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Plasticity of Temporal Pattern Codes for Vocalization Stimuli
in Primary Auditory Cortex
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It has been suggested that “call-selective” neurons may play an important role in the encoding of vocalizations in primary auditory cortex
(A1). For example, marmoset A1 neurons often respond more vigorously to natural than to time-reversed twitter calls, although the
spectral energy distribution in the natural and time-reversed signals is the same. Neurons recorded in cat A1, in contrast, showed no such
selectivity for natural marmoset calls. To investigate whether call selectivity in A1 can arise purely as a result of auditory experience, we
recorded responses to marmoset calls in A1 of naive ferrets, as well as in ferrets that had been trained to recognize these natural marmoset
calls. We found that training did not induce call selectivity for the trained vocalizations in A1. However, although ferret A1 neurons were
not call selective, they efficiently represented the vocalizations through temporal pattern codes, and trained animals recognized marmo-
set twitters with a high degree of accuracy. These temporal patterns needed to be analyzed at timescales of 10 –50 ms to ensure efficient
decoding. Training led to a substantial increase in the amount of information transmitted by these temporal discharge patterns, but the
fundamental nature of the temporal pattern code remained unaltered. These results emphasize the importance of temporal discharge
patterns and cast doubt on the functional significance of call-selective neurons in the processing of animal communication sounds at the
level of A1.
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Introduction
Recent years have seen a renewed interest in the processing of
complex sounds and animal vocalizations in the central auditory
system (Rauschecker, 1998; Nelken et al., 1999; Wang, 2000; Sen
et al., 2001; Romanski et al., 2005), and much research has been
aimed at trying to identify specific mechanisms within the mam-
malian auditory pathway that might facilitate the processing of
vocalization calls. Lesion studies indicate that the primary audi-
tory cortex (A1) is essential for the recognition of communica-
tion sounds (Heffner and Heffner, 1986). Early studies into the
representation of vocalization sounds were optimistic about
finding specific “call detectors” (Winter and Funkenstein, 1973)
within the auditory cortex, but, although many neurons in A1
respond vigorously to species-specific vocalizations, previous re-
search suggests that these responses may often be explained in
terms of sensitivity to relatively simple acoustic features of the
sounds (Pelleg-Toiba and Wollberg, 1991; Gehr et al., 2000).
Nevertheless, a recent study by Wang et al. (1995), which com-
pared responses of neurons in A1 of the common marmoset (Cal-
lithrix jacchus) to natural and time-reversed marmoset “twitter”

vocalizations, found that marmoset A1 neurons often responded
much more vigorously to natural than to time-reversed vocaliza-
tions. When neurons in A1 of the cat were tested with the same
marmoset vocalization stimuli (Wang and Kadia, 2001), no re-
sponse selectivity for natural over time-reversed marmoset calls
was seen. It is tempting to interpret the selectivity for the natural
marmoset twitter calls in marmoset A1 as a specialization that
facilitates a “categorical” response that might aid in the “recog-
nition” of an ecologically important stimulus. Such a specializa-
tion might be innate or acquired through sensory experience.
However, if response specificity is a prerequisite for the recogni-
tion or discrimination of natural marmoset calls, one would have
to conclude that A1 neurons of carnivores, such as the cat, which
respond just as vigorously to forward as to time-reversed mar-
moset calls, would not represent these unfamiliar vocalizations in
an effective manner. Furthermore, one might expect call selectiv-
ity for marmoset calls to be induced in A1 of carnivores if they
were trained to recognize these calls. Alternatively, higher-level
features of the neural response, such as temporal discharge pat-
terns, might carry sufficient stimulus-related information to sup-
port efficient processing and recognition of these vocalizations,
although the neurons appear “nonselective” in their overall firing
rates. To investigate these possibilities, we recorded responses to
the same natural and time-reversed marmoset twitters used by
Wang and colleagues (Wang et al., 1995; Wang and Kadia, 2001)
from A1 of five “naive” adult ferrets who had never been exposed
to marmoset vocalizations before the recording experiments, and
we analyzed these responses for stimulus-related information
carried in the neural discharge patterns. Furthermore, to assess
whether response specificity to natural marmoset calls in A1 can
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be induced through experience or training, we also recorded elec-
trophysiological data from two ferrets that had been trained to
discriminate the natural marmoset twitter calls from a host of
other natural sounds in a positive reinforcement Go/No-go
paradigm.

Materials and Methods
All experiments were approved by the local ethical review committee and
were performed under license from the United Kingdom Home Office in
accordance with the Animal (Scientific Procedures) Act of 1986.

Electrophysiological recording. All electrophysiological data were ob-
tained in a sound-insulated chamber (Industrial Acoustics Company,
Winchester, UK). The animals were anesthetized by a 2 ml/kg intramus-
cular injection of alphaxalone/alphadolone acetate (Saffan; Schering-
Plough Animal Health, Welwyn Garden City, UK). The left radial vein
was cannulated, and anesthesia was maintained by continuous infusion
of medetomidine (Domitor; Pfizer, Walton Oaks, Surrey, UK) and ket-
amine (Ketaset; Fort Dodge Animal Health, Overland Park, KS) at a
typical rate of 0.022 and 5.0 mg � kg �1 � h �1 respectively, along with 5
ml/h saline supplemented by 5% glucose. Expired CO2, electrocardio-
gram, and muscle tone were carefully monitored, and anesthetic infusion
rates were adjusted as required to ensure stable anesthesia throughout.
The animals were also artificially ventilated with oxygen-enriched air.

