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Local Protein Synthesis and Spine Morphogenesis: Fragile X
Syndrome and Beyond
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Behavioral experiences can modulate neural networks through changes in synaptic morphology and number. In contrast, abnormal
morphogenesis of dendritic spines is associated with cognitive impairment, as in Fragile X syndrome. Dendritic or synaptic protein
synthesis could provide the specificity and speed necessary for spine morphogenesis. Here, we highlight locally translated proteins shown
to affect synaptic morphology (e.g., Fragile X mental retardation protein).
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Behavioral experiences can modulate the function of individual
synapses or entire neural networks through changes in synaptic
morphology and number (Bailey and Chen, 1983; Black et al.,
1990). Recent in vivo imaging studies have shown that experience
or activity can induce morphogenesis (or changes in shape or
motility) of postsynaptic spines, sites for excitatory synapses
(Majewska and Sur, 2003; Zuo et al., 2005). Abnormal spine mor-
phogenesis, in contrast, is associated with cognitive impairment,
as in Fragile X syndrome (FXS) and other disorders (Purpura,
1974; Hinton et al., 1991). Reactive spine morphogenesis likely
requires rapid availability of macromolecules, and dendritic or
synaptic protein synthesis could provide specificity and speed.
Although direct evidence tying local protein synthesis to spine
morphogenesis is scarce, we review the available indirect evi-
dence with an emphasis on locally translated proteins, including
the Fragile X mental retardation protein (FMRP), that have
known effects on synaptic morphology.

Markers of translation [polyribosomal aggregates (PRAs)]
have been observed near synapses during peak developmental
synaptogenesis (Steward and Falk, 1986), and local protein syn-
thesis is regulated by intrinsic and extrinsic signals (Schuman et
al., 2006). Greenough et al. (1985) found that PRAs were local-
ized to dendritic spines in the visual cortex of rats exposed to a
complex environment, a paradigm that alters the number, shape,
and size of synapses (Grossman et al., 2002). Induction of long-
term potentiation (LTP), an electrically induced change in syn-
aptic strength, also moves PRAs from dendritic shafts into spines

(Ostroff et al., 2002). Furthermore, only spine synapses that con-
tained PRAs were larger after stimulation, suggesting that local
translation was important for this morphogenesis.

Another model of synaptic activation involves administration
of neurotransmitter receptor agonists. Weiler et al. (1997) used
synaptoneurosomes (synapses dissociated from cell bodies) to
show that stimulation of metabotropic glutamate receptors
(mGluRs) triggers rapid aggregation of polyribosomes and trans-
lation of proteins (including FMRP). Vanderklish and Edelman
(2002) recently reported elongation of dendritic spines after
stimulation of mGluRs. Preincubation with a translation inhibi-
tor blocked elongation, but it remains unclear whether the pro-
tein synthesis required is specifically dendritic.

Translation inhibitors have been used for many years to estab-
lish the importance of protein synthesis for memory, synaptic
morphogenesis, and cortical function (Agranoff and Klinger,
1964; Kleim et al., 2003). Failure to synthesize specific proteins
can profoundly affect synapse morphology. For example, pa-
tients with FXS (characterized by the absence of FMRP) exhibit
elevated spine density in the neocortex as adults and an abun-
dance of spines with morphologies commonly observed early in
development (Hinton et al., 1991; Irwin et al., 2001). This phe-
notype is also seen in the neocortex and hippocampus of adult
mice lacking FMRP (Fmr1 knock-out mice), suggesting a deficit
in synaptic maturation (Galvez and Greenough, 2005; Grossman
et al., 2006).

One emphasis of recent research has been to differentiate pos-
sible roles of local from somatic protein synthesis in specific
forms of synaptic plasticity (Pfeiffer and Huber, 2006). Studies
using isolated dendrites have demonstrated that local translation
is both necessary and sufficient for establishment and mainte-
nance of LTP (Cracco et al., 2005; Vickers et al., 2005). Similarly,
Schuman and colleagues (Kang and Schuman, 1996; Aakalu et al.,
2001) demonstrated that local protein synthesis is important for
synaptic potentiation after administration of the neurotrophin
BDNF and, more recently, have visualized dynamics of local
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translation associated with synaptic po-
tentiation. In the future, these techniques
and others in which protein synthesis is
restricted to the soma of intact neurons
(Miller et al., 2002; Bradshaw et al., 2003)
can delineate the necessity for local pro-
tein synthesis in spine morphogenesis.

Locally translated proteins important
for spine morphology
Specific proteins and biochemical path-
ways have been associated with spine mor-
phogenesis (Tada and Sheng, 2006); many
of these pathways lead ultimately to actin
rearrangement in the spine cytoskeleton.
Rho GTPases such as Rac1, for example,
are upstream modulators of actin poly-
merization. Their activity is regulated by
environmental signals such as visual in-
put, and stimulation of these Rho GTPase
pathways affects spine morphology and
stability (Sin et al., 2002; Tashiro and
Yuste, 2004). Proteins that are important
for spine formation and remodeling and
that are locally translated can be grouped
into two broad functional categories: (1)
direct or indirect “regulators” of spine for-
mation and remodeling and (2) “plastic
structural elements” that integrate struc-
turally into the synapse, thus influencing
synaptic physiology and potentially alter-
ing the capacity for future morphogenesis.
Although evidence directly linking local
synthesis of specific proteins to spine
changes is sparse, proteins from both of
these categories are linked to pathways that can affect spine mor-
phogenesis (Fig. 1).

