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Influence of Response Variability on the Coding
Performance of Central Gustatory Neurons

Christian H. Lemon and David V. Smith

Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163

We explored how variability in responding to taste stimuli could impact the signaling of taste quality information by neuron types and
individual cells in the nucleus of the solitary tract. One hundred sixty-two neurons recorded from anesthetized rats were grouped using
multivariate analysis of taste responses to the following (in m): 0.5 sucrose, 0.1 NaCl, 0.01 HCl, and 0.01 quinine-HCl. Neurons fell into one
of three groups corresponding to cell types that responded optimally to sucrose, NaCl, or HCL A statistical model was used to examine
whether responses observed among neurons within each group could be correctly attributed to the optimal stimulus or another tastant on
the basis of spike count. Results revealed poor classification performance in some cases attributable to wide variations in the sensitivities
of neurons that compose a cell type. This outcome leads us to question whether neuron types could faithfully encode a single taste quality.
We then theoretically explored whether a hypothetical observer of individual neurons could discriminate between spiking rates to
different tastants during the first second of stimulus processing. Spike rate was found to be an unreliable predictor of stimulus quality for
each neuron tested. However, additional analyses suggested that taste stimuli could be identified by a reader that attends to the relative
spiking activities of different kinds of neurons in parallel. Rather than assigning meaning to individual neurons or categories of them,
central gustatory circuits may signal quality information using a strategy that involves the relative activities of neurons with different

sensitivities to tastants.
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Introduction

How is information about taste quality (e.g., sweet, salty, sour,
and bitter) represented by activity in the nervous system? This
question lies at the center of a long-standing debate in the field of
gustatory neurobiology. Early neurophysiological studies re-
vealed that gustatory neurons in several species are sensitive to
stimuli representing more than one taste quality. These data led
to the idea that taste quality information is encoded by relative
patterns of activity generated across a population of neurons
(Pfaffmann, 1959; Erickson, 1963). This “across-neuron pattern”
theory of taste coding accommodates the multiple sensitivities of
taste cells and proposes that individual neurons contribute to the
representation of more than one taste quality. Conversely, some
data have been interpreted to support the notion that a particular
stimulus quality is encoded by the activation of one of a few
discrete types of gustatory neurons. In this theory of coding,
known as “labeled line,” cells with a common optimal (i.e., best)
stimulus are purportedly dedicated to represent the qualitative
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features of only this stimulus (Pfaffmann, 1974; Pfaffmann et al.,
1976). Labeled-line theory requires that activity within a given
type of neuron is both necessary and sufficient to represent a
single stimulus quality. Interest in this latter model of coding has
been kindled by the results of recent molecular and genomic
studies of taste receptors. These investigations have shown that
receptors for sweet, amino acid, and bitter tastants are expressed
in nonoverlapping populations of taste bud cells (TBCs) in oral
epithelia (Adler et al., 2000; Nelson et al., 2001). Based in part on
these data, it has been proposed that a given taste quality is rep-
resented by the activation of one of a few discrete neural channels
(Mueller et al., 2005; Scott, 2004; Zhang et al., 2003; Zhao et al.,
2003).

Although the across-neuron pattern and labeled-line theories
provide different accounts of the mechanism of gustatory coding,
both theories can be applied to accommodate most datasets
(Scott and Giza, 2000; Katz et al., 2002a). In the present investi-
gation, a combination of experimental and theoretic techniques
is used to explore the information-handling limits of central gus-
tatory neurons as imposed by variability in responding to differ-
ent tastants. We then use knowledge of these limits to infer how
neural circuits for taste could be organized to encode information
about stimulus quality. Here we analyze taste responses to stimuli
humans describe as sweet, salty, sour, or bitter that were electro-
physiologically recorded from neurons in the nucleus of the sol-
itary tract (NST) in anesthetized rats. The NST is the first central
synapse for taste information processing in mammals. It was
evaluated whether the responses of purported functional groups
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of neurons and individual neurons themselves are reliable indi-
cators of stimulus quality.

