers placed on hollow ear bars
inserted into the ear canals. In sifu speaker calibrations show responses
that are uniform (*4.6 dB sound pressure level) between 40 Hz and 35
kHz. Platinum/iridium microelectrodes were used for single-neuron re-
cording; neurons were isolated with a Schmitt trigger or a template-
matching program (Alpha-Omega Engineering, Nazareth, Israel). All
data are based on clear single-neuron recordings.

Electrodes were advanced dorsoventrally through the IC to sample
neurons with various best frequencies (BFs). The BFs of isolated single
neurons were determined manually, and stimuli were presented to char-
acterize the neurons according to the physiological categories defined by
Ramachandran et al. (1999). Briefly, neurons that were excited by mon-
aural tones presented to either ear and that had little inhibition in the
response map were classified as type V. Neurons whose responses to
contralateral BF tones were nonmonotonic, turning to inhibition at high
sound levels, were classified as type O. Neurons that were excited at all
contralateral BF tone levels and displayed clear sideband inhibition were
classified as type I. The majority of type I neurons were inhibited by
ipsilaterally presented tones.

Stimulus design. Three sets of virtual-space stimuli were created, based
on a 330 ms token of broadband noise (sampled at 100 kHz, interstimu-
lus interval of 1 s). Each set was manipulated to vary independently in
two parameters, and each parameter was adjusted in five steps, for a total
of 25 stimuli per set. To build up statistics sufficient for information
theoretic analyses, each stimulus set was repeated multiple times (20—
200, depending on how long the neuron was held) with the stimuli pre-
sented in interleaved order.

In the first stimulus set, ITD and ILD were manipulated. The frozen-
noise token was filtered through a spatially averaged head-related trans-
fer function (HRTF) (obtained from the cat data of Rice et al., 1992),
which imparts to the stimulus the spectral characteristics of the head and
ear canal, independent of spatial location. The stimulus was then split
into two streams (one for each ear) that were delayed relative to one
another to impart an ITD and attenuated relative to one another to
impart an ILD. ITDs and ILDs were chosen to correspond approximately
to spatial locations in the horizontal plane of —60, —30, 0, 30, and 60°
azimuth, in which negative values refer to locations in the ipsilateral
hemifield (Kuhn, 1977; Roth et al., 1980; Rice et al., 1992) (cue values are
provided in Fig. 2).

In the second stimulus set, average binaural intensity (ABI) (com-
puted as the mean sound pressure level across the two ears) and ILD were
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manipulated. This set was designed to disambiguate monaural level re-
sponses from true binaural sensitivity. In this case, the frozen noise was
again filtered through the spatially averaged HRTF. The result was atten-
uated to set an overall ABI (ranging from —8 to 8 dB in five equal steps)
and then split into two streams that were attenuated relative to one
another to impart an ILD that preserved that ABI.

In the third stimulus set, ILD and SN were varied. The SN cue was
imparted by filtering the frozen-noise token through one of five midline
HRTFs containing a prominent spectral notch, representing elevations
ranging from 0 to 30°in 7.5° steps [Chase and Young (2005), their Fig. 2].
The stimulus was then split into two streams, and an ILD cue was im-
parted as in the ITD/ILD stimulus set. Interaural spectral differences
were not considered in this work, because the same stimulus spectrum
was sent to each ear. Before presentation, the stimuli in this set were
resampled (resample command in Matlab; MathWorks, Natick, MA)
such that the five SNs spanned the BF of the neuron under study with the
notch frequency of the third stimulus at BF. Note that this resampling
sometimes draws the SNs outside of the physiological range (620 kHz)
(Musicant et al., 1990; Rice et al., 1992). The resampling also changes the
stimulus length. Stimuli longer than 400 ms were truncated at 400 ms,
whereas stimuli shorter than 200 ms were repeated to be at least 200 ms
long.

The stimuli described above were all created from a single sample of
noise, a frozen noise. In this case, the analysis is sensitive to phase locking
to temporal stimulus features, which may be useful information for the
auditory system but may or may not be a useful cue for sound localiza-
tion. In a number of neurons, the SN/ILD stimulus set was modified to
use a different noise on each stimulus presentation. In these cases, each
repetition of the 25 SN/ILD stimuli was modified by adding a random
vector, sampled from the uniform distribution over [(0,27), to the stim-
ulus phases in the Fourier domain. This has the effect of randomizing the
temporal structure between sets of stimuli while holding the spectral
magnitudes constant. For the analysis done here, these stimuli eliminated
information in the stimulus envelope but preserved information in the
spectral magnitudes. To minimize the effects of nonstationarity in the
neural response, random-waveform sets were presented interleaved with
the frozen set.

