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Mini-Review

Editor’s Note: Two reviews in this week’s issue examine the rapidly expanding interest in autism research in the neuroscience
community. Moldin et al. provide a brief prospective on the overall state of research in autism. DiCicco-Bloom and colleagues
summarize their presentations at the Neurobiology of Disease workshop at the 2005 Annual Meeting of the Society for

Neuroscience.
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The autism spectrum disorder (ASD) is among the most devas-
tating disorders of childhood in terms of prevalence, morbidity,
outcome, impact on the family, and cost to society. According to
recent epidemiological data, ~1 child in 166 is affected with ASD,
a considerable increase compared with estimates compiled 15-20
years ago (Fombonne, 2003a,b). Although at one time considered
an emotional disturbance resulting from early attachment expe-
riences (Bettelheim, 1967), ASD is now recognized as a disorder
of prenatal and postnatal brain development. Although ASD is
primarily a genetic disorder involving multiple genes, insights
into underlying mechanisms will require a multidisciplinary ap-
proach. Assessment of the earliest clinical signs and symptoms
and the functional and structural networks by neuroimaging and
neuropathology can be used to identify the underlying brain re-
gions, neural networks, and cellular systems. In turn, the efforts
of human and animal geneticists and neuroscientists are needed
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to define molecular and protein signaling pathways that mediate
normal as well as abnormal development of language, social in-
teraction, and cognitive and motor routines. In this review, we
focus on several issues: the earliest manifestations of ASD, re-
ported abnormalities of brain growth, functional neural net-
works, and neuropathology. We also consider the possible etio-
logical factors and the challenges of creating animal models for
this uniquely human behavioral disorder.

Autism spectrum disorder: phenotypes and clinical diagnosis
ASD comprises several different disorders as defined by deficits in
social behaviors and interactions. These deficits prevent the de-
velopment of normal interpersonal relationships of affected pa-
tients with their parents, siblings, and other children. Deficits in
nonverbal communication include reduced eye contact, facial
expression, and body gestures (American Psychiatric Associa-
tion, 1994). These disorders include prototypic autistic disorder,
Asperger syndrome, and pervasive developmental disorder—not
otherwise specified (PDD-NOS). Autistic disorder has three core
symptom domains: deficits in communication, abnormal social
interactions, and restrictive and/or repetitive interests and behav-
iors. Autistic disorder is typically noticed in the first or second
year of life. The manifestations include delay or abnormality in
language and play, repetitive behaviors, such as spinning things
or lining up small objects, or unusual interests such as preoccu-
pations with stop signs or ceiling fans. Asperger syndrome also
involves social symptoms but language development and non-
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verbal intelligence are nearly normal. Asperger syndrome, how-
ever, may not be apparent until a child is older. PDD-NOS (atyp-
ical autism) differs from autistic disorder by the absence of
repetitive behaviors or communication deficits or the presence of
subtle deficits in all three core symptom domains. In the past,
more than half of children with autistic disorder had nonverbal
skills in the range of mental retardation (MR) despite the fact that
their nonverbal skills typically exceeded their verbal perfor-
mance. However, recent epidemiological studies suggest that this
may no longer be the case, perhaps because of better identifica-
tion of mild cases, the effects of earlier and more effective special
education interventions, and/or more accurate assessment of
nonverbal intelligence in children with limited social motivation
(Chakrabarti and Fombonne, 2001). Because these three disor-
ders frequently occur within the same family, they may not be
genetically distinct (Lord and Bailey, 2002).

There is marked phenotypic diversity in ASD, with impair-
ment in each symptom domain varying greatly between individ-
uals. In addition, there may be several distinct phenotypic pro-
files. For example, social development and repetitive behaviors
follow different timelines, with social deficits often improving
during preschool years, whereas repetitive behaviors become
more obvious. Approximately 25-35% of children develop a few
spontaneous words and early social routines (e.g., playing peek-
a-boo) at ~1 year of age, reach a plateau for several months, and
then gradually lose the skills altogether. Those with this regres-
sion may regain the skills months later [or sometimes not at all
(Luyster et al., 2005)]. Another 25% of children develop seizures
during adolescence.

The diagnosis of ASD can now be made in children as young as
2 years, as well as adults using a combination of standardized
instruments: a parent interview (e.g., the Autism Diagnostic In-
terview—Revised) and an observational scale (e.g., the Autism
Diagnostic Observation Schedule). These instruments are cur-
rently the most reliable, sensitive, and specific tools for research.
Although these instruments are now being used as metrics for
ASD severity, caution is required because specific group norms
have not been defined for different age groups or distinct intel-
lectual and verbal levels (Lord et al., 2001). ASD is not commonly
identified before 2 years of age. The earliest signs recognized in
infancy (=1 year) or toddlers are nonspecific (e.g., irritability,
passivity, difficulties with sleeping and eating), followed by delays
in language, including babbling and response to speech, and in
social engagement. By 3 years of age, difficulties in the three ma-
jor domains (social reciprocity, communication, and restricted/
repetitive interests) are typically observed. ASD is easiest to dif-
ferentiate from other disorders, such as attention deficit disorder
and language impairments, in late preschool and early school
years. Thereafter, the consequences of compensatory strategies
and mental retardation make distinctions among disorders more
difficult.

