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Receptive Field Properties of Neurons in the Early Visual
Cortex Revealed by Local Spectral Reverse Correlation

Shinji Nishimoto, Tsugitaka Ishida, and Izumi Ohzawa
Graduate School of Frontier Biosciences, Osaka University, Osaka 560-8531, Japan

We introduce a novel class of white-noise analyses, named local spectral reverse correlation (LSRC), which is capable of revealing various
aspects of visual receptive field profiles that were undetectable previously in a single simple measurement. The method is based on
spectral analyses in a two-dimensional spatial frequency domain for spatially localized areas within and around their receptive fields.
Extracellular single-unit recordings were performed for area 17 and 18 neurons in anesthetized cats. A dynamic dense noise pattern was
presented in which the pattern covered an area two to three times larger than the classical receptive field. Spike trains were then
cross-correlated with frequency spectra of localized noise pattern to obtain spatially localized selectivity maps in the two-dimensional
frequency domain. Our findings are as follows. (1) The new LSRC method allows measurements of two-dimensional frequency tunings
and their spatial extent even for cells with substantial nonlinearity. (2) A small subset of neurons shows spatial inhomogeneity in the
two-dimensional frequency tunings. (3) In addition to facilitatory response profiles, we can also visualize suppressive profiles localized
both in space and spatial frequency domains. Our results suggest that the new analysis technique can be a powerful tool for measuring
visual response profiles that contain inhomogeneity in space, as well as for studying neurons with substantial nonlinearities. These
features make the method particularly suitable for studying response profiles of neurons in early as well as intermediate extrastriate
visual areas.
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Introduction
Various mapping methods, in particular those that use a reverse
correlation analysis, have been very effective in providing de-
tailed receptive fields of neurons in early stages of the visual path-
way (Jones and Palmer, 1987; DeAngelis et al., 1993; Reid et al.,
1997). However, some aspects of receptive field properties cannot
be measured easily by the currently available methods. These
include the so-called cross-orientation suppression (Morrone et
al., 1982; Bonds, 1989), surround suppression (Hubel and Wie-
sel, 1968; Dreher, 1972), and possible local variations of tuning
properties within a receptive field. Once we go beyond these early
areas, mapping receptive fields of neurons in the extrastriate vi-
sual areas are expected to be even more difficult. How would one
go about measuring receptive fields of downstream cells that col-
lect input from early visual cortical neurons? To acquire selectiv-

ity to complex visual features, the extrasriate neurons might col-
lect spatially inhomogeneous inputs from these early-stage filters,
meaning that the filter properties (e.g., orientation and spatial
frequency tunings) are not uniform over their receptive fields but
are different greatly to define selectivities to curved contours
(Gallant et al., 1993, 1996; Pasupathy and Connor, 2001). To
extend the reverse correlation method for studying details of the
early visual cortical areas and for possible uses in extrastriate
areas, we have developed a new class of white-noise analysis,
named local spectral reverse correlation (LSRC). The purposes of
this study are to validate the new LSRC analysis and to examine
details of previously invisible response properties including the
extent and nature of spatial inhomogeneity, if any, of cells in the
early visual cortex.

The LSRC method uses a wide-area, two-dimensional dy-
namic white-noise sequence similar to those used in previous
studies (Reid et al., 1997). However, the key novel idea is in
calculating the cross-correlations between the spike train and
amplitude spectra of spatially windowed (hence localized in anal-
ysis) noise sequence. By doing this, we can acquire the response
profiles of the cell in a two-dimensional frequency domain for
subfields within and around the receptive field. We have applied
this procedure for cells in the early visual cortex of cats and found
the following. (1) The LSRC method allows measurements of
two-dimensional frequency tunings and their spatial extent for
both simple and complex cells, whereas conventional space-
domain reverse correlation with dense noise does not reveal first-
order responses for complex cells. (2) A small subset of neurons
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exhibits spatial inhomogeneity in the two-dimensional frequency
tunings. (3) In addition to facilitatory response profiles, we can
also visualize suppressive profiles localized both in space and
spatial frequency domains, which cannot be revealed by a stan-
dard reverse correlation procedure. Computational investiga-
tions also reveal that the new method is highly effective even in
cases in which high thresholds prevent a cell from responding to
individual local optimal stimuli alone. Our results suggest that
the new analysis technique can be a powerful tool for measuring
visual receptive filed profiles that contain inhomogeneity in
space, as well as for studying neurons with substantial
nonlinearities.

Materials and Methods
All recordings were made from adult cats weighing between 1.5 and 3.7
kg. All animal care and experimental guidelines conformed to those es-
tablished by the National Institutes of Health and were approved by the
Osaka University Animal Care and Use Committee.

Surgical procedure. Detailed procedures have been described in our
recent publication (Nishimoto et al., 2005). Briefly, each cat was anesthe-
tized with isoflurane (2.5–3.5% in O2) after initial preanesthetic doses of
hydroxyzine (atarax; 2.5 mg) and atropine (0.05 mg). Electrocardiogram
electrodes and a rectal temperature probe were inserted, and a femoral
vein was catheterized. Then, cefotiam hydrochloride (Panspolin; 8.3 mg)
and dexamethasone sodium phosphate (Decadron; 0.4 mg) were admin-
istered. Subsequently, a tracheostomy was performed, and a tracheal
tube was inserted. Then, the animal’s head was secured in a stereotaxic
device with the use of ear and mouth bars and clamps on the orbital rim.
Tips of the ear bars were coated with local anesthetic gel (Lidocaine).
Anesthesia was then switched to sodium thiopental (Ravonal; given con-
tinuously at 1.0 –1.5 mg/kg/h). After stabilization of anesthesia, paralysis
was induced with a loading dose of gallamine triethiodide (10 –20 mg),
and the animal was placed under artificial respiration at the rate of 20 –30
strokes per minute. The respiration rate and stroke volume were adjusted
to maintain end-tidal CO2 between 3.5 and 4.3%. Artificial respiration
was performed with a gas mixture of 70% N2O and 30% O2. The infusion
fluid thereafter contained Ravonal, gallamine triethiodide (10 mg/kg/h),
and glucose (40 mg/kg/h) in Ringer’s solution. A craniotomy was then
performed directly above the central representation of the visual field in
the visual area 17 or 18 (Horsley-Clarke P4 L2.5 for recordings of A17
and A3 L3 for recordings of A18). The dura was dissected away to allow
insertion of microelectrodes. We used tungsten microelectrodes (5 M�;
A-M Systems, Everett, WA) for recording spike activity extracellularly.
Typically, two electrodes were used to increase the chance of encounter-
ing cells, and they were mounted in parallel in a single protective guide
tube and driven by a common microelectrode drive (Narishige, Tokyo,
Japan). After lowering the electrodes to the cortical surface, agar was used
to protect the cortex, and melted wax was applied over the agar to create
a sealed chamber for stabilization. Body temperature was maintained
near 38.3°C with the use of a servo-controlled heating pad. Pupils were
dilated with atropine (1%), and nictitating membranes were retracted
with phenylephrine hydrochloride (Neosynesin; 5%). Contact lenses of
appropriate power with 4 mm artificial pupils were positioned on each
cornea.