Spike distance metric. The SDM developed by Victor and Purpura
(1997) was used to assess the role of spike timing in conveying informa-
tion. Essentially, the distance between two spike trains is defined as the
sum of the costs of the elementary steps it takes to transform one spike
train into the other. The allowed steps are spike deletion (cost of 1), spike
addition (cost of 1), and spike shift (cost of q|At| ), where At is the time
difference between a spike in one train and the nearest spike in the other
train, and q is a variable cost parameter (units of s '). For a given g, there
exists a minimum cost solution for the distance between any two spike
trains. A schematic of the distance calculation is presented in Figure 1 A.

The cost parameter g represents the precision with which spikes are
timed. If g| Af] > 2, itis cheaper to add and delete a spike than it is to shift
it. Thus, 1/q is proportional to the time interval between spikes at which
they are considered to be different, which can be interpreted as the inte-
gration time of a neuron reading the spike train. If ¢ = 0, the only
distance assigned between spike trains is the difference in their absolute
number of spikes, which represents a rate code. At the other extreme, as
q approaches infinity, the reading neuron performs a coincidence detec-
tor function in which spikes are not considered associated unless they
occur at exactly the same time.

With the notion of spike-train distance defined, for any given spike
train in response to stimulus 7, it is possible to calculate the average
distance to every other spike train measured from that neuron elicited by
stimulus 7, {(d(3,1)). This average distance can then be compared with the
average distance between the spike train and every spike train elicited by
stimulus , (d(i,f)). Figure 1B illustrates this idea, in which the dots rep-
resent spike trains and colors represent the stimuli being presented when
the spike trains were measured. To a reading neuron, dots that cluster
closest together should produce the most similar responses. To compute
the information between stimuli and spike-train distances, the spike
trains are assigned to the groups to which they are closest, regardless of
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Figure1. Ml calculation using the spike distance metric. A, Spike distance calculation exam-

ples. Left, To turn the top spike train into the bottom spike train, three spikes must be deleted.
Right, To turn the top spike train into the bottom spike train, one spike must be deleted and two
spikes shifted. This is the minimum-cost solution for all cost parameters g such that g7; <2V
i. When this condition is not met, the spike is deleted fromiits position in the top train and added
tothe corresponding spotin the bottom train, adding a distance of 2. B, Stimulus clustering with
the SDM method. Each dot represents a spike train whose color denotes the stimulus played
when the train was recorded. For each train, the average distance {d(i,)) to each group of spike
trains is calculated. The spike train is estimated to have come from the stimulus group to which
the average distance is smallest. C, A confusion matrix counts the number of spike trains as-
signed to each stimulus class. When normalized by the total number of spike trains, this is the
joint stimulus response matrix used to calculate the MI.

the actual stimulus. That is, the spike train i is estimated to have come
from stimulus j when j satisfies

(d(i, j)) < (d(i, k)) V k # j. (1)

After repeating this process for every spike train, a confusion matrix N is
created where N(3,j) represents the number of times a spike train from
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stimulus i is classified as being closest to spike trains from stimulus j (Fig.
1C). The confusion matrix, when normalized by the total number of
stimulus presentations, defines the joint stimulus/response probability
on which MI (defined below) is calculated. As a stimulus estimation
technique, the SDM allows the computation of a lower bound on the MI
between stimuli and responses in a way analogous to other decoding
techniques (Kjaer et al., 1994; Rolls et al., 1997; Furukawa and Middle-
brooks, 2002).

Because the distance metric is a function of g, the MI calculated with
this method is also a function of . In addition to the g = 0 case, g was set
to range from 10 to 15,850 s ' (100—0.063 ms), sampled logarithmically
at 5 costs per decade. These costs were found empirically to cover the
relevant range of timing resolutions of the ICC neurons studied.

Spike trains beginning at stimulus onset and extending 20 ms past
stimulus offset were used in this analysis. However, when comparing MI
results across neurons with different BFs, the analysis window was trun-
cated at 200 ms to eliminate differences in stimulus length.

Mutual information. Responses were analyzed by computing the MI
between stimulus and response. The response was defined either as the
discharge rate or as the result of the SDM calculation. The stimulus could
either be the full 25 stimulus set containing variation of two stimulus
parameters or a reduced set in which the variation of one stimulus pa-
rameter was ignored so that a five stimulus set was defined by combining
the stimuli across the other parameter.

The MI between the response of a neuron, R, and the stimulus, S, is
defined as follows (Cover and Thomas, 1991):

p(s, 1) ) 2)

Mmm:EEmﬂ%@%G

SES rER

When the response is discharge rate, the MI is computed directly from
empirical distributions of spike counts; that is, p(s,r) is the probability of
getting a certain spike count r for a stimulus s. This method, including the
debiasing methods, has been fully explained previously (Chase and
Young, 2005).