The parietal and left temporal aspects of the skull were exposed, and a
stainless steel head holder was fixed to the skull with stainless steel screws
and dental acrylic above the midsagittal ridge. The auditory cortex was
exposed by craniotomy and removal of the dura. Mineral oil was applied
to the exposed pial surface to prevent dehydration. Acoustic stimuli were
presented diotically at a sound level of �68 dB sound pressure level (SPL)
using Tucker Davis Technologies (TDT) (Alachua, FL) System3 digital
signal processors and custom headphones based on Panasonic (Brack-
nell, UK) RPHV297 drivers. The three natural marmoset twitter stimuli
used here were identical to those used previously by Wang and colleagues
(Wang et al., 1995; Wang and Kadia, 2001).

To characterize neural responses, each twitter call and its time-
reversed counterpart were presented 20 times in a pseudorandom order.
The responses to these stimuli were recorded using 2 M� 4 � 4 silicon
array “Michigan probes” (Center for Neural Communication Technol-
ogy, University of Michigan, Ann Arbor, MI), bandpass filtered (300 Hz
to 3 kHz), and digitized at 25 kHz using a TDT Pentusa multichannel
recording system. BrainWare software (TDT) was used to control stim-
ulus presentation and data collection and to extract single-unit “clusters”
of action potentials from the electrode signal. Only units responding with
a mean rate of at least 2 Hz were included in the additional analysis.
Spike-timing data from acoustically responsive units were then exported
to Matlab (MathWorks, Natick, MA) for additional analysis.

Behavioral training. To study the effect of experience, two male adult
ferrets were trained to distinguish the three marmoset twitter calls from a
set of eight other sounds (downloaded from the internet), which in-
cluded the bark of a coyote (Canis latrans), the song of a northern cardi-
nal (Cardinalis cardinalis), the chirping of a katydid (Orchelium vulgare)
and of a cricket (Euscyrtus concinnus), and the vocalizations of a bottle-
nose dolphin (Tursiops truncatus), a guinea pig (Cavia porcellus), and a
killer whale (Orcinus orca), as well as a 1 s broadband noise burst. Figure
1 shows the spectrograms of the natural sound stimuli used. The choice
of the non-marmoset training stimuli was to some extent arbitrary, ex-
cept that the set of these sounds was deliberately chosen to be an acous-
tically very diverse sample of natural sounds. For a human observer, each
of these stimuli is relatively easy to distinguish from the marmoset twitter
calls, but the stimulus attributes that most obviously distinguish each
from the twitters are quite different in each case. The coyote and guinea
pig sounds, for example, all have a syllabic structure that imposes ampli-
tude modulations not too unlike those of the marmoset calls, but they do
not extend quite as high in frequency range and differ in pitch from the
twitters to greater or lesser extent. The dolphin and cricket sound, in
contrast, have a very different syllabic structure but overlap with practi-
cally the entire frequency range of the twitter calls and are more similar to
the twitters in pitch. Thus, the “perceptual attributes” that most clearly

distinguish the No-go stimuli from the Go stimuli vary from case to case.
Thus, the task of discriminating these sounds from a marmoset twitter is
likely to be not too dissimilar from the acoustic discriminations a mar-
moset has to perform when identifying a conspecific call against a back-
ground of communication sounds from other animals.

Training was performed in a custom-built behavioral training cham-
ber that was made from a plastic pet carrier fitted with a Visaton FRS 8
loudspeaker (Visaton, Haan, Germany) and two custom water spouts
mounted on mechanical switches, one “start spout” and one “reward
spout.” The behavioral paradigm was controlled by a computer running
custom-written Matlab code and connected to a TDT RM1 laboratory
interface. During training periods, the animals were put on a water-
restricted diet, i.e., they received only dry food in their home cages and
had access to drinking water only during the twice-daily behavioral train-
ing sessions. Animals initiated a trial by pushing the start spout with their
snout or their forepaw. This triggered the release of a small drop of water
(�0.025 ml), followed immediately by the presentation of one of the
sound stimuli chosen at random. Sound levels in the testing chamber
were �68 dB SPL. If the stimulus was one of the three marmoset twitter
calls (a Go stimulus), the animals were expected to respond by pushing
the reward spout, and doing so within 8 s from the onset of the Go
stimulus triggered the delivery of a water reward (�0.2 ml). In an initial
period lasting �2 weeks, during which the animals had to learn the
significance of the start and reward spouts, the animals were presented
only with Go stimuli during their training sessions. Thereafter, initially a
set of three to four No-go stimuli was added for an additional 3– 4 weeks
training before the final full set of eight No-go stimuli was introduced. At
each trial, stimuli were chosen randomly, but, to keep the animals moti-
vated, we found it advantageous to adjust the frequency of Go stimuli
according to the individual animal’s temperament, to lie between 50 and
66% of all trials. If the stimulus was a No-go stimulus (i.e., any sound
other than one of the three marmoset twitter calls), then the animals were
expected to ignore the stimulus and were free to initiate the next trial
immediately by pressing the start spout again. To encourage the animal
to listen to the stimuli rather than just performing rapid but arbitrary
random choices, responses made �0.9 s after the onset of the stimulus
were ignored. Incorrect responses (i.e., pressing the reward spout after a
No-go stimulus or failing to press the reward spout after a Go stimulus)
triggered a brief timeout of 4 s to provide negative feedback. The number
of trials obtained from the animals in each training session was variable,
but �100 –150 trials per training session were typical. To minimize the
risk of animals becoming dehydrated during training periods, small wa-
ter supplements were given at the end of a day of training if an animal had
collected less than a minimum of 35–50 ml (depending on body weight)
of water rewards during the training of that day. Also, after a training
period of at most 14 d, animals were given rest periods of at least 2 d (but
sometimes considerably longer), during which they had access to ad
libitum water in their home cages. In this manner, animals were trained
over a period of �4 months before electrophysiological recording.