Regulators
Many locally synthesized proteins can potentially influence other
proteins or signaling cascades involved in morphogenesis. For
example, local translation of kinases or phosphatases could rap-
idly shift the equilibrium among pathways operating within the
spine. Synthesis of RNA-binding proteins would have longer-
term effects (Wells, 2006).

FMRP. The Fmr1 mRNA is found in neuronal somata, den-
drites, and spines. Activation of mGluRs localizes Fmr1 to den-
drites and initiates translation of FMRP in synaptoneurosomes
(Weiler et al., 1997; Antar et al., 2004). Activity-induced transla-
tion of FMRP could affect spine morphology via interactions
with its protein binding partners, including cytoplasmic FMRP
interacting protein 1 (CYFIP1) (Schenck et al., 2003). In Dro-
sophila, CYFIP and FMRP may regulate Rac1, and in mice, FMRP
may also regulate other members of this actin-polymerization
cascade (Kobayashi et al., 1998; Castets et al., 2005). Inhibition of
Rac1 results in longer spines and decreased spine head size, as well
as reduced head morphing and reduced spine stability (Tashiro
and Yuste, 2004).

In addition to being synthesized at synapses, FMRP binds
mRNA and ribosomes and seems to regulate mRNA transport
and synaptic protein synthesis (Weiler et al., 1997; Khandjian et
al., 2004). Weiler et al. (2004) found that stimulating mGluRs in
synaptoneurosomes rapidly initiated translation in wild-type but

not Fmr1 knock-out mice, indicating that FMRP is important for
neurotransmitter-activated protein synthesis. FMRP could affect
spine morphogenesis through regulation of “cargo” mRNA, such
as Map1B mRNA, shown recently to colocalize with FMRP near
synapses (Antar et al., 2005). Map1B binds both actin and micro-
tubules, and microtubule stability seems to be increased in Fmr1
knock-out mice (Lu et al., 2004). Whereas these observations
indicate that FMRP is important for initiating translation at syn-
apses, FMRP may also inhibit constitutive protein synthesis else-
where in the cell (Laggerbauer et al., 2001; Li et al., 2001). To-
gether, these findings support a dual role for FMRP: delivery of
protected mRNAs to synaptic locations and release of mRNAs for
activity-dependent translation (Davidovic et al., 2005; Weiler,
2005).

Thus, at least three mechanisms may contribute to the abnor-
mal spine morphology in FXS: (1) loss of protein–protein inter-
actions leading to disruption of morphogenesis pathways; (2)
dysregulated local synthesis of proteins important for morpho-
genesis; and (3) mislocalization of mRNA cargoes, any number of
which could be critical for spine morphogenesis. These cargoes
include Ca 2�/calmodulin-dependent protein kinase II
(CaMKII) (discussed below), calbindin, the �-glucocorticoid re-
ceptor, and cadherins (for more complete lists, see Sung et al.,
2000; Brown et al., 2001; Miyashiro et al., 2003). Abnormal trans-
port and translation of FMRP cargoes may underlie many other
symptoms of FXS, as well (Markham et al., 2006).

CaMKII. CaMKII makes up a substantial proportion of the
postsynaptic density (PSD) and may function both as a regula-

Figure 1. Synaptic stimulation can act via ionotropic glutamate receptors (AMPA/NMDA; 1a) and mGluRs (1b) and can initiate
translation (2) of locally synthesized proteins (3; shown in yellow), including regulators (underlined red text) and plastic structural
elements (black text). Both broad categories of proteins can interact with a Rho GTPase pathway (4; simplified here for illustration
purposes), affecting morphology through rearrangement of actin filaments (5). Locally synthesized proteins can thereby interact
to assemble or reorganize the spine, regulating function and affecting future spine morphogenesis (see text for details). NMDAR,
NMDA receptor; AMPAR, AMPA receptor; PAK, �-p-21-activated kinase; LIMK, LIM-kinase; IP3R, IP3 receptor; sER, smooth endo-
plasmic reticulum.
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tory kinase and a scaffolding molecule for recruiting synaptic
proteins (Merrill et al., 2005). Local protein synthesis appears to
play a significant role in the regulation of dendritic CaMKII; its
mRNA is observed throughout apical dendrites of hippocampal
neurons, and mice missing dendritic targeting regions of
�-CaMKII mRNA have reduced levels of the protein in their
PSDs (Martone et al., 1996; Miller et al., 2002). The dynamics of
local CaMKII translation remain unclear but may involve associ-
ation of FMRP with CaMKII mRNA through the small RNA BC1
(Zalfa et al., 2003). Introducing phosphorylated CaMKII causes
immediate formation of long, thin filopodia and shorter den-
dritic spines; in contrast, preventing CaMKII phosphorylation
inhibits morphological changes that follow LTP induction (Jour-
dain et al., 2003). In mice in which CaMKII is restricted from
dendrites, late-phase LTP and spatial memory are impaired, as
are associative fear conditioning and object-recognition memory
(Miller et al., 2002).