For the SDM method, MI was calculated from the confusion matrix
described above, in which s is the actual stimulus presented and r is the
estimated stimulus from the cluster analysis. The probabilities were cal-
culated from the counts in the confusion matrix, such that p(s,r) is the
ratio of the counts in a particular bin to the total count summed over the
whole matrix, and p(s) and p(r) are the ratios of the marginal counts to
the total count. The MI for the full stimulus set (25 stimuli) was com-
puted from the full confusion matrix. The MIs for the two independently
varying cues were computed by combining the rows in the confusion
matrix having the same value of the parameter of interest.

For notational convenience, the information between the response
and the full stimulus set, MI(S;R), will be referred to as Ml ;, and the
information between the response and an individual localization cue (X
or Y) will be referred to as MI or MI,. Mutual information calculated
from discharge rate is called rMI. The full information can be broken
down into the contributions from each localization cue as follows:

Ml = My + MIy + MI(X; Y|R). (3)

A derivation of this equation is provided by Chase and Young (2005).
Essentially, this equation emphasizes that the MI between the response
and the full stimulus set is always greater than or equal to the sum of the
MIs about each of the individual cues, because the last term cannot be
negative. MI(X;Y|R) is also known as the confounded information (Reich
et al., 2001) and is related to the (lack of) independence in the neural
response. For example, when the spike count in response to parameter X
depends on the value of parameter Y, the confounded information in the
spike-rate code will be non-zero. More importantly, non-zero con-
founded information means that the cues cannot be decoded
independently.

For this study, the maximum value of Ml is determined by the
number of stimuli in the set. Because each of the stimulus sets in this
study consists of 25 stimuli presented with equal probability, Ml =
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Figure2.  Responses of one neuron to the ITD/ILD stimulus set. 4, Surface plot of the mean
spike rate as a function of ITD and ILD. The rMl is shown above the plot, with the bias value in
parentheses. (The surface was smoothed with cubic-spline interpolation.) B, Spike rasters toall
25 stimuli showing the first six spike bursts. Thick black lines divide different ITD parameters,
shown at right; thin black lines divide different ILD parameters, shown at left. A total of 110
repetitions of each stimulus were collected. €, Ml measured with the SDM method as a function
of the spike-shift cost parameter for the full stimulus set. Note that 0 cost has been put at the 1
s~ position. D, MI,  versus cost. E, Ml versus cost.

log,(25) = 4.6 bits. Similarly, MI is bound from above by log,(5) = 2.3
bits.

Estimates of MI based on finite datasets are subject to bias (Treves and
Panzeri, 1995; Panzeri and Treves 1996; Paninski, 2003). For both the
rate and SDM methods, MI estimates were bias corrected with a boot-
strap procedure (Efron and Tibshirani, 1998). In the rate case, 500 boot-
strap datasets for each stimulus were derived by randomly drawing (with
replacement) M spike counts from the recorded set of spike counts for
that stimulus, where M is the number of stimulus repetitions. For the
SDM case, 500 bootstrap confusion matrices were generated by ran-
domly drawing (with replacement) from the counts of the confusion
matrix. That is, each row of the bootstrapped confusion matrix was gen-
erated by selecting counts from the corresponding row of the original
matrix, keeping the total count in each row fixed. In simulations, this
procedure was found to converge to the true MI value faster than other
debiasing methods, such as randomly reassigning stimuli and responses
(data not shown). Data from neurons for which fewer than 20 repetitions
of each stimulus were gathered were not included in this analysis. Be-
cause of the high number of stimulus repetitions typically achieved (me-
dian of 70 repetitions), the estimated bias for MIy,;; ; was quite low (rate,
median of 0.11 bits; SDM peak, median of 0.08 bits). All values of MI
presented in this paper are bias corrected.

Results
Figure 2 shows an example of a neuron studied with the ITD/ILD
stimulus set presented at a high sound level. As often happens at
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Figure3. Anotherexample ofinformation extraction with the SDM method. The format s as

in Figure 2, with the exception that the three Mi(cost) curves have been condensed to a single
plot.

high levels, the rate response is saturated (Fig. 2A), so the rate
information about the full stimulus set (rMIpy; ) is only 0.3 bits.
Although there is little consistent change in the spike count
among stimuli, a close-up view of the spike rasters (Fig. 2B)
shows considerable variation in individual spike times with ILD.
In particular, whereas the first burst is either on or off depending
on the ILD, the second, third, and fourth bursts are progressively
delayed with increases in ILD. Figure 2C shows the results of the
SDM analysis on these spike trains. For a spike-shift cost of 1000
s ', 1.6 bits of information is recovered about the stimulus iden-
tity. This maximum is called MI,,, and the cost at which it
occurs is called the peak cost. The cost = 0 case, which represents
arate code, is called MI,,. Finally, the largest cost at which the MI
decays to half of its peak value is known as the cutoff cost, which
is ~4000 s ' for the neuron in Figure 2C. The MIs to the indi-
vidual location cues are shown in Figure 2, D and E. As expected
from the raster plot, most of the information in Ml is about
ILD.