Results
Electrophysiology in naive animals
We characterized responses from 142 single units from A1 of five
adult ferrets. As a first step, we analyzed these units in the manner
identical to that used by Wang and colleagues (Wang et al., 1995;
Wang and Kadia, 2001). The mean spike rates of each unit in
response to each natural (RNat) and time-reversed (RRev) twitter
call were calculated over a 1200 ms period from stimulus onset,
and the corresponding “selectivity index” (d) was calculated us-
ing the formula d � (RNat � RRev)/(RNat � RRev).

Figure 2 shows scatter plots of RNat against RRev for all of the
cells in our study, with responses to the first, second, and third
exemplar of the twitter stimuli. The spectograms of these stimuli
are shown at the top left of Figure 1. If we assume that ferret A1
units are not selective for natural marmoset calls, then we expect
that the data in these scatter plots should clusters more or less
tightly around the main diagonal (RNat � RRev), and the distribu-
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tion of the corresponding values of d should have a mean very
close to 0. This expectation is very much borne out. The means 	
SD of the values for d obtained for each of the three stimuli were
0.030 	 0.101, �0.003 	 0.093, and �0.020 	 0.099, respec-
tively. The overall median value for d (0.002) was not significantly
different from 0 (sign test, p � 0.74). The selectivity index values

we obtained in the ferret are comparable
with those reported by Wang and Kadia
(2001) for cat A1 (0.047 	 0.265, 0.086 	
0.238, and 0.068 	 0.372, respectively)
and are smaller by an order of magnitude
or more than those reported for the mar-
moset (0.479 	 0.361, 0.335 	 0.302, and
0.385 	 0.340). Preferences for natural
over time-reversed marmoset calls in fer-
ret A1 are therefore tiny or 0, and a coarse
rate-code-based scheme would have diffi-
culty distinguishing natural from time-
reversed calls on the basis of ferret A1
responses.

Encoding of twitter calls in temporal spike patterns
When analyzed in terms of mean spike rate over the entire stim-
ulus duration, units in naive ferret A1, like those in cat, typically
lack “selectivity” for natural marmoset twitter calls. Like previous
authors (Wang et al., 1995; Gehr et al., 2000; Wang and Kadia,

Figure 1. Spectrograms of the natural sound recordings used as stimuli for this study. The color scale saturates over 70 dB.

Figure 2. Mean response rate evoked by natural (RNat ) plotted against response to time-reversed (RRev ) twitter call stimulus.
Responses for first, second, and third exemplar of the twitter stimuli are shown in A, B, and C respectively.
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2001), we studied call selectivity in an anesthetized preparation,
and, although we have at present no reason to assume that rate-
based call selectivity in A1 is radically altered by anesthesia, future
studies in awake preparations will be needed to confirm this ex-
perimentally. To human observers, the natural and time-reversed
twitter calls sound quite different. We do not know whether fer-
rets also perceive these sounds differently, but, if they do, then
any information that might underpin any perceptual differences
between the stimuli would most likely be either carried in a tem-
poral pattern code or processed in a neural pathway that bypasses
A1. When we plotted the neural responses in a standard raster
plot format, we noticed that ferret A1 units varied considerably in
their ability to respond to the marmoset twitter calls with distinc-
tive, reproducible discharge patterns. Considerable unit-to-unit
variability in the properties of A1 responses to vocalization stim-
uli has been noted by other authors (Wallace et al., 2005) and is as
such not unexpected. Figure 3 gives illustrative examples from
two different units. The spike patterns shown in Figure 3A appear
to be highly “informative,” in that the unit responds to the twitter
calls with a fairly reproducible series of short bursts. The latency
of these bursts and the number of spikes in each burst varies
somewhat from trial to trial and these burst patterns are subjected
to some degree of “noise” from spontaneous activity, but one
nevertheless notices that the burst patterns evoked by the natural
call exhibit systematic differences from those evoked by the time-
reversed call. (Note also that the response pattern elicited by the
time-reversed call does not appear to be a time-reversed copy of
the response to the natural stimulus.) The spike patterns exhib-
ited by the unit illustrated in Figure 3B, in comparison, appear
much less informative with respect to stimulus identity than
those seen in Figure 3A, in that the spike patterns are more vari-
able from trial to trial and the patterns evoked by the normal and
the reverse stimulus are less distinctive.

To be able to quantify these apparent unit-to-unit differences
in the amount of information that appears to be carried in the
temporal response patterns, we devised a simple pattern recogni-
tion algorithm that attempts to “guess” which stimulus evoked a
particular response pattern. The first step in this algorithm is to
represent each individual response as a poststimulus time histo-
gram (PSTH). The choice of bin size used to construct these
PSTHs is of some importance, which is why a range of different
bin sizes were considered, as will be discussed further below.
Figure 4, A and B, shows the data for the units whose response
rasters were shown in Figure 3, when the responses to each of the
20 presentations of each stimulus are binned in 20-ms-wide bins.
Once individual responses are represented in this way, each 1200-
ms-long spike train becomes a list of 60 spike count values and
can be thought of as a point, or vector, in a 60-dimensional space.
When represented in this manner, the set of responses to a par-
ticular stimulus effectively form a “cloud” in an abstract, high-
dimensional response space, and one can quantify how similar
two responses are by calculating the Euclidian distance between
the two responses in this space. If we now draw one of the re-
sponse patterns from the dataset (a “test pattern”) and we calcu-
late the Euclidean distance of this test pattern to each of the
“cloud centers” (mean response patterns) formed by the remain-
ing responses (the “training sets”), then we can try to guess which
stimulus might have evoked this test response pattern simply by
assigning the test pattern to the stimulus associated with the clos-
est training set. If the response patterns are reproducibly similar
for repeated presentations of the same stimulus and reproducibly
different from patterns evoked by other stimuli, then the re-
sponse patterns will form distinct clusters in the response space

and most test patterns will be correctly assigned, but, if the re-
sponses lack reproducible and distinctive patterns, then the as-
signments will be essentially random. By picking each response in
turn as the test pattern and noting the proportion of correct
assignments, we can therefore quantify how informative individ-
ual response patterns are with respect to stimulus class.