The proposed roles of CaMKII in spine morphogenesis are
threefold. (1) It phosphorylates signaling proteins, potentially
activating or repressing morphogenesis pathways. For example,
CaMKII phosphorylates SynGAP (synaptic GTPase-activating
protein), a regulator of the RAS-Rac1 actin-polymerization path-
way (Song et al., 2004). (2) CaMKII acts as a regulator of protein
translation through activation of cytoplasmic polyadenylation
element-binding protein (CPEB) (Atkins et al., 2004) and could
therefore, like FMRP, wield influence on morphogenesis through
mRNA targets. (3) CaMKII may act as a plastic structural element
by accumulating at the PSD in response to neuronal stimulation
(Otmakhov et al., 2004), and by binding nearby synaptic pro-
teins. For example, the NR2B subunit of NMDA receptors, which
are important for spine morphogenesis, may be recruited to syn-
apses by CaMKII (Zhou et al., 2004; Robison et al., 2005). Addi-
tional studies restricting CaMKII to the somata (Miller et al.,
2002) should examine spine morphology to determine whether
local synthesis of CaMKII is required for normal morphogenesis.

Plastic structural elements
Local synthesis of synaptic structural elements used by rapidly
developing or remodeling spines can replenish pools of raw ma-
terial. They may also provide a substrate for future morphological
change, or plasticity. For example, mRNA for the cytoskeletal
protein �-actin is localized to dendrites in an activity-dependent
manner (Tiruchinapalli et al., 2003). Upregulation of �-actin
mRNA stimulates the formation of dendritic filopodia, whereas
exclusion of �-actin mRNA from dendrites disrupts the produc-
tion of filopodia (Eom et al., 2003). Activity-induced remodeling
of actin filaments provides a dynamic scaffold for localization of
additional kinases and receptors (Ouyang et al., 2005), poten-
tially affecting postsynaptic responses and the capacity of the
spine to exhibit future morphogenesis. The concept of plastic
structural elements is consistent with the idea of “metaplasticity”
and may enable “synapses to integrate a response across tempo-
rally spaced episodes of synaptic activity” (Abraham and Tate,
1997).

PSD-95. PSD-95 is a locally synthesized scaffolding molecule,
the expression levels of which increase after stimulation of
mGluRs (Todd et al., 2003; Lee et al., 2005). Overexpression of
PSD-95 in cultured hippocampal neurons leads to synapse mat-
uration, clustering of glutamate receptors, and increased spine
density and size (El-Husseini et al., 2000). PSD-95 can also bind
and recruit to the PSD essential synaptic components, many of
which independently affect spine shape (e.g., NMDA receptors,
Homer, and others) (Kim and Sheng, 2004). Furthermore,

PSD-95 binds and targets to synapses kalirin-7, a regulator of
Rac1 signaling and spine morphogenesis (Penzes et al., 2001).
Finally, the mGluR-induced increase in PSD-95 appears to re-
quire FMRP (Todd et al., 2003), suggesting that in FXS, deficits in
local translation of PSD-95 may lead to abnormal spine morpho-
genesis and may affect spine responsiveness to future signals.

SHANK and Homer. SHANKs are scaffolding elements that
bind indirectly to PSD-95 and F-actin (Boeckers et al., 2002). The
mRNAs for SHANK1 and SHANK3 are localized to dendrites,
and SHANK has dramatic effects on spine morphogenesis, in-
ducing development of spines on non-spiny neurons (Bockers et
al., 2004; Roussignol et al., 2005). It interacts with actin-
associated proteins such as cortactin and appears to assemble
NMDA receptors and mGluRs at spines (Boeckers et al., 2002).
SHANK may exert some of its synaptic effects by binding the
locally synthesized adapter protein Homer2 and together recruit-
ing synaptic components such as IP3 receptors, PSD-95, and
F-actin to the spine (Sala et al., 2001; Schratt et al., 2004). Homer
can cluster mGluRs at plasma membranes and can interact with
Rho GTPase pathways (Shiraishi et al., 1999; Kammermeier,
2006), thus potentially affecting postsynaptic responses to neu-
rotransmitter signals. Together, the SHANK–Homer2 complex
increases the density of mushroom and multi-synapse spines
(Sala et al., 2001). In mice lacking FMRP, phosphorylation of
Homer protein is impaired, as is its association with mGluRs;
lower levels of PSD-associated mGluRs in Fmr1 knock-out mice
suggest that Homer dysregulation contributes to the spine phe-
notype of FXS (Giuffrida et al., 2005).

These examples of regulators and plastic structural elements
represent some of the locally synthesized proteins that influence
spine morphogenesis. As new candidates appear [e.g., AMPA re-
ceptor subunit GluR1 (Smith et al., 2005) and �-thymosin (van
Kesteren et al., 2006)], our understanding of the dynamics be-
tween local protein synthesis and spine morphogenesis will con-
tinue to develop.
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