Because early developmental interventions may significantly
alter ASD outcomes, diagnostic instruments that are effective
before 2 years of age are a priority. Toward this goal, investigators
are focusing on the early behavioral signs that previously were
identified only from retrospective reports by parents and analysis
of home videotapes (Zwaigenbaum et al., 2006). In some studies,
as many as 50% of parents recall abnormalities during the first
year, including extremes of temperament and behavior (from
marked irritability to alarming passivity), poor eye contact, and
lack of response to parental voices or interaction. Home videos
reveal similar developmental differences by 12 months of age.
However, such retrospective reporting may lead to restricted and
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possibly biased sampling and leave uncertainty about the onset
and progression of early signs. To address these limitations, in-
vestigators have turned to prospective studies of infants at high
risk for ASD. Siblings born to families with an ASD child have a
50- to 100-fold greater chance of ASD, with a recurrence rate of
5-8% (Szatmari et al., 1998). These longitudinal studies offer
several methodological advantages, including the use of stan-
dardized conditions with a priori selection of time points and
measures based on specific hypotheses (Zwaigenbaum et al.,
2006). Prospective data indicate that at 12 months of age, atypical
behaviors can distinguish siblings later diagnosed with ASD from
other siblings and low-risk control infants. These behaviors cross
several functional domains, including visual attention (tracking),
imitation, social responses (orienting to name, anticipatory re-
sponses, eye contact, reciprocal smiling), motor control, and re-
activity (Zwaigenbaum et al., 2005). There is also evidence of
atypical language trajectories, with mild delays at 12 months pro-
gressing to more severe delays by 24 months (Zwaigenbaum et al.,
2005; Landa and Garrett-Mayer, 2006). Yirmiya et al. (2006) also
reported that 4-month-old ASD siblings show decreased syn-
chrony during infant-led interactions with their mothers, sug-
gesting that subtle social abnormalities may precede more obvi-
ous late impairments. These early deficits in social,
communicative, and cognitive functions are a starting point to
look for evidence of abnormal brain growth, development, and
function by clinical imaging and neuropathological studies.

The neurobiology of ASD

Studies of the ASD brain using structural and functional imaging
and neuropathological techniques have revealed macroscopic
and microscopic abnormalities of development.

Morphometric and chemical neuroimaging studies

During early childhood, brain volume in ASD shows abnormal
enlargement, but these differences diminish somewhat by later
childhood or adolescence. This pattern has been detected only
recently because for much of its 70 year history, ASD brain ab-
normalities were viewed as static. Thus, the possibility of age-
dependent growth abnormalities was not appreciated
(Courchesne, 2004). Most anatomical studies of ASD focused on
the older child, adolescent, or adult (Cody et al., 2002), rarely
investigating the young, developing brain (Courchesne et al.,
2001, 2004; Sparks et al., 2002; Hazlett et al., 2005). The few
cross-sectional studies that examined age-related changes reveal a
complex pattern of growth abnormalities in the cerebellum, ce-
rebrum, and amygdala and possible differences in hippocampus
(Hashimoto et al., 1995; Courchesne et al., 2001; Aylward et al.,
2002; Carper et al., 2002; Sparks et al., 2002; Herbert et al., 2004;
Schumann et al., 2004; Carper and Courchesne, 2005; Hazlett et
al., 2005). Age-related differences in specific brain region growth
were also apparent in a meta-analysis (Redcay and Courchesne,
2005).

Brain size has been defined using head circumference, a reli-
able indicator of volume especially during early childhood; volu-
metric calculations using magnetic resonance imaging (MRI);
and postmortem brain weights. At birth, the average head cir-
cumference in ASD patients is approximately normal
(Courchesne and Pierce, 2005a). However, by 3—4 years of age,
brain size in ASD exceeds normal average by ~10% based on in
vivo MRI studies and a meta-analysis of postmortem brain weight
and MRI morphometry (Courchesne et al., 2001; Sparks et al.,
2002; Redcay and Courchesne, 2005). A recent brain volume
study using a larger toddler sample (51 children; 18—35 months
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of age) observed a somewhat smaller ~5% increase (Hazlett et al.,
2005). By 67 years of age, brain size in ASD may exhibit only a
small increase (Courchesne et al., 2001; Sparks et al., 2002; Red-
cay and Courchesne, 2005; Carper et al., 2006). However, forth-
coming data from the largest study reveals a persistent ~5% dif-
ference at older ages (Schultz et al., 2005a), consistent with
extensive head circumference data in older patients. Thus, all
emerging data indicate that there is a brain growth phenotype in
ASD. At the tissue level, brain enlargement reflects both increased
cerebral gray and white matter (Courchesne etal., 2001; Carper et
al., 2002; Hazlett et al., 2005), especially white matter immedi-
ately underlying the cortex (Herbert et al., 2004). There is also
increased cerebellar white and gray matter (Courchesne et al.,
2001), although this finding may vary with sample selection and
methodology (Hazlett et al., 2005). In contrast, the cerebellar
vermis, which is predominantly gray matter, is reduced in size
(Hashimoto et al., 1995; Courchesne et al., 2001; Kaufmann et al.,
2003).