In practice, we found that performing a principle component
analysis (PCA) on the response pattern of each unit before run-
ning this assignment algorithm improves the performance of this
decoding algorithm somewhat in a number of cases. PCA trans-
forms the coordinates of the response pattern vectors in a manner
that exploits the correlation structure of the dataset and allows us
to reduce the dimensionality of the response space by disregard-
ing dimensions that capture only minimal amounts of the vari-
ance of the data. The small amount of variance in the dataset

Figure 3. A, Raster plot display of responses from one unit to the second twitter call and its
time-reversed counterpart. Each dot indicates the timing of one action potential, and each row
of dots gives the response to a single stimulus presentation. The thick black line underneath the
raster plots indicates the duration of the stimulus. B, Responses from a different unit to the
same stimuli.
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attributed to these dimensions is most likely attributable to noise
in the response pattern, e.g., from spontaneous activity, whereas
dimensions that account for much of the variance in the data can
be thought of as “features” of the data. By running our assign-
ment algorithm in a “principal component space” in which we
retained a sufficient number of principal components to capture
90% of the variance of the data (between 16 and 40 components,
depending on the unit), we were able to increase the performance
of the classifier in some cases, presumably because it allowed us to
avoid problems of “overfitting,” but results obtained by running
the classification on the raw spike count vectors are essentially
similar.

Figure 4, C and D, shows “confusion matrices” that illustrate
how well the classifier algorithm was able to “decode” individual
spike trains. The grayscale indicates the proportion of test spike
patterns from the set of responses to the stimulus given on the
x-axis were “assigned” (i.e., judged to be “closest,” or “most sim-
ilar to” the set of responses evoked by) the stimulus indicated on
the y-axis. If the algorithm was to identify all spike trains cor-
rectly, then the confusion matrix would feature a black main
diagonal on a white background. However, if the algorithm fails
to find useful information in the spike patterns, then the assign-

ments are essentially random. Qualitatively, it certainly appears
that the responses of the unit shown in Figure 4A are often cor-
rectly identified by the classifier, whereas those of the unit shown
in Figure 4B are misclassified so frequently that it is not immedi-
ately clear whether the decoding process performed significantly
above chance.

Confusion matrices like those shown in Figure 4, C and D,
allow us to estimate the “information content” of the response
patterns, or, more accurately, the mutual information (MI) be-
tween response and stimulus class. The MI (in bits) is given by
Shannon’s formula:

MI � �
x,y

p
x, y� � log2� p
x, y�

p
x� � p
y��
where x and y are the values taken by the random variables “pre-
sented stimulus class” and “assigned stimulus class” (x, y�{1, 1R,
2, 2R, 3, 3R}), and one adopts the convention that 0 � log(0)
evaluates to 0. The a priori probability p(x) of any one stimulus
having evoked any one particular response is 1⁄6 because we used
six different stimuli in the experiment and each stimulus was
presented with the same frequency. The probability of a response
being assigned to any one stimulus class p(y) and the joint prob-
ability of observing a particular combination of stimulus and
response assignment p(x, y) are not known a priori but can be
estimated from the observed frequency distributions in the con-
fusion matrix. However, it is important to remember that MI
estimates calculated in this manner can be subject to non-
negligible positive sampling biases, because using the observed
frequency distributions as a necessarily rough estimator for the
true underlying probabilities can easily lead to somewhat inflated
MI estimates (Rolls and Treves, 1998; Trappenberg, 2002; Nelken
et al., 2005). Here we estimated the expected size of this bias by
calculating MI values for “shuffled” data, in which the response
patterns had been randomly reassigned to stimulus classes. The
shuffling was repeated 10 times, and the mean MI estimate for the
10 shuffled datasets was used as estimator for the bias. All MI
values reported below were “bias corrected,” i.e., the bias estimate
obtained for each unit was subtracted from the original MI esti-
mate. Bias estimates varied little from unit to unit, the median
bias was 0.18 bits/response, and �5% of bias estimates exceeded
0.28 bits/response, so that bias corrected MI values �0.1 bits/
response might, as a rough approximation, be deemed “statisti-
cally significant.”

When analyzed in this manner, we estimate that the responses
of the unit shown in Figure 4A transmit on average 1.28 bits of
information about which of the twitter stimuli were transmitted,
whereas the MI estimate for the unit shown in Figure 4B is only
0.21 bits (a much more modest value but one that exceeds our
rough significance criterion of 0.1 bits, and, indeed, if we treat the
confusion matrix shown in Fig. 5D as a � 2 contingency table, then
we can reject the null hypothesis that the actual and assigned
stimuli are statistically independent at p � 0.001, confirming that
the firing patterns of this unit does transmit very modest but
statistically significant amounts of information).