To record the activity of single units, electrical signals from the micro-
electrodes were amplified (10,000�) and bandpass filtered (300 –5000
Hz). Then spike sorting was achieved using a custom-built spike sorter
(Ohzawa et al., 1996), in which each spike was sorted by their waveforms
and time-stamped with 40 �s resolution.

Visual stimulation. All of the experiment control functions and gener-
ations of visual stimuli were performed using custom-written software
on two Windows personal computers. Visual stimuli were generated by a
dedicated personal computer and displayed on a cathode ray tube display
(GDM-FW900; a resolution of 1600 � 1024 pixels, refreshed at 76 Hz;
Sony, Tokyo, Japan). The animal saw the display through a custom-built
haploscope, which allowed dichoptic presentations of visual stimuli to
the left and right eyes separately using 800 � 1024 pixel areas of the
display. The distances (total length of light paths) between the screen and

the eyes were set to 57 cm, subtending the visual field of 23° (horizon-
tal) � 30° (vertical) for each eye. All measurements were performed for
the dominant eye.

For each cell we encountered, we have presented a dynamic two-
dimensional noise array (Fig. 1 A). The area covered by the noise array is
typically two to three times larger than the classical receptive fields in
width and height (typical ranges are from 12 � 12° to 20 � 20°). The
noise array consists of 51 � 51 elements, in which the luminance of each
element is bright (�90 cd/m 2), dark (�3 cd/m 2), or equal to the mean
luminance of the display (�47 cd/m 2). The noise array is redrawn with a
new noise pattern every 26 ms (two video frames). Typically, 10 blocks of
the noise arrays (a total of 68,400 frames, or 30 min) are presented to
obtain sufficient number of spikes for data analysis.

Data analysis. To obtain two-dimensional frequency tunings for spa-
tially localized areas, we have performed a LSRC. LSRC is an application
of the standard spike-triggered average techniques (de Boer and Kuyper,
1968; Jones and Palmer, 1987). In the conventional space–time receptive
field mapping, a spike-triggered average of stimuli itself (Fig. 1 A) is
calculated in the space–time domain. In LSRC, instead, we calculate a
spike-triggered average of the amplitude spectra of a given subfield of the
noise array (Fig. 1C) to obtain a two-dimensional frequency tuning for
the given subfield (Fig. 1 E). By interpreting the two-dimensional fre-
quency tuning (Fig. 1 E) as a polar coordinate representation, we obtain a
joint spatial frequency and orientation profile. The distance from the
origin to the peak of the excitation (shown in red in Fig. 1 E) indicates the

Figure 1. A, Schematic diagram of the LSRC procedure (see Materials and Methods for de-
tails). C–E, By calculating a cross-correlation between the spike train (D) and spectra of
Gaussian-windowed stimuli (C), we obtain a two-dimensional frequency tuning for the given
subfield (E). F, By changing iteratively the center position of the Gaussian window, we can
obtain a spatial matrix of the two-dimensional frequency tunings, corresponding to the matrix
of localized areas of analysis shown in B. The strongest local spectral tuning map is indicated by
an asterisk and is shown enlarged on the right. In each of these spectral maps, facilitatory and
suppressive responses are shown by red and blue, respectively, according to the scale bar (sup-
pression is essentially absent for this neuron). These conventions are used for subsequent fig-
ures. By nature of the Fourier transform, the tunings are symmetric about the origin. 2D, Two-
dimensional; freq., frequency; deg, degree.
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optimal spatial frequency for the local subfield of the receptive field.
Similarly, the angle of the line connecting the origin and the excitation
peak (with the horizontal axis) depicts the optimal orientation for the
local subfield.

By systematically changing positions of the subfield for calculating the
spectra, we can obtain a matrix of two-dimensional frequency tunings
(Fig. 1 F), in which each element of the matrix contains the two-
dimensional frequency tunings for the given subfield. Therefore, the final
matrix of frequency tunings describes the tuning profile of the cell as a
function of position (x, y) as well as spatial frequency and orientation in
a joint manner. Note that we use Z-score values for representing the
response strength in these spectral receptive field profiles throughout this
report, to take variability and statistical significance of responses into
account (see below). Z-score values may be negative, which may be in-
terpreted as a reduction of activities below the baseline level.

The subfields were windowed by a two-dimensional Gaussian func-
tion, and the frequency spectra were calculated by the standard fast Fou-

rier transform algorithm with zero padding
(Press et al., 1992). The center of the window
was stepped typically by � of the Gaussian func-
tion, where � is the SD.

We have calculated spike-triggered averages
of stimulus local spectra for correlation delays
from 0 to 150 ms in 15 ms steps. Then, the
optimal correlation delay was determined as
the delay for which the signal amplitude was
maximal. Typical optimal correlation delays
were 45 or 60 ms.

The average number of spikes for our popu-
lation of cells was 7421 spikes per 30 min stim-
ulation. The SD of the mean is 8225 spikes per
30 min. The minimum and maximum were
1073 and 51,013 spikes, respectively.