Figure 3 shows another example; in this case, there is little
extra information available in spike timing that is not available in
rate. The rate surface of Figure 3A shows considerable variation
in response to both stimulus parameters, and indeed Ml is
quite high at 2.3 bits. The MI(cost) curve from the SDM analysis
shows a nearly low-pass behavior (Fig. 3C), with only a small peak
that would indicate extra information available in spike timing.
Note that this is not because this neuron does not exhibit stimu-
lus locking, as shown in the raster plot (Fig. 3B). Rather, the
variation in spike timing across stimuli is not significant com-
pared with the rate differences.

The results in Figures 2 and 3 exemplify the range of behavior
shown by the population; typically, responses lie between these
two extremes. The information carried in spike patterns about
the full stimulus set, as assessed with the SDM method, is shown
as a function of BF in Figure 4 A for all neurons in this study. To
assess possible differences across groups, we used an ANOVA
calculation with a significance criterion of p = 0.05 corrected for
multiple comparisons. Frequency was divided into three equally
populated groups (low, middle, and high) to assess the effects of
BF as an independent variable. There are no differences in the
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A, I,y plotted as a function of BF for all neurons and stimuli. B, Ml ..., as a function of the information calculated directly from
the spike rates. €, Ml from the SDM method at 0 cost plotted as a function of the Ml calculated directly from discharge rate.
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ing rMI measures for each of the individ-
ual localization cues. For ITD information
(Fig. 5A), the points all cluster along the
diagonal, showing that very little extra in-
formation is available when considering
spike timing. This strongly suggests that,
at the level of the ICC, ITD information is
carried in a rate code. The coding of ILD
cues is shown in Figure 5B, in which ILD
cues from all three stimulus sets have been
lumped together because the populations
overlap. The SDM method recovers a mild
amount of information about ILD cues
over that available through a rate code.
The same holds true for ABI cues (Fig.
5C), which show less information, on av-
erage, than the other cues. The largest ef-
fect of spike timing is on the coding of SN
cues (Fig. 5D). In general, the MI in SDM
responses to SN is much larger than the
MI in rate responses to SN. For some neu-
rons, as much as 2 bits of information is
recovered by considering spike timing.
The spike-timing gain for SN informa-
tion is plotted as a function of BF in Figure
5E. This gain is defined as the difference
between MI,,,. and MI, and represents
information only available through spike
timing. The spike-timing gain is nega-
tively correlated with BF (r = —0.48; df =
56; p < 0.0001); it is mainly the low-BF
neurons that carry the extra information
about SN in the timing of spikes, although
there are some midfrequency neurons
with spike-timing gains of as much as 1
bit. The largest spike-timing gains are seen
in type V neurons, which are found only at
low BFs (Ramachandran et al., 1999) and
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Figure5.  Comparison between the peak information calculated with the SDM method and rMI for individual localization cues.

A,1TD. B, ILD. €, ABI. D, SN. E, Spike-timing gain (Ml — MIy) as a function of BF for the SN cue.

Ml values across the three stimulus sets, so they are not dif-
ferentiated in this plot. There are also no differences in MI
across the neuron types or in differences in MI .., values with BF.

To view the amount of information available in temporal
spike patterns that is not available in spike rate, MI,,,, from the
SDM calculation is plotted as a function of the information cal-
culated assuming a rate code in Figure 4 B. The vertical offset of
the points from the diagonal represents the extra information
available when spike timing is taken into account. Many neurons
show a considerable information gain with the SDM method.

Recall that, for the 0 cost (¢ = 0) analysis, no penalty is as-
signed to shifting spikes, only to adding or deleting them. This
case should, then, correspond to a rate code, and the information
calculated from the SDM method at 0 cost should be the same as
the information calculated under the assumption of a rate code, if
no information is lost in the decoding step when the confusion
matrix is generated. When MI,, is plotted as a function of MI for
each neuron, there is very good agreement between the two mea-
surements (r = 0.99) (Fig. 4C).