As noted above, it is to be expected that the performance of
our pattern classifier algorithm, and hence the MI estimates ob-
tained, will depend on the bin width chosen at the first step, when
individual response patterns are expressed as PSTHs. One could
attempt to devise a more sophisticated algorithm that might be
able to estimate the information content of a response pattern
without temporal binning (Victor, 2002). However, we felt that it

Figure 4. A, B, Responses of two different units. Each individual response is plotted as a
grayscale histogram, i.e., the number of spikes in each 20 ms bin is given in a grayscale from
white (0 spikes/bin) to black (5 spikes/bin). Individual responses to each of the 20 repeats of
each stimulus are shown. Responses are grouped by stimulus class, and the corresponding
stimulus is indicated by the label to the right (1, 2, 3 indicates first, second, and third twitter call
stimulus from Fig. 1, whereas 1 R, 2R, 3R indicates the corresponding time-reversed counter-
part). C, D, “Assignment” or “confusion” matrices illustrating the performance of our pattern
classifier algorithm in decoding the spike patterns shown in A and B, respectively. The grayscale
indicates the proportion of the 20 responses to the stimulus class indicated on the ordinate that
was attributed by the algorithm to the stimulus class indicated on the abscissa.
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would be of considerable interest to explore the dependency of
the MI estimate on the initial bin size, or “temporal resolution,”
of the decoding step by systematically varying the bin size. The
result of reanalyzing the data from the two units from Figure 4 at
various bin sizes from 2.5 to 640 ms is shown in Figure 5A. One
observes that, for the responses of the first unit, the pattern clas-
sifier performs well, extracting in excess of 1 bit of information
per response, as long as it operates at a temporal resolution of 40
ms or finer. For coarser temporal resolutions, the amount of
information that can be extracted from the temporal response
patterns drops dramatically. For the responses from the unit
shown in Figure 4B, the amount of information that can be ex-
tracted remains low and barely exceeds the critical value for sta-
tistical significance of 0.1 bits/response regardless of the temporal
resolution used in the decoding step.

Figures 3–5A may give the impression that there may be two
very different types of cells in auditory cortex, one transmitting
large amounts of information about the identity of complex, nat-
ural stimuli through fairly precise temporal discharge patterns
and the other conveying very little information about stimulus
identity regardless of the temporal resolution at which its re-
sponses are analyzed. An obvious question is whether these units
are representative examples of two more or less discrete classes of
cells or rather two samples along a continuous spectrum of neural
response properties. We address this question in Figure 5B, which
shows a “waterfall” plot of estimated MI (on the x-axis) as a
function of temporal resolution (on the z-axis) for all 142 A1
units recorded in the naive animals. Units are ordered by their
maximal MI value along the y-axis of that plot. From this plot, it
becomes apparent that units appear to form a continuum, with
many cells transmitting practically no information about stimu-
lus identity (although they responded vigorously to the stimuli),
whereas others transmitted various amounts of information, up
to �1.7 bits/response.

Figure 5B suggests that the units in our sample form a contin-
uum rather than clearly distinct classes, but, to facilitate addi-
tional discussion, we shall nevertheless draw a somewhat arbi-
trary distinction between “highly informative” and “poorly
informative” units simply on the basis whether they transmit
�0.5 bits/response. For the 47 highly informative units in our
dataset, it is clear that the amount of information extracted from
the responses tends to decline when the temporal resolution of
the decoding becomes much coarser than 40 ms. Figure 5C serves
to visualize the dependency of MI on temporal resolution for
these units more clearly. It shows the normalized MI estimates
(relative to the units own maximal MI value) plotted against
temporal resolution. Data from all 47 highly informative units
are shown superimposed. The mean normalized MI values across
these 47 units is also shown as a light gray line. Although there is
some unit-to-unit variability, one nevertheless observes a clear
trend for MI values to reach a maximum at resolutions between

4

Figure 5. A, MI between stimulus and response as estimated from the performance of the
classifier algorithm at different temporal resolutions for the two units shown in Figure 3, A (solid
line) and B (dotted line). MI values above the hatched horizontal line at y � 0.1 are deemed
statistically significant at � � 0.05. B, Waterfall plot of MI as a function of temporal resolution
for all 142 units from the untrained ferrets in this study. The units are ranked by maximum MI.
C, Normalized MI as a function of temporal resolution for units with maximal MI values �0.5
bits/response are plotted in black. The light gray line shows the mean of these normalized MI
functions. D, Waterfall plot of MI at a temporal resolution of 10 ms as a function of the length of
the response period analyzed. The data are from the same units, ranked in the same order,
as in B.
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10 and 20 ms. For most units, MI values start to decline sharply at
resolutions �40 ms. MI estimates sometimes also decline some-
what if the temporal resolution used by the decoder becomes too
fine, i.e., �5 ms.

An additional question one might ask is whether the entire
response pattern is necessary to distinguish the various stimuli in
this set. To investigate this question, we repeated the analysis of
the response patterns at a 10 ms time resolution but fed only the
first 100, 200, 300, . . . ms of the response patterns into the clas-
sifier algorithm. The results of this analysis with restricted time
windows is shown in Figure 5D. It shows that the amount of
information extracted by the classifier from the spike patterns
increases monotonically with the length of the spike trains avail-
able for analysis, as one might expect, but, for most units, the
extracted MI appears to asymptote so that there are much more
rapid gains in MI with an increased analysis period during the
first 600 ms compared with the second 600 ms of the response.

Comparing Figures 3, 4, and 5A, one
might get the impression that perhaps
those units that exhibit responses that are
clearly strongly time locked to individual
syllables or other transients in the stimu-
lus envelope should be highly informative,
whereas those that do not carry little infor-
mation about stimulus identity. However,
that is probably an oversimplification. In
Figure 6, we show dot raster displays for
the responses of every third unit in this
sample to the first twitter call played for-
ward and reversed. The dot rasters are ar-
ranged in order of increasing MI (i.e., the
same rank order used in Fig. 5B) from
the bottom up, and the waveforms of the
stimuli are reproduced at the top of
the figure to facilitate a visual comparison
between stimulus envelope and timing of
response bursts. Although there is a gen-
eral trend for units with a clear tendency to
time lock to individual syllables to occur
closer to the top of the figure, that alone
would not explain the ranking. Compare,
for example, the responses plotted at the
very top with the 12th unit from the top in
this plot. These responses are marked by
little arrows to the left of the raster plots.
The rank order of these units in Figure 5B
is 142 and 109, respectively, but, whereas
the second appears to give more vigor-
ously time-locked responses, the first one
carries almost twice as much information
in each response, presumably because its
discharge pattern, although not easily at-
tributable to particular peaks in the enve-
lope of the stimulus, are nevertheless quite
reproducible for representations of the
same stimulus but distinct for different
stimuli.