Materials and Methods

Our analysis proceeds in two phases. Phase 1 focuses on understanding
the fidelity of gustatory neuron types in the NST by examining the extent
to which “channel” responses to different stimuli overlap, as indexed by
variability in responding to tastants across neurons that compose a given
cell type. Here, we evaluate whether random responses to optimal or
sideband (i.e., non-optimal) stimuli observed among such neurons
could be correctly classified on the basis of response amplitude. The
benefits (i.e., identifying true positives) and costs (i.e., reporting false
positives) in doing so are characterized using a statistical model known as
receiver operating characteristic (ROC) analysis (Green and Swets,
1966). The outcome here has implications for understanding whether the
pooled activity of neurons that compose a cell type could be taken as a
reliable indicator of stimulus quality. In phase 2, we investigate rate
coding by individual NST neurons. Here, ROC analysis is used to char-
acterize how variability in the firing rate of a single cell could impact the
ability of its spike output to discriminate between different taste stimuli.

Phase 1: analysis of neuron types. In phase 1, we analyze taste responses
from alarge number of NST neurons, some drawn from our files (Lemon
et al., 2003, 2004; Lemon and Di Lorenzo, 2002) and others newly re-
corded. All neurons were sampled from naive adult male Sprague Dawley
rats under urethane anesthesia. For newly acquired cells, details of the
surgical and recording procedures have been reported previously
(Lemon etal., 2003, 2004; Lemon and Smith, 2005). Briefly, conventional
single-unit electrophysiological methods were used to record trains of
action potentials from gustatory neurons in the NST. Action potentials
generated by an individual neuron were identified using a waveform
template-matching algorithm (Spike 2/Power 1401 acquisition system;
Cambridge Electronic Design, Cambridge, UK). The single-unit nature
of the recordings was evidenced by a refractory period (~2 ms) in spike-
interval histograms. Digital records of spike trains were analyzed off-line.

For all neurons, taste responses were evoked by applying stimulus
solutions to an oral field that always included at least the anterior tongue
and palate. Taste buds in these areas are innervated by cranial nerve VII,
which critically mediates behavioral discriminations among taste stimuli
in rats (Spector and Grill, 1992; Spector et al., 1997; St. John and Spector,
1998; Kopka et al., 2000; Geran et al., 2002). Neural responses to four
stimuli were considered (in m): 0.5 sucrose, 0.1 NaCl, 0.01 HCI, and 0.01
quinine-HCI, respectively categorized as sweet, salty, sour, or bitter by
humans. Tastant solutions were made from reagent-grade stock dis-
solved in laboratory-grade purified water. The chosen concentrations of
stimuli evoke half-maximal responses in the rat chorda tympani nerve
(Ganchrow and Erickson, 1970), which is the branch of cranial nerve VII
that innervates the anterior tongue.

Taste responses were expressed as the average number of spikes evoked
in 1 s corrected for spontaneous discharge. A measure of response profile
entropy (Smith and Travers, 1979) was calculated for each neuron to
quantify its breadth of responsiveness across stimuli. Entropy is defined
as follows:

H=—K Y P,logP,

i=1

where P; represents the response to the ith stimulus expressed as a pro-
portion of the total response to  stimuli, and K is a scaling constant; K =
1.661 for n = 4. The value of H ranges from a minimum of 0 to a
maximum of 1. A neuron that responds to only one stimulus of four
would achieve H = 0 (i.e., no uncertainty as to which stimulus produced
aresponse), whereas a cell that responds equally well to all stimuli would
result in H = 1 (i.e., maximum uncertainty).