Statistical examination. To evaluate the sig-
nificance of the spike-triggered signals, we cal-
culated the average and SD (noise level) of sig-
nals using shuffled correlations. We obtained
the shuffled correlations by calculating cross-
correlations between spike trains and shifted
(unpaired) stimulus blocks. The mean and the
SD of the shuffled correlations were then used
to normalize the original spike-triggered sig-
nals into Z-score representations. To reduce a
computational burden, we assume that the
noise level is identical for a sequence of random
pattern of any given subfield and spatial fre-
quency. Therefore, for each neuron, we calcu-
late a set of mean and SD values of the shuffled
correlations and use it as parameters for nor-
malizing all spike-triggered signals for the neu-
ron. The statistical significance of signals was
examined by the Z-score, corrected for multi-
ple comparisons by the Bonferroni’s method.
The degree of freedom for the Bonferroni’s cor-
rection is set to the number of subfields multi-
plied by the number of noise elements within
�1 � of the analyzing Gaussian window. Black
curves in the LSRC plot indicate contours for
p � 0.05.

Results
Here, we present two sets of results. One is
from a set of simulation studies of the LSRC
method, conducted to validate our new
method itself and to examine how to inter-
pret the results. The other is an experimental
result of the LSRC analysis applied for visual
neurons in the early visual cortex.

Simulation study
To examine whether the LSRC method works correctly to reveal
spatially localized selectivity, results from a set of simulation
studies are presented. We have calculated responses of several
kinds of model neurons (Fig. 2) to white-noise stimuli and ana-
lyzed the response profile of these neurons by the LSRC method
as well as a standard reverse correlation procedure (Jones and
Palmer, 1987; DeAngelis et al., 1993; Reid et al., 1997).

Simple and complex cells
Figure 2A shows the structure of a model simple cell, together
with results of the LSRC analysis and a linear receptive field pro-
file obtained by the standard reverse correlation analysis. The
instantaneous responses of the model simple cell are calculated
by a linear filtering stage (a Gabor function), followed by a static

Figure 2. Results are shown of simulations conducted for four types of model neurons. The leftmost drawings depict structures
of the models, and the right drawings show the simulated results from the LSRC and the standard reverse correlation analyses. In
linear receptive field (RF) maps shown in the rightmost column, ON and OFF subregions are indicated by green and red, respec-
tively, according to the scale bar at the bottom. The linear receptive fields in these simulations and experiments are obtained from
the same data set as that used for LSRC. The vertical dashed lines in C indicate the border between the two complex cell compo-
nents comprising the final output. D, a and b represent facilitatory and suppressive inputs, respectively. deg, Degree.
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nonlinearity (a power-law, half-wave rectification). For this
model simple cell and other cell types shown in Figure 2, simula-
tions are performed by using a rate-coding model (Troyer et al.,
1998) in which the output of the model is a scalar value that
corresponds to the firing rate of the model neuron. The output
value of the cell in Figure 2A is thus given by the following:

L(t) � Pos2[�LF(x,y)St(x,y)dxd y)], (1)

where LF(x,y) is a weighting function (linear filter), St(x,y) is a
two-dimensional stimulus sequence, and Pos[v] is a half-
rectification function, where Pos[v] � v for v � 0 and Pos[v] � 0
otherwise.

Because our scope is limited to the spatial aspect of receptive
fields in this study, the temporal dynamics of responses are not
considered. Instead, the model was instantaneous and generated
one output value for each stimulus frame. Furthermore, instead
of generating spikes and computing spike-triggered average of
stimuli, equivalent cross-correlation may be computed by multi-
plying each stimulus frame (or each local spectral amplitude for
the case of LSRC) by the output of the model and summing the
resulting patterns for all stimulus frames shown to the model cell.
This computational procedure applies to both LSRC and stan-
dard space-domain reverse correlation analyses.

The results of the LSRC analysis on the model cell responses,
shown as a matrix of selectivity in a two-dimensional frequency
domain, show the position and spatial extent of the receptive field
profile indicated by the limited number of maps with significant
excitations. Note also that we can obtain the orientation and
spatial frequency selectivity for each localized subfield, allowing
us to examine the possible variations of these tuning properties
within the receptive field. The recovered linear receptive field
profile (Fig. 2A, right), as expected, shows a spatial structure
consisting of ON and OFF regions as originally set in the linear
stage of the model neuron.

Figure 2B shows results of another simulation for a model
complex cell. Our model complex cell is based on the standard
energy model (Adelson and Bergen, 1985; Pollen et al., 1989;
Ohzawa et al., 1990; Emerson et al., 1992). Because complex cells
do not possess spatially separated ON and OFF subregions, a
standard reverse correlation procedure does not reveal any spa-
tial structure (Fig. 2B, right). On the other hand, the LSRC
method can visualize the position and spatial extent of response
profile as well as two-dimensional frequency tunings as in the
case of the simple cell. The ability to visualize the response profile
of cells even with substantial nonlinearity, like complex cells, is
one of the advantages of the LSRC method not available for the
standard reverse correlation procedure. Although the spike-
triggered average of stimuli (i.e., the output of the standard re-
verse correlation procedure) will be zero if the underlying non-
linearity is “symmetric” as in the energy model (Simoncelli et al.,
2004), LSRC can reveal response profiles for both symmetric and
asymmetric types of nonlinearities because the analysis is based
on the absolute values of the spectral components.

Spatial inhomogeneity
Can the LSRC method reveal a response profile of neurons, if the
selectivities are not homogeneous within their receptive field?
This is an important question related to whether LSRC can reveal
the profiles of the next-level neurons beyond complex cells,
which may be organized to collect from neurons tuned to differ-
ent parameters. To address this question, we modeled a spatially
inhomogeneous neuron in which the orientation selectivity dif-

fers depending on the spatial position within the receptive field
(Fig. 2C). The model neuron sums the output of two model com-
plex cells (Fig. 2C, left), in which these two components differ in
their preferred orientation by 45° and in their spatial positions of
the receptive fields. As shown in the simulated result, LSRC can
successfully recover the spatial inhomogeneity of the response
profile. The two-dimensional frequency tuning for a subfield
centered at (�2.3, 0.8), for example, shows a preference to the
orientation of 30°, whereas the preferred orientation for a sub-
field centered at (2.3, 0.8) is 75°. These are exactly the configura-
tions defined in the model. However, note that in the middle of
these two locations, we see a tuning profile that is a mixture of
those of the original component units and that gives an appear-
ance as if the orientation tuning shifts smoothly over space. This
is attributable to a smoothing or blurring effect resulting from the
size of the Gaussian window used to compute the spectra. This is
a generally applicable limitation for any localized spectral meth-
ods in which there is a trade-off between the resolution in the
frequency domain and the original domain. Therefore, one lim-
itation of the LSRC method is that an abrupt boundary in tuning
parameters, such as orientation, will not be detected as such with-
out using a smaller window size and consequently sacrificing the
spectral resolution.