Magnetic resonance spectroscopy (MRS) can be used to detect
regional concentrations of neuron-related molecules such as
N-acetyl aspartate, creatine, and myoinositol. Given the brain
enlargement in ASD, one might have predicted increases in neu-
ronal markers attributable to enhanced neuronal or synaptic
density. However, these markers were all decreased in 3- to
4-year-old children with ASD (Friedman et al., 2003). The com-
bination of altered molecular markers and an increase in white
and gray matter could reflect changes in (1) the numbers and
sizes of neurons and glia; (2) the elaboration of axons, dendrites
and synapses; (3) axodendritic pruning; (4) programmed cell
death; (5) production of cortical columns; or (6) myelination. An
inflammatory response has also been described in frontal cortex
and cerebellar regions, including cytokine production and acti-
vation of microglia and astrocytes (Courchesne and Pierce,
2005b; Vargas et al., 2005).

Neuropathological studies

Postmortem studies can directly characterize brain abnormalities
in ASD. Classical studies have focused primarily on autistic dis-
order. These studies were limited by small sample sizes (often just
case reports), use of possibly biased quantification methods, and
the presence of comorbid mental retardation and/or epilepsy
(Palmen et al., 2004). Nevertheless, these studies revealed abnor-
malities in brain development. Approximately 20% of the cases
exhibit macrocephaly (head circumference >97th percentile), a
finding already noted in some children in the first report on
autistic disorder (Kanner, 1943). Microscopically, the following
consistent findings have been identified: decreased numbers of
cerebellar Purkinje cells [21 of 29 cases in 8 studies, 22 of 24 with
MR and 11 of 24 with epilepsy (Williams et al., 1980; Ritvo et al.,
1986; Fehlow et al., 1993; Kemper and Bauman, 1993; Guerin et
al., 1996; Bailey et al., 1998; Fatemi et al., 2002; Lee et al., 2002)],
age-related changes in cerebellar nuclei and inferior olive [5 of 5
cases in 1 study, 5 of 5 with MR and 4 of 5 with epilepsy (Bauman,
1991)], brainstem and olivary dysplasia [4 of 6 cases in 2 studies,
all with MR and 4 of 6 with epilepsy (Rodier et al., 1996; Bailey et
al., 1998)], alterations in the neocortex, such as misoriented py-
ramidal neurons [6 of 15 cases in 5 studies, 14 of 15 with MR and
8 of 15 with epilepsy (Coleman et al., 1985; Hof et al., 1991;
Kemper and Bauman, 1993; Guerin et al., 1996; Bailey et al.,
1998)], signs of cortical dysgenesis [30 of 32 cases in 6 studies, 16
of 22 with MR and 8 of 15 with epilepsy (Bailey et al., 1998;
Fatemi, 2001; Fatemi and Halt, 2001; Casanova et al., 2002a,b;
Araghi-Niknam and Fatemi, 2003)], and increased cell packing
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density and smaller neurons in the limbic system [9 of 15 cases in
4 studies, 14 of 15 with MR and 8 of 15 with epilepsy (Kemper and
Bauman, 1993; Guerin et al., 1996; Raymond et al., 1996)]. The
most consistent abnormalities reported by multiple investigators
are decreased cerebellar Purkinje neurons and cerebral cortex
dysgenesis. Data on the limbic system and age-related hindbrain
changes lack independent laboratory replication. These findings
may represent alterations in primary developmental processes
such as precursor proliferation, programmed cell death, neuron
migration, axodendritic outgrowth, synaptogenesis, and prun-
ing, although the pathological consequences of epilepsy and its
treatment must also be considered.

By themselves the microscopic changes do not explain mac-
rocephaly nor evidence of an enlarged brain in neuroimaging
studies (Cody et al., 2002; Palmen and van Engeland, 2004;
Courchesne and Pierce, 2005a). However, few postmortem stud-
ies included brains from the first years of life when the age-
dependent enlargement has been most clearly characterized
(Courchesne et al., 2001; Sparks et al., 2002; Hazlett et al., 2005;
Redcay and Courchesne, 2005). In contrast, preliminary evidence
using state-of-the-art stereological methods suggests a >10% in-
crease in mean cortical neuronal density as well as cortical neuron
number in six subjects with ASD (12.3 * 3.4 years of age; mean
age = SEM; MR, 6 of 6; epilepsy, 3 of 6) compared with six
age-matched controls (12.8 = 3.8 years of age) (C. Schmitz, un-
published observations). ASD subjects also exhibit an ~5% re-
duction in minicolumn width in cortical areas M1, V1, and fron-
tal association cortex [areas 4, 17, and 9 of Brodmann (1909)] and
S1 [area 3b of Vogt and Vogt (1919)] (C. Schmitz and M.
Casanova, unpublished observations). The latter results support
previous findings of changes in minicolumnar organization in
other cortical regions in ASD (Casanova et al., 2002a). A reduc-
tion in minicolumn width could reflect changes in GABAergic
systems (Blatt et al., 2001; Schmitz et al., 2005) that may alter
lateral inhibition (Gustafsson, 1997; Bertone et al., 2005) or un-
derlie excess local cerebral connectivity at the expense of long-
distance connectivity (Courchesne and Pierce, 2005b). Other
studies raise the possibility of changes in synaptic density and the
composition of nicotinic receptors (Lee et al., 2002; Martin-Ruiz
et al., 2004; Mukaetova-Ladinska et al., 2004).