Neurons were categorized into types using hierarchical cluster analysis
(HCA). This approach has been used in other studies to group gustatory
neurons with similar response properties into classes that presumably
serve a particular function in the processing of taste information (Frank
etal., 1988; Scott and Giza, 1990). The outcome of HCA typically suggests
neuronal groupings that are similar to those that would be derived if one
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used a “best-stimulus” classification scheme (i.e., categorizing neurons
into types based on the stimulus that evokes the highest relative rate of
firing) (Smith et al., 1983a,b; Chang and Scott, 1984; Frank et al., 1988;
Nakamura and Norgren, 1991). However, HCA provides a more com-
prehensive approach to defining neuronal groupings because neurons
can be categorized based on similarities/dissimilarities among responses
to each stimulus under consideration. Input to HCA consisted of a dis-
tance matrix representing pairwise neuronal response profile dissimilar-
ity, where 1 — Pearson’s product-moment correlation (r) served as the
distance metric. This analysis was performed using the Statistica software
package (StatSoft, Tulsa, OK). The “unweighted pair—group average”
amalgamation schedule was used.

For each neuron type, we used ROC analysis to evaluate whether ran-
domly observed responses to optimal and sideband stimuli could be
correctly classified as such based on knowledge of the mean spike count
to each stimulus. ROC analysis offers several advantages for evaluating
spike data of the kinds presented in this manuscript. Foremost, ROC
analysis does not depend on a single response—decision threshold. In
ROC analysis, every possible decision threshold is considered and an
estimate of the performance that would be expected across a range of
thresholds can be computed. One can intuit that this feature has value for
evaluating the spiking activities of sensory neurons because it is, of
course, unknown as to what decision threshold the brain might adopt to
read neural responses. Moreover, ROC analysis provides a “distribution-
free” method to compare distributions of events. Unlike standard para-
metric statistical tests, ROC analysis does not assume that the distribu-
tions are Gaussian and have equal variance (Green and Swets, 1966). The
shapes of the frequency distributions analyzed here would suggest that
both of these conditions are not met across all comparisons. Any statis-
tical analysis of these distributions must therefore not rely on the as-
sumption of normality or fixed variance. Thus, ROC analysis provides a
useful and appropriate statistical method to explore the response prop-
erties of gustatory neurons. All ROC analyses herein were conducted
using SPSS (SPSS, Chicago, IL) or the ROCR toolkit for the R computing
language (Sing et al., 2004; Venables et al., 2004).

As used in phase 1, ROC analysis provides a method to index the
degree of similarity among responses to different stimuli in a neuron type
(i.e., a neural “channel”). As an extreme example, classification perfor-
mance that is near perfect (100% correct) would indicate little overlap in
the responses of neurons to a given optimal and sideband stimulus. As-
suming a sufficient difference between response distributions, a finding
of this sort might suggest that the pooled output of these cells could be
used to represent the optimal stimulus relative to the sideband stimulus
in question. Conversely, classification performance near chance (50%
correct) reflects a high degree of overlap between responses to two stim-
uli among cells that compose a neuron type.

Caution must be assumed with regard to interpreting the outcome of
ROC analysis as applied in phase 1 as an estimate of the discriminative
capacity of a neural channel. Our data concerning neuron types only
pertains to the influence of across-neuron variability in predicting stim-
ulus quality and does not contain measurement of within-neuron re-
sponse variability, that is, variability in how individual neurons them-
selves respond to taste stimuli. Because both sources of variance
potentially influence the coding performance that could be achieved by
attending to the pooled signal of a group of neurons, within-neuron
response variability must be taken into account to effectively estimate
discriminative capacity. Moreover, it must also be considered that the
nervous system could very well read out stimulus quality by attending to
neurons on an individual basis rather than lumping their activities into
an aggregate signal. Experiments in phase 2 aimed to address these issues.

Phase 2: analysis of rate coding by individual gustatory neurons. To
characterize the accuracy by which the firing rate of an individual neuron
conveys information about taste quality, we started by recording trains of
action potentials evoked over many presentations of the following (in m):
0.5 sucrose, 0.1 NaCl, 0.01 HCI, and 0.01 quinine-HCl. We attempted to
stimulate each cell at least six times with each tastant. On each trial,
deionized water was applied to the tongue and palate for 5 s, immediately
followed by a stimulus for 5 s and then a 10 s deionized water rinse. Cells
were allowed to return to baseline levels of spontaneous activity before
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the next trial. Stimuli were tested in pairs, with presentation order alter-
nated across trials.