Suppressive profiles
In Figure 2D, we have examined the effect of suppressive com-
ponents. Our model neuron consists of a simple cell-like facilita-
tive component and a divisive, cross-orientation suppression [a
special case of a model by Heeger (1992)]. The suppressive com-
ponent is modeled as a complex cell-like energy unit because the
suppressive effects are known to be phase invariant (DeAngelis et
al., 1992). The results show that, although the standard reverse
correlation reveals only the linear receptive field (Fig. 2D, right),
LSRC shows spatial and spectral positions of suppression (blue
areas), in which stimulus energy in the corresponding positions
reduces the output of the model neuron. We also simulated a
subtractive type of the suppression and found that LSRC can also
reveal the subtractive type of suppressions (data not shown).

Overcoming high threshold and nonlinearities for studying
higher-order neurons
Several previous studies show that cells selective to complex vi-
sual stimuli cannot generally be activated by stimulations using
only a part of their optimal stimuli (Tanaka et al., 1991; Pasupa-
thy and Connor, 2001; Ito and Komatsu, 2004). A possible neural
mechanism that could explain this phenomenon is that the spik-
ing threshold and nonlinearities are so large that individual parts
of appropriate stimuli shown alone cannot achieve the excitation
necessary for eliciting spikes. Rather, visual stimuli must contain
the essential parts simultaneously in order for the summed exci-
tation to overcome the spiking threshold. This type of nonlinear-
ity is thought to be a source of the problem in mapping response
profiles in a part-by-part manner using elementary stimuli such
as a bar or a patch of grating (Pollen et al., 2002). The LSRC
method may, at least partly, overcome this difficulty. Because
large visual areas over the receptive field are always stimulated, by
random chance, near optimal combinations of multiple local fea-
tures can appear in the sequences. Because the white noise for
different spatial areas are uncorrelated, the response profiles
could be mapped for each local area. This means that the knowl-
edge of selectivities of individual parts of the receptive fields may
be obtained from a set of stimuli that covers the entire area.

To examine whether LSRC possesses these desired features for
mapping response profiles, even in the situation that partial stim-
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ulations cannot reveal them, we have conducted an additional
simulation study as illustrated in Figure 3. The model neuron
(Fig. 3A) is similar to the spatially inhomogeneous neuron as in
Figure 2C but has a high spiking threshold that makes the cell
unresponsive unless strong excitations are given. The result dem-
onstrates that, although partial stimulations cannot reveal re-
sponse profiles in a reliable manner (Fig. 3C), the full stimula-
tions covering the entire receptive field reveal significant
response profiles for each localized area (Fig. 3B). These results
indicate that LSRC is a highly promising method for overcoming
difficulties of mapping receptive field profiles of neurons that
combine output of other neurons in a complex manner, without
using assumptions regarding the specific details of the
combination.

In summary, the simulation studies confirm that (1) LSRC
can reveal two-dimensional frequency tunings and their spatial
position and extent for both simple and complex cells, (2) LSRC
can recover spatially inhomogeneous receptive field profiles, and
(3) LSRC can also visualize suppressive profiles localized both in
space and spatial frequency domains. Below, we apply the analy-
sis for visual neurons in the cat early visual cortex.

Physiological study
The LSRC analyses were completed for a total of 193 cells (154
cells from area 17 and 34 cells from area 18, in 20 cats). The
cortical area of recording is judged based on the coordinates of
the electrode penetrations. Of these 193 cells, additional spatial
frequency tuning measurements using drifting grating stimuli
could be completed with sufficient reliability for 148 neurons.
Seventy-seven of these cells were classified as simple, and 71 cells
were classified as complex, according to the standard criteria
(Skottun et al., 1991; Li et al., 2003; Priebe et al., 2004).

Local spectral selectivity
Figure 4 shows examples of the results for the LSRC and the
standard reverse correlation analyses applied for a simple cell
(Fig. 4A–C) and a complex cell (Fig. 4D–F) in area 17. These two
types of analyses are conducted on the same data set for this and
other cells. Although the standard reverse correlation procedure
applied for the simple cell (Fig. 4C) yields a space– domain recep-
tive field profile, that for the complex cell (Fig. 4F) shows no
structure in this domain. In contrast, results of the LSRC analyses
(applied to the same data) show clear response profiles, the two-
dimensional frequency tunings as well as the spatial position and
extent, for the both simple and complex cells. The spatial extent
of the complex cell shows a horizontal elongation that is neither
perpendicular nor parallel to the preferred orientation of the cell.
The two-dimensional frequency tunings appear similar for all the
profiles that contain signals, suggesting that the preferred orien-
tation and spatial frequency is homogeneous throughout the re-
ceptive filed for these two cells.

The spatial homogeneity of the two-dimensional profile,
however, is not always the case. Figure 5 shows another example
for a complex cell in area 17. This cell shows a clear spatial inho-
mogeneity of the tuning characteristics within the receptive field.
As seen in Figure 5, B and C, the two-dimensional frequency
tunings differ substantially depending on the subfield location, in
that the optimal orientation and spatial frequency differ substan-
tially depending on the regions in which stimuli are presented.
Figure 5E depicts a spatial arrangement of orientation tunings for
each subfield. Assuming that response amplitude of the cell is
dependent on the weighted sum of local features, a stimulus con-
taining a curvature would be optimal for this cell. Although we

Figure 3. Benefits of the LSRC analysis in studying a higher-order neuron with high thresh-
old are illustrated by simulation. A, Schematic diagram for a model neuron. The model is a
spatially inhomogeneous neuron with two complex-type subunits as in Figure 2C, but the
subunits have a relatively high firing threshold that prevent the cell from firing unless strong
excitatory input is given. The simulations of the LSRC analysis were conducted for two different
conditions: B, Full-field noise array that stimulates both subunits simultaneously. C, Half-field
noise array in which the right half of the stimuli was masked, providing stimulation of only one
of the two subunits. The neuron does not respond unless the entire receptive field is stimulated.
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did not test the neuron with such stimuli
directly, this may mean that visual pro-
cessing of complex features found in the
higher-order areas (Gallant et al., 1993,
1996; Hegde and Van Essen, 2000; Pasu-
pathy and Connor, 2001; Ito and Kom-
atsu, 2004) is started, at least partly, in the
early visual cortex.