Functional neuroimaging studies

Because the diagnosis of ASD is based on select behavioral distur-
bances that normally map onto specific brain networks, func-
tional MRI (fMRI) can be useful to examine the neural systems
affected in ASD. The three core symptom domains likely involve
widely dispersed neural systems, perhaps implying a generalized
cellular abnormality. In contrast, some abilities such as basic per-
ceptual skills and overall intelligence are often spared, suggesting
that not all brain systems are equally affected. Although ASD
alters language, attention, communication, and social interac-
tions, only the latter has received significant attention using fMRI
(Schultz and Robins, 2005). The earliest fMRI work focused on
social perception, such as person recognition through the face
(Schultz et al., 2000). More recent work has examined the per-
ception of facial expression, joint attention, empathy, and social
cognition (Fig. 1). These studies indicate that the skill deficits of
ASD are accompanied by reduced neural activity in regions that
normally govern the specific functional domain. For example,
deficits in joint attention are associated with reduced activity in
the posterior superior temporal sulcus (Pelphrey et al., 2005),
whereas deficits in social perception and/or emotional engage-
ment and arousal are associated with reduced activity in the
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Medial

Figure 1.  Functional MRI abnormalities observed in ASD. 4, These coronal MRIimages show
the cerebral hemispheres above, the cerebellum below, and a circle over the fusiform gyrus of
the temporal lobe. The examples illustrate the frequent finding of hypoactivation of the fusi-
form gyrus to faces in an adolescent male with ASD (right) compared with an age- and 1Q-
matched healthy control male (left). The red/yellow signal shows brain areas that are signifi-
cantly more active during perception of faces; signals in blue show areas more active during
perception of nonface objects. Note the lack of face activation in the boy with ASD but average
levels of nonface object activation. B, Schematic diagrams of the brain from lateral and medial
orientations illustrating the broader array of brain areas found to be hypoactive in ASD during a
variety of cognitive and perceptual tasks that are explicitly social in nature. Some evidence
suggests that these areas are linked to form a “social brain” network. IFG, Inferior frontal gyrus
(hypoactive during facial expression imitation); pSTS, posterior superior temporal sulcus (hypo-
active during perception of facial expressions and eye gaze tasks); SFG, superior frontal gyrus
(hypoactive during theory of mind tasks, i.e., when taking another person’s perspective); A,
amygdala (hypoactive during a variety of social tasks); FG, fusiform gyrus, also known as the
fusiform face area (hypoactive during perception of personal identity) (Schultz, 2005; Schultz
and Robins, 2005).

Lateral

amygdala (Baron-Cohen et al., 1999; Critchley et al., 2000; Pierce
etal., 2001). Some exciting new work suggests that “mirror” neu-
rons (i.e., motor neurons that fire when the animal or person
watches the actions of others) might be involved in deficits in
empathy (Dapretto et al., 2006), whereas positron emission to-
mography studies showed medial prefrontal and amygdaloid
area deficits during theory of mind tasks (i.e., when taking some-
one else’s perspective) (Castelli et al., 2002).