For each evoked spike train, the time interval between sequential ac-
tion potentials [i.e., the interspike interval (ISI)] was repeatedly sampled
during the first second of taste responding, in which response onset was
defined as the time of occurrence of the first spike that was at least 300 ms
beyond stimulus onset. The reciprocal of each ISI was calculated to derive
an estimate of the instantaneous firing rate (IFR) (Cheng and Wasser-
man, 1996) of the neuron at the point in time at which the ISI under
consideration terminated. IFRs were expressed in units of spikes per
second. For each neuron, IFR streams measured over multiple trials were
pooled to build frequency distributions of spike rates evoked by each
stimulus. ROC analysis was used to quantitatively estimate the perfor-
mance by which a hypothetical observer of individual neurons could use
knowledge of these frequency distributions to discriminate between fir-
ing rates produced by different taste stimuli.

Here it is assumed that an individual neuron signals the presence of its
most effective (i.e., reference) stimulus when activated, as indexed by the
mean IFR. Thus, a downstream reader of an NST neuron must know the
reference stimulus attached to this cell along with the distribution of
firing rates evoked by this stimulus. When the neuron is under gustatory
drive, the reader would compute a firing rate distribution to compare
with the known distribution to make a decision about whether or not the
input was produced by the reference stimulus. The present model ex-
plores the plausibility of this decoding strategy by using ROC analysis to
compare firing rate distributions to different stimuli in individual cells. It
is evaluated whether a hypothetical observer of the IFR could reliably
discriminate between randomly drawn firing rates to the reference and
another stimulus by always reporting that the larger rate was produced by
the reference stimulus. The theoretic approach used here to study rate
coding by gustatory neurons is similar to that used in other investigations
of information coding by spike intervals and instantaneous firing rates in
visual and proprioceptive neurons (Werner and Mountcastle, 1963; Wil-
son et al., 1988; Kiani et al., 2005). The present model does not attend to
the ordering of the spike intervals but only the spacing between spikes,
which is inversely proportional to the firing rate of a neuron. This is tied
to the present evaluation of whether information about stimulus quality
lies in the source of a taste message: could quality information be read out
by attending to which cells are active? The present statistical model may,
of course, be unrelated to the mechanism the nervous system would use
to read the activities of gustatory neurons. However, this model has
implications for understanding whether or not different taste stimuli
produce reliably different spiking rates in individual cells.

Results

General response characteristics

Our dataset was composed of 162 rat NST neurons, 122 drawn
from our files (76 cells from Lemon et al., 2003, 2004; 46 cells
from Lemon and Di Lorenzo 2002; used here with the consent of
P. M. Di Lorenzo, Binghamton University, Binghamton, NY),
and 40 cells newly recorded from 28 rats. On the basis of the
number of spikes evoked by the four stimuli, 40 neurons re-
sponded best to sucrose, 76 responded best to NaCl, 44 re-
sponded best to HCI, and two quinine-best neurons were in-
cluded in our sample. The response profile for each neuron is
displayed in Figure 1. Neurons were generally broadly responsive
across stimuli (H = 0.75 = 0.01 SE; mean spontaneous discharge,
1.9 * 0.2 spikes), as observed in other studies of NST gustatory
neurons (McCaughey and Scott, 2000; Di Lorenzo et al., 2003; Di
Lorenzo and Victor, 2003; Cho et al., 2004).