How prevalent are the neurons with
spatial inhomogneity in the early visual
cortex? To address this question, we sum-
marize the degree of spatial inhomogneity
of orientation and spatial frequency tun-
ings for our population of cells (Fig. 6).
For each neuron, we have calculated the
maximum difference of optimal parame-
ters, both for orientation and spatial fre-
quency, among profiles of subfields that
contain significant signals ( p 	 0.01; Bon-
ferroni corrected). Most of the cells in the
early visual cortex show generally homo-
geneous profiles as in Figure 4, and only a
small subset of cells shows the spatial in-
homogeneity as shown in Figure 5 (this
cell is indicated by a black arrow in Fig. 6).
There is no significant difference in distri-
butions of maximum differences for both
parameters (orientation and spatial fre-
quency) between areas 17 and 18 (two-
sample Wilcoxon test; p � 0.1).

Care must be used, however, in inter-
preting the apparent inhomogeneities
shown in Figure 6. This is because intrare-
ceptive field variations of filtering proper-
ties may arise simply because of our pro-
cedure in examining the profile using
small analyzing windows. For instance, if
an analysis window is too small and covers
only a part of an ON region of a simple cell
receptive field, the resulting spectrum
would primarily be that of the Gaussian
analysis window itself, which is low-pass,
not bandpass as expected from the entire
receptive field. Therefore, such artifacts of
the procedure may cause apparent intra-
receptive field variations of tuning param-
eters for both spatial frequency and
orientation.

To examine how much intrareceptive
inhomogeneities the LSRC procedure itself might induce, we
have performed simulations using a model simple cell as in Fig-
ure 2A. Specifically, model simple cells with Gabor-shaped spa-
tial receptive field profiles were tested using the LSRC procedure,
and the methodologically induced variations were examined. We
have simulated 1000 model cells, each of which has different
parameters selected randomly from the physiologically realistic
ranges. Table 1 shows the range of parameters we have used for
the simulations based on our physiological data. For each model
cell, we have performed the LSRC procedure and calculated max-
imum variations of optimal parameters for both orientation and
spatial frequency, as we performed for the real data. The mean
variations for simulated cells are 7.2° for orientation and 0.32
octaves for spatial frequency. The ellipses in Figure 6 show 95 and

99% confidence limits of variations determined by the simula-
tions. We also performed a similar test using model complex
cells, but the trend is essentially identical to the case of the simple
cell models (data not shown). The result indicates that the most
of the small variations within these ellipses are indistinguishable
from variations induced by the LSRC procedure itself. Clearly,
however, there were cells, even in the early visual cortex, that
exhibited large intrareceptive field variations of tuning parame-
ters, which cannot be attributed to the methodological factors.

Measurement of phase dependency
So far, our primary concern has been the analyses of the spike-
triggered averages of the absolute spectral amplitude, and the
spatial phase dependency has been ignored. However, Fourier

Figure 4. Local spectral selectivities are depicted for a simple (A–C) and a complex (D–F ) cell. A, A spatial matrix of local
spectral selectivity maps for a simple cell in area 17. Each individual plot shows a tuning property in a two-dimensional spatial
frequency domain for the corresponding spatial subfield. The spectral selectivity maps are arranged to reflect the spatial positions
of the corresponding subfields. B, A detailed profile of the most responsive subfield indicated by an asterisk in A. C, A linear
receptive field profile calculated from the same data as for A. D–F, Data for a complex cell in area 17 in the same format as that for
A–C. deg, Degree; freq., frequency; RF, receptive field.
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transforms contain information not only of spectral amplitude
for each frequency component, but also that of phase. To use all
of the information available with the LSRC method, we now
extend the method to include both the amplitude and the phase.
Because the phase dependence is the key feature that separates
simple cells from complex cells (Movshon et al., 1978a; De
Valois et al., 1982), incorporating phase information to the

LSRC method will allow us to analyze
these conventional cell types from a new
perspective.

To gain an understanding on how
phase dependence may be extracted from
the data, we must first clarify how phase
dependence metrics are defined statisti-
cally based on individual spike data and
stimulus frames. The red dots in Figure 7,
A and D, show distributions of unaver-
aged Fourier coefficients for spike-
triggered stimuli (for the optimal correla-
tion delay) for the simple and complex
cells shown in Figure 4, respectively. These
distributions are for the optimal spatial
frequency, orientation, and position (i.e.,
the conditions corresponding to the peaks
of Figure 4, B and E). Because a Fourier
coefficient is a complex number, each co-
efficient is plotted as a point on a two-
dimensional complex plane with a real
and an imaginary component. In this do-
main, the distance and angle of the dot
from the origin indicate the amplitude
and spatial phase, respectively, of a sine
wave of the given frequency that is con-

tained in the relevant region of the stimulus.
Note that the centroid of red points in Figure 7A is biased

toward the bottom left side. This corresponds to the fact that the
simple cell tends to respond to stimuli of a particular phase and
tends not to respond to the anti-phase stimuli. For comparison, if
we plot Fourier components for all stimulus frames for the cor-
responding condition without regard for spikes from the neuron,
we obtain a distribution depicted by gray dots in Figure 7A (there
are more gray dots than red ones). The distribution is unbiased
with respect to the origin, indicating that the noise stimulus se-
quence contain a homogeneous distribution of Fourier compo-
nents with respect to spatial phase. On the other hand, the com-
plex cell did not show such phase dependency as illustrated in
Figure 7D, where the distribution of red dots, the spike-triggered
Fourier coefficients, is unbiased and centered nearly exactly at the
origin. The distribution of gray points are hidden behind the red
dots in Figure 7D.

Therefore, the magnitude of the phase dependency can be
determined from the bias in the distribution of Fourier coeffi-
cients for spike-triggered stimuli in the complex domain. We
quantify the bias by calculating a vector sum of the spike-
triggered Fourier coefficients and define the phase selectivity in-
dex (PSI), for each frequency and position, as follows:

PSI �
�
 fspike�/nspike


 �ftotal�/ntotal
, (2)

where fspike are spike-triggered Fourier coefficients, ftotal are the
Fourier coefficients for the entire stimuli, nspike is the number of
spikes, and ntotal is the number of total frames in the entire stim-
ulus sequence. The PSI should be high when a cell responds in a
phase-dependent manner as in Figure 7A and is close to 0 when
there is no phase dependency as Figure 7D.