In Figure 5, ML, values are compared with the correspond-

are the predominant low-BF response
type in our sample. This point is discussed
in more detail in Discussion.

Timescale of information

The cost at which MI is maximum is a measure of the temporal
precision of the spike patterns that provide information captured
by the SDM analysis. As discussed in Materials and Methods, 1/q
is a measure of the effective integration time of a neuron reading
the temporal information in spike patterns, in the sense that 2/q is
the maximum time delay between spikes in two trains at which
they can still be shifted into alignment.

Figure 6 shows data on the costs at which the maximum MI is
obtained with the SDM analysis, for each of the localization cues
studied. The median peak cost value obtained by pooling cost
values from all localization cues and ignoring 0 values is ~80s "
Thus, when there is localization information in spike timing, it is
integrated on a timescale of ~12 ms.

A peak cost of 0 was declared if the MI,,, value remained
within 10% of M1, for that neuron (for example, the ILD curve in
Fig. 3C), indicating that most of the information was carried by
rate. Peak costs of 0 occurred in 50% of the ITD cases (Fig. 6A)
and 41% of the ILD cases (Fig. 6 B). This is in comparison with
only 12% of cases for the ABI cue (Fig. 6C) and 9% of cases for the
SN cue (Fig. 6 D).
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Figure 6. Timescale of the temporal representation of localization cues. 4, Cost at which the
SDM Ml reached its peak value plotted as a function of BF for the ITD cue. Note that the 0 cost
data points have been placed at the 15 ~" spot. B, ILD. €, ABI. D, SN. The black line represents
the best linear fit of log(cost) to log(BF), ignoring 0 cost values.

The other major difference between the information time-
scales for different localization cues is that there is a significant
correlation between BF and peak cost for the SN cue (r = —0.46;
df = 48; p = 0.0004, ignoring 0 cost values) that is not seen with
the other cues. SN are represented at finer timescales in low-BF
neurons than they are in high-BF neurons.

Frozen versus random noise

In this section, we show that the information that is recovered by
the SDM analysis is almost entirely derived from locking to tem-
poral features of the stimulus. To demonstrate this point, re-
sponses to frozen noise, for which the temporal waveform is the
same in all stimulus repetitions, were compared with responses to
phase-randomized noise, for which the temporal waveform dif-
fers in each repetition. Information that depends on the tempo-
rally locked stimulus features will not be present with the random
noise. All data presented to this point were obtained with frozen
noise.

Figure 7 shows the responses of a 1.8 kHz type O neuron in
response to the random/frozen stimulus set described in Materi-
als and Methods. There is very little difference in the average rate
responses, as shown in Figure 7, A and B, and the rMI;; of these
stimulus sets are nearly identical at ~0.65 bits. The temporal
responses to the two stimulus sets are completely different, how-
ever, as shown by the raster plots in Figure 7, C and D. From the
raster to the frozen noise, it is clear that this neuron responded to
specific temporal events in the stimuli, events that occur at fixed
times in the frozen noise but not in the random noise. As an
example, there is a spike that occurs frequently at a latency of ~56
ms in the responses to two of the frozen SN stimuli (1.8 and 1.7
kHz) but not in the others. The only apparent temporal feature
that remains in the random noise is the latency of the first burst of
spikes, which changes systematically with ILD in both stimulus
sets.
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The SDM information carried by this neuron is shown in
Figure 7E-G for both stimulus sets. As is characteristic of low-
frequency neurons, there is a large peak in the MI(cost) curves for
the frozen-noise set, indicating the presence of a substantial
amount of information in spike timing over that in rate. These
peaks are missing from the random-waveform responses. Thus,
the extra information available in spike timing was attributable to
the differences in the temporal waveforms within the frozen-
noise SN/ILD stimulus set as opposed to an intrinsic variation in
spike patterns stemming purely from spectral or level differences.

ILD-related latency differences were observed in both the re-
sponses to frozen and random waveforms (Fig. 7C,D). However,
the SDM method reveals timing information in only the frozen-
waveform case. This indicates that the SDM method, as com-
puted here, is relatively insensitive to first-spike-latency varia-
tion. Although differences in spike latency must increase the
distance between spike trains, this distance is apparently over-
whelmed by other noisy sources of spike-train differences. When
the SDM MI is computed using spike trains with all but the first
spike removed (a first-spike latency code), 1.3 and 0.9 bits of
information are recovered about the full stimulus set for the
frozen- and random-waveform sets, respectively.