Phase 1: analyses of neuron types

Cells were categorized into types using HCA, the results of which
are depicted graphically by the dendrogram in Figure 2A. Based
on responses to sucrose, NaCl, HCI, and quinine, this analysis
revealed four types of gustatory neurons. Mean levels of activa-
tion produced by optimal and sideband stimuli in each of three
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Figure 1.  Across-neuron patterns of response evoked by each taste stimulus across 162 NST
neurons recorded from anesthetized rats. For each plot, spike count (average numberin 1s) is
represented along the ordinate, and neurons are segregated from left toright along the abscissa
into best-stimulus groups (sucrose-, NaCl-, HCl-, and quinine-best, respectively), as denoted by
black and halftone bars. Cells are rank ordered within each group according to magnitude of
responding to their best stimulus.

neural types are shown in Figure 2 B. It can be seen that type S
neurons (n = 48; H = 0.72 * 0.03; mean spontaneous discharge,
0.5 = 0.1 spikes) responded optimally to sucrose but were also
strongly activated by NaCl. Type N neurons (n = 63; H = 0.73 =
0.02; mean spontaneous discharge, 1.9 = 0.3 spikes) responded
optimally to NaCl and showed good sensitivity to HCIL. Type H
cells (n = 49; H = 0.83 = 0.01; mean spontaneous discharge,
3.2 = 0.4 spikes) responded optimally to HCI but were also re-
sponsive to NaCl and quinine. The two quinine-best cells (H =
0.86 * 0.04; mean spontaneous discharge, 2.7 = 1.3 spikes) in
our sample were identified as an independent group by HCA
(response profile is not shown in Fig. 2 B). Quinine-best neurons
are not as common as other types of cells in the rodent brainstem
(Smith et al., 1983a; McCaughey and Scott, 2000; Di Lorenzo et
al., 2003; Lemon et al., 2003; Lemon and Smith, 2005), and the
low n of this group precluded any meaningful analyses.

In phase 1, ROC analysis was applied to categorize taste re-
sponses in neuron types. ROC analysis compares two histograms
of the kinds shown in Figure 3A. Here, these distributions de-
scribe the frequency of occurrence of responses to the optimal
stimulus and sideband stimuli across NST neurons of a given cell
type. For the present analysis, the response distribution produced
by the optimal stimulus served as the reference to which each
sideband (i.e., secondary) distribution was compared. A series of
response criteria (3¢, By - - - » B,) were applied to each pair of
distributions (Fig. 3A). These criteria ranged in value from 0
spikes to 1 spike greater than the maximum spike count elicited
by the optimal stimulus among all cells of the type under evalu-
ation. Criteria were varied from f3, to 8, in 1 spike increments.
Two values were calculated from the response distributions at
each criterion based on the decision rule that a spike count that
exceeds 3; announces the presence of the optimal stimulus. First,
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Figure 2.  Neural groups defined using multivariate analysis. A, Dendrogram representing

the results of hierarchical cluster analysis applied to categorize the neurons shown in Figure 1
into cell types based on similarities among their response profiles. Linkage distance is repre-
sented along the ordinate, and individual neurons are represented along the abscissa. Neural
types defined by this analysis are denoted by labels: S, sucrose-oriented (n = 48); Q, quinine-
oriented (n = 2); H, HCl-oriented (n = 49);and N, NaCl-oriented (n = 63). B, Meanresponding
to each stimulusin neural types S, H, and N. Bars show mean number of spikesin 1 == SE. Spike
counts (average spikesin 1s == SE) follow. Neural type S: S, 15.2 = 1.1;N, 9.6 == 0.9; H, 4.6 =
0.7;Q,1.2 = 0.2. Neural type H: S, 5.0 == 0.7; N, 23.6 == 1.9;H, 35.2 = 2.6; Q, 14.0 £ 1.5.
Neural type N: S, 8.3 = 1.1;N, 38.7 = 2.7;H,15.1 = 1.4,Q, 5.8 = 0.6.

the number of true-positive responses (“hits”) was determined
by identifying neurons in which the response to the optimal stim-
ulus was greater than ;. Expressing this count as a proportion of
the total number of neurons yielded the hit rate at 3,. Second,
because NST neurons are generally multisensitive across stimulus
qualities, in a proportion of neurons, responses to the sideband
stimulus exceeded certain values of B. In these individual cases,
the response produced by sideband would be attributed to the
optimal stimulus by the decision rule, leading to false-positive
classification (i.e., a “false alarm”). The false alarm rate at 3; was
calculated by dividing the number of neurons that registered this
error by the total. Finally, the hit rate was plotted against the false
alarm rate for every possible value of 3 resulting in a function
known as the ROC curve (Fig. 3B).