Although the deficits in ASD are undoubtedly widely distrib-
uted, the best replicated fMRI abnormality is hypoactivation of
the fusiform face area (FFA) (Schultz, 2005). Individuals with
ASD have difficulties with face perception (Langdell, 1978; Klin et
al,, 2002). Although nearly all fMRI studies report FFA hypoac-
tivation, its meaning depends greatly on the psychological task
and the correlation with other behavioral measures. In normal
subjects, tasks that require the participant to individuate specific
faces show much more FFA activation than tasks that only re-
quire basic level “person detection.” The latter task might be
engaged by passive viewing (Grill-Spector et al., 2004). Because
individuals with ASD do not have deficits in detecting people
versus other objects, it is not unexpected that there are smaller
group differences with passive viewing of faces. It will be impor-
tant that future studies use fMRI tasks that drive the social brain
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systems in ways that mimic the everyday ASD-associated deficits.
In addition, collection of behavioral data along with fMRI should
help clarify factors contributing to regional activation abnormal-
ities. For example, Dalton et al. (2005) found that individual
differences in FFA hypoactivation correlated inversely with the
time the participant spent fixating visually on the subject’s eye
region. Other recent studies indicate that the degree of neural
activation can predict individual differences in functional perfor-
mance in ASD subjects (Pelphrey et al., 2005; Schultz et al.,
2005b; Dapretto et al., 2006). Thus, measuring parameters such
as eye tracking or autonomic function, a marker of emotional
arousal and responsiveness, may identify unique patterns of neu-
ral activation. Last, the improving quality of imaging data now
allows statistical modeling of brain networks that seem to be
involved in social cognition and social perception, allowing one
to construct dynamic models of the way different nodes in differ-
ent brain areas work together to achieve functional behaviors. It
is now possible to model the temporal sequence of specific node
activation during prolonged behavioral tasks that may provide
insight into the manner by which brain regions contribute to
larger functional networks in normal subjects compared with
ASD (Just et al., 2004; Schultz et al., 2005b). In turn, these dis-
tributed patterns of neural activity can be correlated with specific
genetic alleles, thereby linking the pathway from gene to brain to
behavior. In this regard, neuroimaging studies could form the
glue that binds genetics to behavior.

The etiology of ASD

The foregoing evidence indicates that ASD involves changes in
regional brain anatomy and functional neural networks and
likely results from abnormal regulation of multiple ontogenetic
processes. What underlies the abnormal brain development?
Studies of human populations indicate that ASD is primarily a
heritable disorder. We cannot exclude of course the possibility
that other factors also contribute to the manifestations of the
disorder. In families with an ASD child, the risk of the disorder in
the next sibling is 50 times greater than in the general population.
ASD concordance rates in monozygotic and dizygotic twins in-
dicate that heritability is >90%. Studies modeling ASD transmis-
sion suggest that it is polygenic, involving 3—15 alleles per indi-
vidual with complex gene—gene and/or gene—environment
effects (Risch et al., 1999; Szatmari, 1999). Genome-wide linkage
scans have been used to map the location of susceptibility genes.
Atleast 12 genome scans have been completed, which have varied
with respect to genotyping methods (i.e., markers used, map den-
sity), phenotypic methods (e.g., diagnostic instruments), and sta-
tistical methods. Although few findings reach the Lander and
Kruglyak (1995) criteria for statistical significance, there is con-
vergence of suggestive linkages on chromosomes 2q, 7q, and 16p
(Wassink et al., 2004; Xu et al., 2004). Over 100 candidate genes
have been studied (Wassink et al., 2004), but few findings have
been replicated. Very recently, however, association of the cere-
bellar developmental patterning gene ENGRAILED 2 with ASD
has been reported (Gharani et al., 2004) and replicated in three
separate populations (Fig. 2) (Benayed et al., 2005). As the first
genetic allele to be reproducibly associated with ASD, it may
contribute disease susceptibility in as many as 40% of cases. There
are other promising candidate genes, including the UBE3A locus
(the gene for Angelman’s syndrome), several GABA system genes
on chromosome 15q11-13, and the serotonin transporter gene
on chromosome 17q (Devlin et al., 2005). Analysis of ASD cases
with specific chromosomal abnormalities has also helped identify
genomic regions that may harbor susceptibility genes (Vorstman
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Promoter Exon 1 Intron Exon 2
SUTR H IUTR
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Figure2. Genomicstructure and association results of the ENGRAILED 2 gene. EN2 is encoded

by two exons separated by a single intron in 8.1 kb. Eighteen polymorphisms within £N2 have
been tested for association with ASD, and two intronic SNPs (rs7867972 and rs1861973) have
consistently displayed significant results. Rs 7867972 s an A/G polymorphism, and rs 1867973 is
a (/T polymorphism. Significant association for the A allele of rs7867972 and the C allele of
151861973, both individually and as a haplotype, has been observed in three separate datasets,
providing genetic evidence that N2 is likely to be an ASD susceptibility locus (Gharani et al.,
2004; Benayed et al., 2005) [ASD (Mendelian Inheritance in Man MIM 608636); EN2 (MIM
131310)].

etal., 2006; Xu et al., 2004). Investigators are now collaborating to
pool samples and thus maximize statistical power. The examina-
tion of specific ASD-related phenotypes (endophenotypes, e.g.,
language impairment) may be more informative genetically than
the categorical diagnosis of ASD (Bradford et al., 2001; Alarcon et
al., 2005).

There has also been considerable attention to the possible
contribution of environmental factors (London, 2000). Several
prenatal exposures have been associated empirically with ASD
including thalidomide, certain viral infections, and maternal an-
ticonvulsants, especially valproic acid (Trottier et al., 1999; Arndt
et al., 2005). Although these factors independently account for
few cases, environmental factors may interact with genetic sus-
ceptibility to increase the likelihood of ASD. For example, some
data implicate a possible role of immune factors, including an
increased family history of autoimmune diseases and presence of
autoantibodies to neural antigens (Ashwood and Van de Water,
2004; Connolly et al., 2006).