By using the PSI, we can obtain a spatial map of phase depen-
dency together with the signal magnitude. Such a map allows us
to examine possible spatial variations, if any, of local phase sen-
sitivity within a given receptive field. Figure 7, C and F, shows

Figure 5. Local spectral tuning data are shown of a cell that exhibits substantial spatial inhomogeneity of orientation and
spatial frequency tuning within its receptive field. A, Local spectral selectivities for a complex cell in area 17. B, C, Detailed tuning
properties in A, as indicated by numbers (1 and 2). D, A linear receptive field (RF) profile of the cell. E, A spatial arrangement of
orientation tunings obtained from A, in which the orientation of the bars indicates the preferred orientation of the corresponding
subfields. Only the data for subfields that contain significant signals are shown ( p 	 0.01; Bonferroni corrected). This cell was
nondirection selective, based on a test with conventional drifting grating stimuli. deg, Degree; freq., frequency.

Figure 6. A population summary is shown of the spatial inhomogeneity of tuning parame-
ters across the receptive fields. The horizontal axis indicates the maximum difference of the
preferred orientations among multiple local spectral tuning maps. The vertical axis indicates the
same for spatial frequency. Open and filled symbols indicate data for cells in area 17 (A17) and
area 18 (A18), respectively. The arrow indicates the cell shown in Figure 5. For this figure, 178
neurons with bandpass spatial frequency tuning profiles and with more than two significant
frequency domain maps are included for computing differences of tuning parameters. Two
ellipses represent 95 and 99% confidence limits of variations from simulations as a control,
assuming homogeneous properties (see Results for details). deg, Degree.
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spatial “amplitude-phase” maps for the
simple and complex cells, respectively. In
these plots, the signal magnitude for each
subfield is represented as luminance,
whereas the PSI and the preferred spatial
phase are shown as saturation and hue,
respectively. In these representations, only
the PSI values for a fixed (optimal) spatial
frequency were used. Spatial variations of
the phase dependency for the simple cell
can be seen by its map with highly satu-
rated colors in Figure 7C. A similar map
for the complex cell (Fig. 7F) consists of
points with highly desaturated (almost
white) colors, because the cell shows little
phase dependency.

The PSI should have a close relation-
ship to the conventional classification of
the simple and complex cell. To what ex-
tent is the PSI correlated with the modu-
lation ratio (Skottun et al., 1991; Li et al.,
2003; Priebe et al., 2004), the standard cri-
teria for classifications of simple and com-
plex cells? Figure 8 summarizes the result.
In this figure, only the PSI value for the
spatial position with maximal Z-score is
used for each neuron. There is a significant
correlation between the PSI and the mod-
ulation ratio ( p 		 0.01; test for Spear-
man’s correlation coefficients). Therefore,
our result opens a possibility of classifying
simple and complex cell types based on the
dense noise mapping data alone, which
was not possible previously because the linear receptive field pro-
files typically do not show any structure and are indistinguishable
noise for many complex cells (Fig. 7E).

Profiles of suppression
The LSRC analysis can also visualize suppressive profiles of visual
neurons, as suggested by the simulation study (Fig. 2D). Figure
9A–D shows an example cell that exhibits clear suppressive com-
ponents. Although the linear receptive field (Fig. 9C) only cap-
tures the facilitatory profile, LSRC reveals the existence of both
facilitatory and suppressive components as indicated by the red
and blue regions, respectively, in Figure 9, A and B. The suppres-
sion appears to be strongest at an orientation approximately or-
thogonal to that for facilitation. However, we should use caution
in interpreting the results regarding how the suppression is orga-
nized as a function of stimulus orientation. Figure 9D shows an
orientation tuning profile obtained from a conventional drifting
grating test. Responses to the off-peak orientation are less than
the spontaneous discharge rate of the neuron, which is a reflec-
tion of the suppressive effect. However, this suppression seems to
be present for virtually all orientations, except for the peak, and
not just for the orientation orthogonal to the optimal (DeAngelis
et al., 1992). The LSRC analyses calculate the net sum of facilita-
tion or suppression for each frequency and thus can only visualize

Figure 8. A relationship is shown between the PSI and the conventional modulation ratio
(F1/F0). The histograms at the top and the right show distributions of these indices separately.
There is a significant correlation between the PSI and F1/F0 ratio ( p 	 0.01; test for the
Spearman’s correlation coefficient).

Table 1. Simulation parameters for estimating inhomogeneities of methodological origin

Carrier orientation (°) Envelope orientation (°) Carrier phase (°) Spatial frequency (cycles/stimulus area) Envelope sigma Envelope aspect ratio

Minimum 0 0 0 3.0 1.5/SF*0.7 0.7
Maximum 180 180 360 4.5 1.5/SF*1.3 1.3

Ranges of parameters are shown for simulations for determining confidence intervals of interreceptive field variations (see Fig. 6), that might be induced because of the LSRC procedure. See Results for details. SF, Spatial frequency.

Figure 7. Spatial phase sensitivities are calculated for a simple cell (A–C) and a complex cell (D–F ). A, Fourier coefficients for
the maximally effective spatial frequency component in stimuli that led to spikes are shown (red dots) for the optimal correlation
delay of 45 ms. The centroid of red dots is offset from the origin indicating selectivity for a given phase. For estimating the
distribution for the noise stimuli themselves, Fourier coefficients for the same frequency component are also shown for all frames
of the subfield of noise sequence (gray dots). Only the coefficients for one frequency component for the maximally responsive
subfield are used. B, Spatial receptive field map obtained by a standard reverse correlation procedure. C, Spatial structure of the
phase dependency. The optimal spatial phase, PSI (see Results), and signal amplitude of the LSRC analysis are represented as hue,
saturation, and brightness, respectively. D–F, The same as A–C, but for a complex cell. The two cells are the same as those shown
in Figure 4. For C and F, the maximum values for the Z-scores were 34.1 and 17.5, respectively. coef., Coefficient; imag, imaginary;
deg, degree; RF, receptive field; max, maximum.
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whichever is stronger. Therefore, it should
be noted that we cannot discriminate the
following possibilities apart: whether the
suppressive effects exist for all orienta-
tions of the frequency range overlapped to
the facilitatory one or whether they exist
just for orientations nearly orthogonal to
the optimal.