The results of the example neuron in Figure 7 are consistent
across the population of neurons for which the random-
waveform stimulus data were gathered. For the 13 neurons stud-
ied with the random-noise stimuli, the mean and SD of the spike
timing gains for frozen noise were 0.54 = 0.61 bits (range of
0-1.7 bits), whereas the corresponding spike-timing gain values
for random noise were significantly less at 0.1 = 0.06 bits (range
of 0—0.25 bits; different from frozen noise at p < 0.01, signed
rank test). ILD random-noise spike-timing gains were not signif-
icantly different from SN gains.

Relative information

The percentage of Ml that is devoted to the coding of an
individual localization cue is called the relative information. It is
computed as the ratio MI,/MI;; and is the basis for analyzing
the interactions of individual localization cues. An example of
this computation is given in Figure 8 for a type V neuron in
response to the SN/ILD stimulus set (with frozen noise). Figure
8 A shows Ml 1, MI}; b, and Mlgy as a function of cost. At ~630
s ', this neuron shows a prominent peak of 3.5 bits in its MIpy; ;-
(cost) curve (one of the most sensitive neurons in the popula-
tion), a gain of ~2 bits over its 0 cost value. Although it is clear
from Figure 8 A that MI}; , and MIgy covary with Ml ;, Figure
8 B shows that the fraction of Ml ; devoted to ILD or SN cod-
ing is not constant with cost. Instead, there is a monotonic in-
crease in the Mgy percentage as a function of cost, whereas Ml 1,
shows a low-pass behavior.

This result is further summarized in Figure 8C. Here, the “tra-
jectory” of single-cue coding is plotted. Each dot plots the relative
information for SN versus ILD at a particular cost. Points lie
below the diagonal when Ml is not equal to the sum of the
information in the individual cues or when the confounded in-
formation of Equation 3 is non-zero. At a cost of 0 (rate case), the
confounded information is large; MIgy and MI; , are not inde-
pendently represented in the neural response. As the cost param-
eter is increased, the confounded information decreases until it
reaches 0 (near 50 s ~'), signifying that SN and ILD are indepen-
dently coded. Finally, at costs over 1000 s ', the information
about both ILD and SN (and Ml ;) decreases. The decrease is
faster for ILD, so the points in Figure 8 C move toward the upper
left-hand corner of the plot.
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SN/ILD coding trajectories for the en-
tire population are summarized in Figure
9. This plot shows vectors, such as the ar-
row in Figure 8C, that point from the 0
cost position in the relative information
plot to the cutoff cost position (in which
the SDM MI has decayed to half of its peak
value). The arrows are translated so the 0
cost position is at the origin; thus, the lines
represent the changes in relative informa-
tion as cost increases. Only neurons for
which both individual cue MI,,, values
are >0.2 bits are considered. The gray
lines represent the change in relative in-
formation from 0 cost to cutoff cost for
individual neurons, and the mean trajec-
tory for the whole population is given as
the thick black line. Trajectories pointing
to negative values on the abscissa repre-
sent cases in which the percentage of
Ml devoted to coding ILD decreases
over its 0 cost value when spike timing is
P e taken into account; trajectories pointing
S ; upward represent cases in which the per-

centage devoted to SN increases with cost.

There is remarkable consistency in the
coding trajectories across the population,
with the majority of trajectories heading in

0 710 100 1000 10000
Cost [s7]

0 10 100 1000 10000
Cost [s'1]

—6— Random SN

--0- Frozen

100 1000 10000
Cost [s1]

SN and ILD for the frozen-noise stimulus set. Plotting conventions are as in Figure 2. B, Same, for the random-noise set. C, Spike
rasters of the responses to the frozen-noise stimulus set. D, Rasters of the responses to the random-noise set. Note that the
ILD-dependent latency differences remain, whereas most other time-locked responses vanish. £, SDM Ml as a function of cost
for the frozen (dotted) and random (solid) stimulus sets. F, SDM Ml (cost). G, SDM Migy(cost).

0
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Figure8.  Anexample cost/coding trajectory. A, M(cost) curves for an example neuron in response to the SN/ILD stimulus set.
B, Relative information [MI (as percentage)] plotted as a function of cost. Here, Mgy and MI,  are normalized by Mi,,,, and plotted
as percentages. Their sumis plotted as a dotted line. C, The percentage of information devoted to SN coding is plotted as a function
of that devoted to ILD coding for each cost studied; certain trajectory points are labeled with their cost values (units of s ~"). The
arrow represents the summary trajectory from 0 cost to the cutoff cost (6310's " for this neuron).

approximately the same direction. As the
absolute timing of spikes becomes rele-
vant in the code, the representation of SN
increases, and the representation of ILD
decreases. To test the significance of this
result, the calculation of the population
means was repeated 1000 times with boot-
strap sampling from the trajectory vectors.
The results are shown in the inset, in
which the red dots correspond to the end-
points of the mean trajectory vectors from
the bootstrapped datasets. Essentially, the
cloud of red dots represents the two-
dimensional confidence interval of the
mean trajectory vector endpoint. All of the
bootstrapped values lie in the second
quadrant, indicating that the change in
coding representation from ILD to SN
with increasing temporal resolution is a
general, significant trend of the
population.