In summary, the responses recorded in
naive ferrets are similar to those reported
by Wang and Kadia (2001) for the cat and
very different from those reported for the
marmoset, in that overall mean spike
counts do not discriminate natural from

time-reversed twitter calls. Nevertheless, our analysis clearly
demonstrates that many ferret A1 neurons carry significant
amounts of information about the marmoset twitter stimuli in
their temporal pattern, information that could be used to distin-
guish natural from time-reversed calls. Furthermore, although
the decline in MI at resolutions �5 ms seen for some units in
Figure 5C is clearly a limitation of our decoder (a more sophisti-
cated decoder might be able to combine bins appropriately to
recover the information available at coarser resolution), we be-
lieve that the decline at resolutions coarser than 40 ms reflects
physiological properties of the representation of this particular
stimulus set at the level of A1. Of course, it would be of consid-
erable interest to know whether this representation changes and
whether it perhaps becomes more “marmoset-like,” if ferrets are
familiarized and trained to recognize marmoset twitter stimuli.
To explore this question, two ferrets were trained to associate
marmoset twitters with water rewards in a Go/No-go paradigm.

Figure 6. Diversity of response patterns. Responses to twitter 1 and twitter 1 reversed for 47 different A1 units shown in raster
plot format. Responses are shown for every third unit in our dataset, arranged in ascending order of maximum MI, starting with the
responses of the least informative unit at the bottom. Alternating dark and light gray dots and dividing lines are used to visually
offset responses from different units. Above the raster plots, the temporal waveforms of the corresponding acoustic stimuli are
shown. The arrows on the left mark the responses of the units ranked 142 of 142 (top) and 109 of 142 (12 rows lower down) in
maximal MI.
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Behavioral training
Using the paradigm described in Materials and Methods, two
ferrets were trained to respond to marmoset twitter stimuli by
pushing a reward spout to receive a water reward (a Go response).
Sound stimuli other than marmoset twitters were to be ignored,
and the next trial was to be initiated by pushing a start spout (a
No-go response). Figure 7A shows a typical example of the per-
formance of the animals during a behavioral testing session after
�2 months of training. The animal has clearly learned an associ-
ation between marmoset twitter stimuli and water reward, mak-
ing Go responses to almost every presentation of the twitter stim-
uli but only very rarely making Go responses to sounds other than
the marmoset twitters. Figure 7B shows the “reaction times,” i.e.,
times from the onset of the sound stimuli to the triggering of the
reward spout (Go response) or the start spout (No-go response),
respectively, for the same training session. Bearing in mind that
the sound stimuli are typically just �1 s in duration (compare
with Fig. 1) and that the behavioral training program was set up
not to register any responses made �0.9 s after stimulus onset to
encourage the animals to listen carefully before making their
choice, it is apparent that the trained animals typically make their
choices very rapidly after the end of the stimuli. Figure 7C shows
the “learning curves” for the two trained animals. The percentage
of correct responses in each training session is plotted against
time (in days) elapsed since the first training session. In an initial
training period, lasting 9 d for the first animal and 16 d for the
second, during which the animal familiarized itself with the setup
and the mechanics of the task, only Go stimuli were used, and,
because this early period of procedural training involved no
acoustic discrimination, no performance data are shown for this
early stage of training. Although there are slight differences in the
shapes of the learning curves for these two animals, both animals
typically perform at 80% correct or better after 25 d of training
and routinely exceed 90% correct after �2 months of training. As
mentioned in Materials and Methods, intense training periods
during which an animal would frequently run two sessions per
day were interspersed with “training holidays,” which could last
anywhere from 2 d to �3 months. The timing of these training
holidays was not governed by scientific considerations but was
dictated partly by animal welfare considerations (prolonged un-
interrupted training periods with their accompanying restric-
tions of access to drinking water could otherwise lead to weight
loss and adverse health effects) and partly by other constraints on
the experimenters’ time. Figure 7C illustrates that the perfor-
mance in the first session immediately after a long training holi-
day can be noticeably reduced, particularly during early stages of
the training, but the animals typically return to �90% perfor-
mance after just a single “refresher” session.

Electrophysiological responses in the trained animals
After the training periods charted in Figure 7C, the animals were
prepared for physiological recording in a manner identical to that
used for the naive animals. In total, we obtained responses to the
marmoset twitter calls from 501 units in the two trained animals.

The data from these animals were analyzed in a manner iden-
tical to that used for the naive animals. Figure 8 plots the response
rate evoked by natural twitter calls against rates evoked by their
time-reversed counterparts for the trained animals. The layout of
the figure is identical to that of Figure 2. As in the untrained
ferrets, the data cluster tightly around the main diagonal (RNat �
RRev), and, for all three twitter stimulus exemplars, the mean
values of the selectivity index d were close to 0 (means 	 SD of
�0.030 	 0.106, �0.0036 	 0.0978, and �0.028 	 0.1069, re-

spectively). The overall median selectivity index was, in fact,
slightly but statistically significantly negative (�0.021; p � 10�5,
sign test), indicating that the responses to the natural twitter calls,
which had been part of the training set, were if anything ever so

Figure 7. A, Histogram showing a typical example of the behavioral performance after 2 months
of training in a Go/No-go paradigm in which marmoset twitter calls served as a Go stimulus. The
lengthoftheblackandgrayhorizontalbarsgivesthenumberofNo-goandGoresponses, respectively,
to each of the stimuli indicated along the y-axis. In this run, the animal made only two inappropriate
No-goresponses(1eachtotwitters2and3)andonlyfourinappropriateGoresponses(1tothekatydid
and 3 to the cricket call). B, Reaction times, relative to stimulus onset, for Go and No-go trials, respec-
tively, from the training session shown in A. C, Learning curves plotting performance (percentage of
correct responses) against days from the start of training.
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slightly weaker on average than those to the time-reversed sounds
that the animals had never heard before the electrophysiological
recording. However, this effect is so small that, statistical signifi-
cance notwithstanding, one would be hard pushed to accord it
much “physiological significance.” In any case, the fact that the
trained animals have learned to recognize and associate a reward
with the natural marmoset twitter vocalizations has clearly not
induced the sort of preference or selectivity for these natural
marmoset twitters that has been reported for neurons in marmo-
set A1 (Wang et al., 1995).