Even with the limitations noted above,
the ability of the LSRC method for map-
ping the degree and spatial parameters of
suppression in addition to facilitation
would be useful in general for examining
potentially inhomogeneous properties of
the response profile of the cell. Figures
9E–G shows another example cell exhibit-
ing a form of inhomogeneity, in that spa-
tial areas for facilitation (E) and suppres-
sion (F) are not exactly overlapped. The
facilitation and the suppression were eval-
uated at different spatial frequencies and
orientations where each was most pre-
dominant. Although the facilitatory area
appears to be elongated horizontally, the
suppressive area shows a vertical elonga-
tion and is smaller than that for the facili-
tation. The smaller spatial extents for the
suppression are consistent with findings
of a previous study (DeAngelis et al.,
1992).

Figure 10 shows two-dimensional fre-
quency tuning profiles of four cells that
exhibit strongest suppressions among our
data. The optimal frequency for suppres-
sion is neither always orthogonal in the
orientation nor identical in their spatial
frequency to the facilitatory peak (Fig.
10B). Although several previous reports
have also pointed out that optimal spatial
frequencies for facilitation and suppres-
sion are not always identical (Bonds, 1989;
DeAngelis et al., 1992), determining pa-
rameters for the optimal suppressive stim-
uli has been quite difficult based on one-
dimensional tests. For example, to obtain
the suppressive spatial frequency tuning,
one had to select an orientation for the
suppressive stimulus and vary its spatial
frequency. With such tests, even a strong
suppression like the one shown in Figure
10B could have easily been missed because
both the optimal suppressive orientation
and spatial frequency are different from
the typical values of these parameters.
Two-dimensional tests in the joint orien-
tation and spatial frequency domain, such
as those used by Ringach et al. (2002) and
ours, are generally required for accurately
determining optimal parameters of sup-
pression. It is somewhat puzzling that,
among our population of cells, only 10 of
193 cells showed significant suppressive
profiles (t test with Bonferroni’s correc-

Figure 9. Data from cells with suppressive responses are shown for two complex cells in area 18. A, A result of the LSRC analysis.
The reddish regions (Z-score �0) indicate facilitatory components, whereas the bluish regions (Z-score 	0) show suppressive
components. B, Magnified tuning for a local spectral map, indicated by an asterisk in A. C, Linear receptive field profile. D, An
orientation tuning curve obtained by a conventional drifting grating test. The dashed horizontal line indicates the spontaneous
firing rate. E–G, Data from another neuron. E, Amplitude and phase map for facilitatory responses in the same format as that of
Figure 7, C and F. The facilitation was evaluated at the spatial frequency and orientation of 0.33 cycles/degree and 18°. F,
Suppression map is shown using the Z-score only. The suppression was evaluated at the spatial frequency and orientation of 0.23
cycles/degree and 117°. G, Linear receptive field for the second neuron. deg, Degree; freq., frequency; RF, receptive field.
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tion; p 	 0.01). Previous work based on superimposed drifting
sinusoidal gratings (plaid) stimuli seems to find some degree of
cross-orientation suppression for most neurons (DeAngelis et al.,
1992). It might be related to the difference in the type of stimuli
used (dense noise vs plaids), because it is known that response
profiles, especially the suppressive profiles, are different depend-
ing on the class of stimuli used to acquire tuning profiles (David
et al., 2004). It may also be related to the fact that we use Bonfer-
roni’s correction for quantitative estimates of the strength of fa-
cilitation and suppression. This correction may have been too
conservative. Another point we should consider is that uncover-
ing suppression depends on the mean firing rate of the cell to the
noise stimulus. In any case, our sample size does not allow sum-
maries of the relationship between the facilitatory and suppres-
sive parameters of these neurons. Resolution of these issues re-
quires comparative studies of suppression using both dense noise
and grating stimuli.

Discussion
Relationship to previous studies
Previous methods for mapping receptive fields and stimulus se-
lectivities of neurons have certain advantages but also suffer from
various shortcomings. For example, standard dense noise recep-
tive field mapping generally allows measurements of first-order
receptive fields, making it suitable for mapping simple cell recep-
tive fields (Alonso et al., 2001). However, mapping attempts gen-
erally fail for complex cells and neurons in higher-order visual
areas with substantial nonlinearities. Although it is theoretically
possible to measure second- and higher-order receptive field
maps, the amount of time required for measurements generally
becomes prohibitively long in practice. Therefore, despite the
advantage of having the least number of assumptions about what
visual features neurons may be sensitive to, the white-noise stim-
uli have only been moderately effective. Alternative approaches,
adopted by the majority of recent studies, have been based on a

finite set of computationally generated complex stimuli rich in
curved elements, such as non-Cartesian gratings (Gallant et al.,
1993, 1996) and curvature-direction stimuli (Pasupathy and
Connor, 2001). Although these analyses have been very effective
in revealing key stimulus features that excite neurons, the stimu-
lus sets are inherently finite, and assumptions about possible do-
mains of selectivities are built into the stimuli implicitly. Ideal
stimulus sets therefore would be those (1) with infinite possible
configurations, (2) minimum assumptions, and (3) applicability
for all cell types and possible neural connections. LSRCs have
many of such ideal properties and could provide an experimental
framework for revealing selectivity to the complex visual features.

Recently, several groups have shown that neurons in the pri-
mary visual cortex can be described as a set of spatiotemporal
linear filters, and these underlying filters can be estimated by
conducting a spike-triggered covariance (STC) technique
(Touryan et al., 2002; Rust et al., 2004, 2005). The STC and LSRC
analyses seem to share several desirable features, especially in that
both of these techniques attempt to reveal filtering profiles un-
derlying the responses of neurons and that both of them use
white-noise sequences. A notable advantage of LSRC would be its
efficiency. Although the LSRC procedure is essentially a first-
order approximation of filtering profiles, the STC procedure be-
longs to a class of second-order approximations and thus need
more spikes to map underlying properties. Practically speaking,
whereas STC requires several tens of thousands of spikes to gen-
erate response profiles of reasonable signals (Rust et al., 2005),
LSRC needs only a few thousands of spikes to obtain significant
signals, and we could obtain excellent profiles with as few as
�5000 spikes. In our recording sessions (two-dimensional
white-noise stimulation in anesthetized cats), we rarely encoun-
ter cells that elicit several tens of thousands of spikes within a
typical recording time of �30 min. Therefore, LSRC may be ap-
plicable to a wider variety of visual areas than STC, especially the
areas where the white-noise sequences could elicit relatively a
small number of spikes.