The reduction in confounded information with increasing
cost is a general trend across the population. Considering only
those neurons sensitive to both cues in the stimulus set (defined
as having a relative rtMIy = 10% for each cue; n = 94), the median
confounded information at 0 cost is 24%, whereas the median
confounded information at peak cost is 15% (the two are differ-
ent at p < 0.00001, rank sum test). Because rate is a unidimen-
sional measure, using a rate code to represent more than one cue
necessarily leads to a confounded representation of the encoded
quantities. The extra dimensions of spike timing allow a more
independent representation of the localization cues and, in the-
ory, allow the cues to be decoded more independently, as well.

For the ITD/ILD and ABI/ILD sets, the

general behavior is similar. However, the

vectors are shorter because of the relatively small amount of MI

revealed by the SDM analysis for ITD and ABI. The trend with the

ITD/ILD set is for MI;; /Mgy to increase at the expense of

MI, /Mgy 1, and, for the ABI/ILD set, M1 5;/MlIpy;; increased
at the expense of MI;; ,/MlIpy;; (data not shown).

Discussion

Temporal representation of sound localization cues in ICC
The question asked here is whether the temporal patterns of spike
trains can enhance the representation of sound localization cues
in the ICC. Conceptually, such temporal information could be
stimulus locked (e.g., by phase locking to the waveform of the
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Figure 9.  Cost coding summary trajectories for the population in response to the SN/ILD

stimulus set. Individual coding trajectories are shown in gray, and the population mean is
shown in black. The inset shows a close-up view of the population mean. Red dots represent
population means resulting from bootstrap resampling of the individual trajectories; 1000
bootstrap samples were used.

stimulus), or not stimulus locked. In the latter case, sound local-
ization cues would be represented by changes in the temporal
patterns of spiking that are not directly related to the temporal
waveform of the stimulus, as in the work in visual cortex by
Optican and Richmond (Optican and Richmond, 1987; Rich-
mond and Optican, 1990). Of course, most auditory neurons,
including those in the ICC, lock strongly to the stimulus en-
velope (Joris, 2003; Louage et al., 2003). Thus, evaluation of
nonstimulus-locked temporal coding must control for these en-
velope responses; here we used random noise, for which envelope
locking should not provide consistent information from one
stimulus to the next.

We use an SDM analysis to look at temporal coding. An im-
portant check on this analysis is the fact that the 0 cost MI is the
same as the discharge rate MI (rMI ~ MI, in Fig. 4C). Because the
SDM method is based on stimulus parameter estimation, it pro-
vides a lower bound to the information available in the spike
trains. For the 0 cost case, the SDM method recovers all of the
information available; however, this is not true at higher costs,
because we know the method is insensitive to first-spike-latency
information (discussed below). Thus, the information increment
analysis (Fig. 5) should be looked on as alower bound to the extra
temporal information that is available in spike trains.

The results show that encoding in spike timing potentially
enhances the amount of information carried about localization
cues in ICC (Figs. 4, 5). Significant timing-dependent increments
were seen for all of the cues except ITD, with the largest effects for
SN. The lack of ITD-related temporal information suggests that
ITD is represented by discharge rate alone in ICC. This is consis-
tent with the work of Carney and Yin (1989), who investigated
the effects of ITD manipulation in a population of low-frequency
ICC neurons. Their raster plots of neurons responding to broad-
band noise at various ITDs (compare with their Figs. 10, 11) show
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that there is little change in the timing of spikes to changes in ITD;
rather, there is a large ITD-dependent gain change.

The position of the peak in MI versus cost functions (Fig.
2C-E) provides an estimate of the timescale at which spike timing
provides the most information. The data of Figure 6 show that
localization cues in the ICC are best decoded at a cost of ~80
s L suggesting that the resolution of localization-related

spike-timing patterns in the ICC is ~12 ms.

The nature of the temporal representation

When random noise was used to eliminate stimulus-waveform
cues, the only temporal information remaining in IC neurons
was that encoded in first-spike latency. Sound location has been
shown to modulate the first-spike latency in both IC and auditory
cortex (Brugge et al., 1996; Furukawa and Middlebrooks, 2002;
Sterbing et al., 2003; Mrsic-Flogel et al., 2005). Although latency
differences contribute to the distances measured with the SDM,
in practice, the variation in spike-train distances caused by la-
tency are too small to have much effect on stimulus grouping,
unless the analysis is confined to the first few spikes. The
analysis of temporal information presented here does not ad-
dress the role that first-spike latency may play in encoding
sound-localization cues.