In Figure 9A, we show the estimates of the mutual information
between response pattern and stimulus for the trained data ob-
tained with the decoding algorithm described above and plotted
in a waterfall format identical to that used in Figure 5A. Like in
the untrained data, we notice that the amount of information
extracted by the pattern classification algorithm varies from unit
to unit and depends on the temporal resolution, with the highest
MI values typically seen at resolutions finer than 40 ms. When
comparing Figures 9A and 5A, one also notices that the maxi-
mum MI values are in general higher in the trained than in the
untrained animals. In Figure 5A, only approximately one-third of
units reached MI values exceeding 0.5 bits/response. In the
trained animals, this proportion has grown to approximately
two-thirds, and the most informative cells reach MI values in
excess of 2 bits/response, close to the theoretical maximum given
by the entropy of the stimulus set of log2(6) � 2.58 bits/response.
Figure 9B shows the differences between the MI distributions in
the trained and naive animals. It effectively plots the difference
between the waterfall plots shown in Figures 9A and 5B, respec-
tively, but, given that the number of units in the trained and
untrained samples was not the same, the “MI surfaces” shown in
the waterfall plots first had to be resampled along the unit rank
dimension (x-axis) using the resample function of the Matlab

signal processing toolbox to give interpo-
lated MI surfaces with 100 “unit centile
rank” steps for each dataset. The differ-
ence between the resampled surfaces is
shown in Figure 9B as a grayscale map. It
shows that, although the amount of infor-
mation recoverable from the spike trains
at coarse temporal resolutions �80 ms
hardly changed as a consequence of train-
ing, for shorter temporal resolutions, one
sees fairly substantial increases in infor-
mation throughout a large proportion of
the sample. A Wilcoxon’s rank-sum test
comparing the maximum MI values
across units for the trained and untrained

animals was used to confirm that these marked increases in trans-
mitted information are statistically highly significant ( p � 10�8).

Discussion
Together, the results of our study emphasize the importance of
temporal pattern codes operating at a resolution in the order of
tens of milliseconds in the representation of vocalization stimuli
in primary auditory cortex and argue against an important role of
call-specific neurons. Training an animal to recognize previously
unfamiliar vocalizations does not lead to the formation of call-
selective neurons in the trained animal’s A1, but the amount of
information carried in temporal pattern codes maintained by
nonselective neurons increases markedly as a consequence of
training.

These results are therefore in general agreement with a recent
study by Gehr et al. (2000), who found that a rate-based repre-
sentation of vocalization stimuli in cat A1 would be highly
inefficient.

Our simple decoding algorithm extracted the highest
amounts of information from the neural spike patterns when it
operated at temporal resolutions between 10 and 20 milliseconds,
and, for resolutions of 80 ms or greater, performance decreased
markedly. If we compare this result with findings from an in vivo
intracellular recording study of visual cortical neurons by Azouz
and Gray (1999), who found that the energy of membrane voltage
fluctuations in the gamma frequency band (20 –70 Hz, i.e., at
periods of 14 –50 ms) were highly predictive of spike rates, then
we are led to suspect that the relationship we observed between
information extracted and the temporal resolution of the decoder
may reflect fundamental physiological properties of neocortex.

It is interesting to compare these timescales with the timescale
of other known auditory perceptual or physiological phenomena.
For example, accurate temporal order judgments on the click
trains with varying amplitude require interclick intervals of �20
ms (Hirsh, 1959). Neurons in the primary auditory cortex re-
spond to brief stimuli presented repeatedly in rapid succession
only if repetition rates remain below �20 –35 Hz (Schreiner et al.,
1997; Lu et al., 2001a; Eggermont, 2002). Furthermore, when
samples of recorded speech are cut into segments that are locally
time reversed, then this speech remains highly intelligible pro-
vided the fragments are no more than 50 ms long (Saberi and
Perrott, 1999). These observations suggest that some aspects of
auditory perception may, in a sense, occur at a “frame rate” of
20 –50 Hz, and our analysis suggests that this would also be an
appropriate frame rate for reading out the temporal pattern rep-
resentations of complex sounds at the level of the primary audi-
tory cortex, although additional studies with more extensive sets

Figure 8. Mean response rate evoked by natural (RNat ) plotted against response to time-reversed (RRev ) twitter call stimulus in
ferrets trained to recognize marmoset twitter calls. Responses for first, second, and third exemplar of the twitter stimuli are shown
in A, B, and C, respectively.

Figure 9. A, Waterfall plot of MI as a function of temporal resolution for all 501 units from the
trained ferrets in this study. B, Grayscale map showing the difference between trained (A) and
untrained (Fig. 5B) animals. White contour lines are drawn at z � 0, 0.1, 0.2, and 0.3 bits.
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of complex stimuli will be required to examine whether this find-
ing generalizes.