Inhomogeneity of response profiles
One of our key motivations for developing LSRC was to find
possible spatial inhomogeneities of response profiles, such as lo-
cal variations of preferred orientations within a given receptive
field, that could serve to produce selectivities to complex visual
features, particularly those with curved elements. By applying
LSRC to cells in the early visual cortex, we found two types of
spatial inhomogeneities: (1) a small subset of neurons shows local
variations of preferred orientation and spatial frequency within
their receptive field; and (2) spatial extents for facilitatory and
suppressive components are not always overlapped exactly. Al-
though the proportion of neurons that possess spatial inhomo-
geneities is not large in the early visual cortex, the existence of
these classes of cells may, nevertheless, mean that the processing
of complex object features begins at this stage. It would also sup-
ply baseline data for selectivity variations within the receptive
fields in the early visual cortex, which would be valuable in con-
straining possibilities of building up downstream neurons that
are much more selective to local feature combinations.

Parameter selections in the LSRC analysis
In this study, we have performed the LSRC measurements with
relatively high-density stimuli (dot size, 0.2– 0.4°) to ensure the
ability to reveal receptive field structures tuned to high spatial
frequency components. The Nyquist frequency for our typical
configurations is 1.25–2.5 cycles/degree, which is reasonably

Figure 10. Two-dimensional spatial frequency tunings are shown for four additional cells
that exhibit significant suppressions in the LSRC analysis. A, A two-dimensional spatial fre-
quency tuning for the subfield with the strongest suppression for a complex cell in area 17. B, A
similar tuning map for a simple cell in area 17. C, D, Similar plots for two complex cells in area 17.
OR, Orientation; SF, spatial frequency; deg, degree; cpd, cycles per degree.
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higher than the frequency that is known to be signaled by cells in
the early visual cortex of cats (Movshon et al., 1978b; Zhou and
Baker, 1994). Although, theoretically, we could use even smaller
dots to increase the Nyquist frequency, the average power within
each frequency band (thus ability to elicit spikes) would decrease
for stimuli consisting of small dots. Trials would be needed to
determine reasonable ranges of dot density when applying LSRC
to other visual areas.

In the LSRC procedure, we are able to choose arbitrarily the
position, size, and steps of the Gaussian window (i.e., the area
over which the spectrum is computed) after the experiments are
completed. This is one of the advantages of the LSRC method,
because we need not be concerned about the exact position and
boundary of the receptive field during the experiments. In other
words, the spatial parameters of the analysis may be optimized
post hoc via trials on the data. These features make LSRC partic-
ularly suitable for recordings via large multielectrode arrays. Re-
ceptive fields of many cells recorded from such electrodes may
span a substantial area of the visual field as well as being tuned to
a wide range of parameters. However, in the analyses, we should
choose carefully the size of the window. If the size is too small, we
cannot acquire proper response profiles for low spatial frequency
spectra. On the other hand, if the window size is too large, we lose
spatial resolutions. We selected our size of analysis such that the
analysis window covers at least a half of the period of the optimal
spatial frequency within 1 � of the Gaussian if the cell shows clear
bandpass profiles in their spatial frequency tunings. In rare cases
in which neurons had a low-pass spatial frequency tuning, we
used the � value corresponding to one-fifth of the mapped area.

Possible applications and limitations
In this study, we have limited our scope only to the spatial aspects
of receptive field profiles, and the LSRC analyses were performed
only in the two-dimensional spatial frequency domain. However,
the LSRC analysis can naturally be extended to include the tem-
poral domain for studying response profiles in a joint three-
dimensional (two-dimensional spatial and a temporal) frequency
domain. Because there is physiological evidence that temporal
property of cross-orientation inhibition is different from the fa-
cilitatory profile (Allison et al., 2001), it is of interest to examine
whether the suppression and facilitation could be mapped sepa-
rately in the three-dimensional frequency domain.

It is natural to think of the applications of LSRC for cells in the
higher-order visual areas, such as V2 and V4. Because the cells in
these areas are known to respond to more complex stimuli (Gal-
lant et al., 1993, 1996; Pasupathy and Connor, 2001; Ito and
Komatsu, 2004), it is of interest to examine how local spectral
response profiles are organized for cells in these areas. However,
the current LSRC method is probably not applicable to neurons
with strong position invariance such as those in the inferotempo-
ral cortical area (Ito et al., 1995; Tanaka, 1996), because tunings
for given oriented segments are not tied to specific locations
within the receptive field in these areas.

The area MT is another candidate for the application of LSRC.
There is a well known model for MT pattern motion-selective
neurons (Movshon et al., 1986) by Simoncelli and Heeger (1998).
In their model, MT neurons are constructed by summing output
of V1 neurons satisfying the constraints for a given velocity. The
spatiotemporal LSRC analysis, as describe above, should be able
to provide response profiles in the three-dimensional joint do-
main (spatial frequency, orientation, and temporal frequency)
and thus could be used to assess the validity of the model directly,
extending the work by Perrone and Thiele (2001). Position in-

variance is expected for responses of MT neurons. However, it is
not a limitation in this case, because LSRC is not used to detect
spatial inhomogeneity. Instead, it is used to determine whether
the spatiotemporal frequency domain receptive field of MT neu-
rons has a planar organization as proposed by Simoncelli and
Heeger (1998).

In conclusion, LSRC is a highly general and efficient method
for characterizing neurons in intermediate-stage visual areas be-
yond the primary visual cortex. The use of random noise stimuli,
with the minimum of assumptions about what the cells might be
“looking for,” makes the LSRC method particularly suitable for
multielectrode, multicell recordings. This is because, at least for
initial bulk characterizations, it is desirable not to optimize stim-
ulus parameters only for a selected set of neurons. Therefore, our
study provides a basis on which the results from other areas may
be compared with respect to inhomogeneities of tuning proper-
ties within receptive fields.
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