Is it possible to create an animal model of ASD?

Rationales for model development

Given the multifactorial etiology and the tremendous phenotypic
diversity within each core symptom domain, it is not surprising
that there is no single animal model that captures all of the mo-
lecular, cellular, or organismic features of ASD. Challenged by
this complexity, one useful approach has been to focus on single
features to study the underlying mechanisms (DiCicco-Bloom,
2005). Based on the available neuroimaging, genetic, and patho-
logical evidence of a developmental origin, animal studies have
followed four general approaches or rationales, which may be
categorized as fundamental neurobiology, endophenotypic, ge-
netic, and pathogenetic.

The fundamental neurobiology approach posits that basic
mechanisms are conserved among organisms and are expanded
on or modified through evolution. By defining molecular and
cellular mechanisms that regulate brain region development or
mediate cognitive functions, we can identify molecular targets
whose disruption may contribute to an ASD-related abnormal-
ity. For example, research on oxytocin/vasopressin indicates that
these neuropeptides participate in social recognition, affiliation,
and maternal-infant bonding across many species. Conse-
quently, genetic findings in the animal model are now being ap-
plied to studies of social deficits in human ASD populations (Lim
et al,, 2005). Language learning in the songbird is another inter-
esting model, in which auditory input, song imitation, and
FoxP1/2 gene expression demonstrate parallels to human lan-
guage (Teramitsu et al., 2004). Finally, growth factor regulation
of neurogenesis in ASD-affected regions including the cerebral
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cortex, hippocampus, and cerebellum indicate that proliferation
is controlled by a balance of promitogenic [bFGF (basic fibroblast
growth factor), IGF1 (insulin-like growth factor), SHH (sonic
hedgehog) (Vaccarino et al., 1999; Wechsler-Reya and Scott,
1999; Cheng et al., 2001, 2002; Li and DiCicco-Bloom, 2004)] and
antimitogenic [PACAP (pituitary adenylate cyclase-activating
polypeptide) (Suh et al., 2001; Carey et al., 2002; Nicot et al.,
2002)] signals. Acting via cognate receptors, growth factors elicit
rapid changes in select cell cycle regulators that determine
progress from G1 into S phase. Thus, one may propose that brain
enlargement could follow changes in the activity of promitogenic
and antimitogenic signals from ligand to receptor to cell cycle
regulator, all potential candidate genes.

The endophenotype approach investigates mechanisms un-
derlying defined traits that are not necessarily confined to a spe-
cific diagnostic category such as ASD, specific language impair-
ment, or attention disorders. ASD-related endophenotypes
include social isolation, changes in neurotransmitter systems, or
deficits of Purkinje neurons. Using newborn and adult nonhu-
man primates, such studies have examined roles of the hip-
pocampus and amygdala in social function. These studies initially
used destructive or chemical lesions, but more recent studies have
used modifications of newborn rearing conditions (Winslow,
2005). Many mouse mutants show Purkinje cell deficits, although
Engrailed 2 (En2) has been of particular interest for several rea-
sons. Specifically, En2 deletion or overexpression produces Pur-
kinje cell deficits; the diminished posterior cerebellar vermis and
lobules in mice are also seen in some human autism neuropathol-
ogy, and human EN2 localizes close to the chromosomal 7 region
identified by several ASD genome linkage scans. Studies of En2
gene overexpression (Baader et al., 1998; Benayed et al., 2005) as
well as gene deletion have been performed in vivo and in vitro
(Millen et al., 1994; Rossman et al., 2005). Overexpression of En2
in neural precursors in culture maintains precursor proliferation
and reduces neuronal differentiation, mechanisms that could
conceivably contribute to ASD cerebellar neuropathology.

The genetic approach uses targeted mutations in mice to de-
fine mechanisms regulated by genes considered important for
ASD. The genes tested are known to cause ASD, are associated
with ASD, or have been proposed as candidate genes based on
their developmental functions or localization to chromosomal
regions identified by linkage analyses. A well characterized ASD-
causing genetic disorder, tuberous sclerosis (20 —40% have ASD),
results from mutations in either of two genes, hamartin and tu-
berin, that function as tumor suppressors and interact with pro-
tein translational machinery. Other Mendelian genetic disorders
manifesting aspects of ASD include fragile X mental retardation,
Rett’s, Prader-Willi, Angelman, and Smith-Lemli-Opitz syn-
dromes (Polleux and Lauder, 2004; Xu et al., 2004). The related
mouse mutants are under active investigation. One may specu-
late that less severe alleles at these loci could contribute to ASD
susceptibility in the absence of the primary clinical condition.
Regarding disease-associated genes, EN2 exhibits replication of a
specific genetic allele with ASD (Benayed et al., 2005). However,
for several genes, there is repeated association but not for the
same single nucleotide polymorphism (SNP). Should these dif-
ferent SNPs produce similarly altered gene function, one may
consider the possibility that different disease alleles may equally
disrupt gene function to contribute to disease susceptibility
(Wassink et al., 2004). This has been suggested for genes involved
in neurotransmitter systems (serotonin transporter). However,
final conclusions about the contributions to ASD susceptibility
must await genetic replication in separate affected populations



6902 - J. Neurosci., June 28, 2006 - 26(26):6897— 6906

(Bartlett et al., 2005). In some cases, gene defects apparently cause
ASD in a restricted manner: in two families, mutations in synap-
tic adhesion molecules (neuroligin 3 and 4) account for ASD.
Consequently, expression of mutant neuroligins in cells and an-
imals is being used to examine the roles of synaptodendritic de-
fects in cognitive disorders like ASD.