Previous studies have shown that temporal discharge proper-
ties in auditory cortex can be subject to plastic changes. For ex-
ample, Kilgard and colleagues (Kilgard and Merzenich, 1998; Kil-
gard et al., 2001) have shown that pairing rapid pure-tone
sequences with electrical stimulation of the nucleus basalis can
induce increased tone following rates in A1, and Bao et al. (2004)
reported enhanced responses to rapid click trains in the A1 of rats
that had been trained to use such click trains as auditory cues,
which helped them localize a food source. Our study extends
these findings and demonstrates explicitly that training-induced
plastic changes in the temporal response properties of A1 neu-
rons lead to an increase in task-relevant acoustic information
carried in the neural discharge patterns.

However, teaching an animal a few new “items of vocabulary”
does not seem to induce call selectivity at the level of A1. Wang
and colleagues (Wang et al., 1995; Wang and Kadia, 2000) de-
scribed what appeared to be call selectivity in a subset of marmo-
set A1 neurons and hypothesized that this subpopulation might
be specialized for the quick and accurate detection of frequently
heard vocalizations. However, examples of firing patterns re-
corded from marmoset A1 neurons reproduced by Wang et al.
(1995) suggests that at least some of these neurons do also exhibit
intricate, reproducible discharge patterns, in addition to modu-
lating their overall firing rate. These firing patterns are likely to be
highly information bearing, and the relative importance of puta-
tive temporal pattern codes versus rate coding through putative
call selectivity in marmoset A1 remains uncertain. In fact, in mar-
moset A1, apparent call selectivity in overall response rates and
temporal pattern coding may both operate within the same pop-
ulation of neurons.

By referring to the response asymmetry observed in marmoset
cortex as call selectivity, Wang and Kadia (2001) encourage their
readers to interpret the “preference” of normal to time-reversed
vocalizations within A1 as a necessary or at least useful step in the
processing of vocalizations, but our result that ferrets successfully
“process” the same sounds in a behavioral task without exhibiting
any obvious response asymmetry or selectivity in A1 does suggest
that we have to keep our minds open to alternative interpretations.

Thus, the preference for natural over time-reversed stimuli in
marmoset A1 might simply reflect asymmetries in the response to
temporal features of sounds in general (Lu et al., 2001b) rather
than a specificity for vocalization stimuli in particular. At the level
of A1, “genuine” call selectivity might be rare or nonexistent.
How such asymmetries in the response properties of marmoset
A1 neurons arise also remains unclear. It is conceivable that they
could be the result of auditory experience in infancy (Nakahara et
al., 2004) or they might be innate.

Studies on the encoding of conspecific vocalizations in pri-
mates (Rauschecker and Tian, 2000) suggest that call specificity
that is manifest in coarse overall changes in firing rate may be
more common in higher-order cortical fields (lateral belt areas),
and it would be of considerable interest to know to what extent
this apparent call specificity is innate or shaped by experience.
Ultimately, good performance at a Go/No-go task like the one
used here requires the animal to make a categorical decision as to
whether a complex sound belongs to a particular class of vocal-
izations or not, and this categorical decision is likely to manifest
itself in distributed rate representations involving prefrontal and
even premotor cortical areas (Romo and Salinas, 2003). Interest-
ingly, Romanski et al. (2005) recently described neurons in pri-
mate prefrontal cortical areas that appear to exhibit a high degree

of call selectivity when tested with vocalization stimuli, but the
role of these neurons in auditory processing or recognition tasks
and the transformation of acoustic information from A1 to these
high-order areas is only beginning to be explored.

The trained animals in our study were only exposed to the
marmoset vocalizations in adulthood, and one might ask whether
we might have observed the emergence of call selectivity if expo-
sure to these calls had commenced in infancy. Some authors
argue that exposure during a “critical period” early in life may
exercise a particularly powerful influence on neural response
properties (Nakahara et al., 2004), and, in humans, auditory ex-
perience in infancy can greatly affect which acoustic or phonetic
distinctions an individual will perform with ease later in life and
which ones are difficult (Kuhl et al., 1992). However, within the
parameters laid down during the critical period, mature mam-
mals are clearly able to learn to recognize new complex sounds
and vocalizations, and there is at present no reason to assume that
adult A1 would use a fundamentally different coding scheme for
the encoding of vocalizations learned in adulthood from those
learned in infancy. Furthermore, one might note that Gehr et al.
(2000) report that, in cat A1, there appears to be no strong pref-
erence for natural over time-reversed meows, although one
would expect kittens to be exposed to conspecific calls through-
out any putative critical period. Instead, these authors consider it
“more likely that the temporal structure in the firing patterns,
reflecting that of major peaks in the vocalization envelope, is at
the basis of a cortical representation of cat meows” in cat A1
(Gehr et al., 2000).

In the visual system, one can observe neurons with responses
that are highly selective for certain classes of natural stimuli [e.g.,
faces or hands (for review, see Rolls and Treves, 1998; Tsao et al.,
2006)]. This type of specificity for natural object classes is usually
characterized by a degree of “response invariance” as well as se-
lectivity, i.e., face cells respond to faces regardless of the position
within very large receptive fields, whether shown in frontal view
or in profile, large or small, but they respond very poorly or not at
all to objects that are not faces. This type of selectivity for a class of
natural stimuli has hitherto only been described in higher-order
visual cortical areas. Interestingly, a recent report suggests that
“auditory object-specific” responses can be induced in nonpri-
mary forebrain areas of songbirds by operant conditioning (Gen-
tner and Margoliash, 2003). However, auditory object specificity
was clearly not induced in ferret A1 in our operant conditioning
study. Thus, it appears that the role of A1 in the processing of
vocalization stimuli is predominantly that of representing acous-
tic features of stimuli through temporal pattern codes in a non-
selective manner, whereas a more auditory object-selective rep-
resentation of the acoustic environment may well emerge in
higher-order areas of auditory cortex.
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