The frozen/random-noise analysis (Fig. 7) shows that the
temporal patterns are mainly locked to temporal features of the
stimulus waveform, independent of static localization cue values.
The largest stimulus-waveform effects are related to SN cues.
Presumably, these represent phase locking to the temporal enve-
lope of the stimulus induced by the sharp antiresonances in the
SN stimuli. The strongest temporal information about SN occurs
at BFs below the physiological range of SN cues in cats (Musicant
et al., 1990; Rice et al., 1992). This suggests that the temporal
increments for SN stimuli do not represent a specialization for
representing SN. Instead, the temporal information is induced by
spectral irregularities or temporal envelopes in general, as for
example in speech (Bandyopadhyay and Young, 2004).

Can the temporal information identified here be used by the
auditory system for sound localization? To do so, there would
have to be a template for the spike trains expected from a known
stimulus (i.e., the stimulus would have to be recognized by the
auditory system on the basis of its other properties). Then its
location could be determined in part through the envelope in-
duced by SN cues as demonstrated here. However, this source of
information would be vulnerable to echoes and other environ-
mental phase distortions, limiting its usefulness as an absolute
localization cue.

A situation in which temporal cues might contribute is when
comparisons of two stimuli occurring in the same acoustic envi-
ronment are possible (e.g., in determining when a given sound
source has changed location). In binaural-masking-level-
difference experiments, random noises are more effective at
masking interaural correlation differences than frozen noises
(Breebaart and Kohlrausch, 2001) because of the uncertainty in
the interaural correlation of the masker. This result suggests that
minimum audible angles for random-noise stimuli should be
higher than for frozen stimuli, because of better encoding of SN
cues in the latter case. Another situation in which temporal lock-
ing would be useful would be in the comparison of spike times
across different neurons. This type of population encoding is not
considered in this analysis.

Perhaps more surprising than the temporally locked SN infor-
mation is the temporally locked ILD information. ILD is a static
cue, yet its representation in the neural response benefits from
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spike times locked to the stimulus. When the ILD is changed,
events in the stimulus that were subthreshold could become su-
perthreshold and cause the neuron to spike. These spikes would
force the neuron into its refractory period and may affect the
position of the next burst of spikes. Thus, changes in ILD could
cause a rearrangement in the peristimulus time histogram
(PSTH). Of course, the same argument could be made for
changes in ITD, which do not result in rearrangements in the
PSTH; the mechanisms behind ILD and ITD encoding need to be
further explored.

Differences among ICC neuron classes

In a previous publication (Chase and Young, 2005), the informa-
tion about localization cues provided by ICC neurons of three
different response types was compared. That analysis, based only
on discharge rate, found that, although there were some differ-
ences among the neuron types, generally there was substantial
overlap in the information provided by the three classes of neu-
rons. The largest differences were for the type V neurons, which
provided information mainly about ITD and ABIL Type V neu-
rons stand out in the present analysis by showing larger MI in-
crements than the other neuron types when spike timing is con-
sidered. Because type V neurons are found only at low BFs and
because most of the neurons in the low-BF sample were type V, it
is not clear whether the difference has to do with BF or with the
particular circuitry connected to the type V neurons. An argu-
ment for the former is that the changes in temporal envelope
produced by shifting the location of a spectral notch will be at
higher envelope frequencies for high-BF neurons compared with
low-BF neurons. Given that neurons in the ICC have a cutoff
frequency in their modulation transfer functions of ~100 Hz
(Langner and Schreiner, 1988; Krishna and Semple, 2000), it may
be that the temporally coded information produced by changes in
SN frequency is outside the modulation response regions of neu-
rons or high-BF neurons.

The representation of multiple cues

These results show that spike-timing codes can reduce the con-
founded information in the response, allowing individual cues to
be represented more independently (Figs. 8, 9). Furthermore, the
representation of cues in the response changes as a function of the
decoding time resolution in a consistent manner, as illustrated
for SN/ILD stimuli by Figure 9. ITDs are coded on the longest
timescales, by spike rate. ILDs are coded at intermediate time-
scales because increases in the SDM cost cause an increase in ILD
information relative to ITD information but a decrease relative to
SN information. SN information is available at the shortest time-
scales, especially in low-frequency neurons. Together, these re-
sults imply that spike timing could play an important role in
multiplexing information onto spike trains, given appropriate
decoding mechanisms.
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