The pathogenetic approach examines the effects of known or
hypothesized developmental insults such as teratogens, maternal
infections, and hindbrain congenital syndromes. The observa-
tion that 4 of 15 human embryos exposed on gestational days
20-24 to the teratogenic antinausea drug thalidomide displayed
ASD led to the proposal that insults to the hindbrain, at the time
that the neural tube is closing and craniocerebellar neurons are
being generated, may contribute to ASD (Stromland et al., 1994;
Arndt et al.,, 2005). Signs of ASD are observed in several congen-
ital hindbrain syndromes including CHARGE, Goldenhar, and
Mobius (Miller et al., 2005). Rodier et al. (1996) mimicked this
teratogenic stimulus by exposing embryonic day 12 pregnant rats
to valproic acid, a common anticonvulsant associated with ASD
and cognitive deficits. These animals developed cranial and Pur-
kinje neuron deficits and behavioral abnormalities in eye-blink
conditioning as observed in ASD (Arndt et al., 2005). ASD has
also been associated with gestational rubella and possibly influ-
enza. Adult offspring of pregnant mice that sustain human
influenza-induced pneumonia exhibit abnormalities in behavior
as well as in molecular markers for neurons, glia, and inflamma-
tion. Because infectious particles are not present in the brain, this
suggests that circulating maternal cytokines could be primary
mediators of pathogenesis (Shi et al., 2005), an intriguing result
given MHC (major histocompatibility complex) class I expres-
sion and function in axonal pathfinding and synaptogenesis
(Boulanger and Shatz, 2004).

Mouse behavioral models of ASD
An ideal mouse model of ASD should display behavioral symp-
toms with face validity for the defining symptoms of (1) recipro-
cal social interactions, (2) social communication, and (3) stereo-
typed, ritualistic, and repetitive behaviors and/or narrow
restricted interests. Tasks that could examine these behavioral
symptoms in mice are being developed (Young et al., 2002; Craw-
ley, 2004). Of course, behavioral features will need to conform to
species-relevant tasks, and certain limitations may be expected.

Tasks of social approach measure the propensity of mice to
spend time with another animal rather than nonsocial novel ob-
jects. These tasks measure detailed components of the social in-
teraction. An automated three-chambered apparatus in which all
social approach is initiated by the subject mouse has been fully
characterized (Fig. 3) (Moy et al., 2004; Nadler et al., 2004). In
addition, single-chamber and multichamber arenas that use stan-
dard video-tracking and observer event-recording methods have
been used widely to quantify social interaction, social recogni-
tion, and social memory (Insel and Young, 2001; Winslow and
Insel, 2002; Bolivar and Flaherty, 2003; Brodkin et al., 2004). The
second symptom, social communication, may be measured most
effectively in mice using olfactory and auditory communication
tasks (Winslow and Insel, 2002; Wrenn et al., 2003; Blanchard et
al., 2003; Petrulis et al., 2005). Finally, stereotypies, persevera-
tion, and restricted interests can be investigated in mice using
exploratory choices and reversal tasks (Crawley, 2004; Presti et
al., 2004).

Thorough phenotypic assessment of general health, sensory
abilities, and motor functions will be essential to rule out potential
artifacts caused by physical disabilities (Crawley, 2000). For exam-
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Figure3. Methods for phenotyping animal social behavior. A, The subject mouse s placed in
the center chamber and has a choice between spending time exploring a novel object, the wire
pencil cup in the left compartment, or spending time with a novel mouse, in the right compart-
ment. Photocells across the openings detect the movements between compartments. Software
scores the time in each compartment and number of compartment entries. Normal mice of most
inbred strains spend more time in the compartment containing the stranger mouse. B, Social
interaction between the subject mouse and the unfamiliar conspecific is scored by an observer
with a stopwatch. Containing the stranger mouse in the wire cup ensures that all social ap-
proach s initiated by the subject mouse and is investigatory only, with no opportunity for sexual
or aggressive interactions (Crawley, 2000, 2004).

ple, a mutation that affects olfaction could be mistakenly interpreted
as impairing social interaction. A true social deficit, for example, in a
mouse with a targeted gene mutation or in an inbred strain of mice,
would be a useful means to evaluate potential treatments for core
symptoms of ASD.

Social behavior and the role of neuropeptides

Animal models of normal social behavior may provide insights
regarding the social phenotypes in individuals with ASD. Two
sets of studies in rodents nicely illustrate this point. The first
capitalizes on the strikingly different social behavior of prairie
voles and montane voles. The monogamous prairie vole is highly
social, craves social contact, and forms enduring social bonds
with its mate (Carter et al., 1995; Young and Wang, 2004). In
contrast, the promiscuous montane vole is socially aloof, prefers
to spend time alone, and does not form social bonds. The neu-
ropeptides oxytocin and vasopressin play central roles in regulat-
ing this behavior (Young and Wang, 2004). Comparative neuro-
anatomical studies suggest that the behavior is a result of
differences in the brain expression patterns of these peptide re-
ceptors. Specifically, oxytocin and vasopressin receptors are
highly expressed in the mesolimbic reward structures, nucleus
accumbens, and ventral pallidum in prairie voles but not in mon-
tane voles. Genetic analysis of the vasopressin receptor gene in the
prairie vole reveals that a polymorphic repetitive element likely
determines its expression pattern (Young et al., 1999) such that
individual differences in the length of the unstable element are
responsible for individual differences in social behavior (Ham-
mock and Young, 2005). These animal studies triggered the ex-
amination of the human vasopressin receptor gene (avprla) that
also contains polymorphic repetitive elements. Two independent
studies with relatively small sample size have reported that alleles
of this polymorphism are associated with ASD (Kim et al., 2001;
Wassink et al., 2004). Although this polymorphism is not a major
contributor to ASD, variants may interact with other genetic or
environmental factors to contribute to the social behavioral
phenotype.

Knock-out mice for oxytocin and vasopressin receptors have
confirmed the critical role of these genes in regulating social be-
havior (Ferguson et al., 2001; Bielsky et al., 2004, 2005). As adults,
these knock-outs display social amnesia, indicating a deficit in
social stimuli processing. Oxytocin knock-out mice pups do not
display normal levels of ultrasonic distress vocalizations when
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separated from their mother (Winslow et al., 2000), and they
display increased latencies to approach their mother. These be-
haviors are consistent with those reported for ASD children. One
study has reported that ASD children have decreased plasma oxy-
tocin (Modahl et al., 1998). Insights gained from these animal
studies will trigger parallel clinical investigations, as seen with the
human avprla gene, and may lead to development of targeted
treatment strategies such as the use of oxytocin as a therapy for
the social deficits in ASD (Hollander et al., 2003). These multiple
levels of analysis are beginning to define basic neurobiological
mechanisms that could underlie ASD. In turn, this may lead to
improvements in disease diagnosis, early and effective treat-
ments, and ultimately, prevention.

Future prospects

What developments in diagnosis, pathogenesis, and treatment
may we look forward to in the near future? Given the develop-
mental origins of ASD and the identification of early behavioral
and brain growth abnormalities, we may soon have sensitive tools
to diagnose ASD during the first year of life. Early diagnosis may
allow more effective teaching and behavioral strategies to maxi-
mize developmental progress to enrich the affected child’s expe-
rience and possibly lessen further mal-development. The struc-
tural, metabolic, and functional neuroimaging is characterizing
the disordered ASD brain at several levels. Overall, the postnatal
brain growth trajectory is increased, with the greatest differences
occurring in rostral cerebral cortex, amygdala, and cerebellar
hemispheres and reflecting greater changes in white than gray
matter. However, the underlying etiology remains to be defined.
It is unknown whether or not increased brain size reflects a nor-
mal balance of cell types, although functional connectivity and
activity relationships among specific brain regions are disturbed.
At the cellular level, the question of cell number in ASD should be
addressed soon as ongoing stereological studies of forebrain and
hindbrain regions reach completion. The increasing precision of
fMRI may reveal correlations of network activity with individual
symptoms in individual patients, providing a means to assess
therapy.

We are also on the verge of genetic discoveries that will focus
attention on a number of developmental regulators and pro-
cesses, neurotransmitter and synaptic components and, poten-
tially, novel genetic mechanisms that contribute to ASD suscep-
tibility in the context of specific environmental factors. Progress
in animal models should allow investigators to examine specific
ASD components using approaches based on the fundamental
neurobiology, endophenotypes, susceptibility genes, and patho-
genetic factors. Hopefully, such animal models will allow addi-
tional definition of the molecular pathways in human ASD pop-
ulations. For example, the oxytocin—vasopressin receptor studies
have led to new human genetic studies, and the association of
EN2 with ASD raises questions about the relationships of geno-
type to brain morphology, on the one hand, and the range of
clinical symptoms, on the other. From a broader perspective,
successful communication among investigators across tradi-
tional disciplinary boundaries is essential to establish the validity
of animal and genetic models of the human disorder. Meanwhile,
the clinician faces the challenge of fitting newly defined develop-
mental and molecular mechanisms with clinical subpopulations
for additional study. We are in an exciting time for ASD research
with the convergence of enhanced societal concern, increased
research support, and the emerging realization by neurobiolo-
gists that studies of ASD may lead to fundamental insights into
the development and function of the brain.
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