It has been shown that the area under the ROC curve corre-
sponds to the probability that random true-positive and false-
positive events could be correctly classified in a two-alternative,
forced-choice psychophysical paradigm (Green and Swets,
1966). This metric has also been adapted for use in neurophysi-
ological studies (Bradley et al., 1987; Newsome et al., 1989; Vogels
and Orban, 1990; Britten et al., 1992). Here, the area under the
ROC curve provides an estimate of the probability that randomly
observed optimal and sideband stimulus responses could be cor-
rectly classified on the basis of their amplitude. This probability,
P, meaningfully ranges from 0.5 to 1. For example, ROC analysis
applied to two response distributions that are identical would
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Figure 3.  ROCanalysis as applied to classify responses observed among type N neurons. 4,

Distributions showing the number of type N neurons (ordinate) that responded to each stimulus
at each spike count (abscissa). Downward arrows above each distribution indicate the mean
spike count across all cells. For the sucrose and NaCl distributions, three arbitrary criterion levels
(Bos Byor and Bys) and the range over which criteria were varied (<— 3, —) to compute the
ROC function for this comparison are shown. B, Family of ROC curves describing the relationship
between the classification hit rate (ordinate) and false alarm rate (abscissa) for responses to
optimal and sideband stimuli in neural type N. Legend denotes the sideband stimulus response
distribution compared with that for NaCl to compute each ROC function. Diagonal represents
the ROC function that would be observed if the hit and false alarm rates were equal at each
criterion. Coordinates along the ROC curve for the NaCl versus sucrose comparison that denote
the hitand false alarm rates calculated at the selected values of 3in A are marked by arrows. (,
Profile showing probabilities (ordinate) that randomly observed responses to NaCl and a given
sideband stimulus (abscissa) could be correctly classified on the basis of response amplitude.
Each probability (P¢) is given by the normalized area under the corresponding ROC curve in B.
Chance performance (P, = 0.50) is indicated by the dotted/dashed line. S, Sucrose; H, HCI; N,
Nadl; Q, quinine.

result in P = 0.5, corresponding to a 50% chance of correctly
classifying responses as drawn from one distribution or the other.
At the opposite extreme, ROC analysis applied to completely
nonoverlapping response distributions would yield P = 1. In
this case, perfect classification performance could be achieved by
a binary classifier that adopts any criterion threshold that lies
between the two distributions.

Let us first apply this analysis to neural type N. Distributions
of spike counts evoked by each stimulus across type N cells are
shown in Figure 3A. ROC functions describing the efficiency by
which randomly observed optimal and sideband responses could
be correctly classified on the basis of amplitude are shown in
Figure 3B. The area under each ROC curve (i.e., P.) is repre-
sented by the profile in Figure 3C. It was found that responses to
NaCl could be reliably classified relative to those evoked by su-
crose (P = 0.92) or quinine (P = 0.96). A maximum probabil-
ity of correct classification of 0.82 was found with regard to re-
sponses produced by NaCl and HCI. It must be considered that a
decrease in the concentration of NaCl (e.g., 0.01 M) would shift
the NaCl distribution to the left. Such a shift would induce a
larger amount of overlap in the response distributions for NaCl



Lemon and Smith e Coding Performance of Central Gustatory Neurons

A ' Type H neurons
sucrose
B
0 |l T T X g
(%) v NaCl : A
c 54 4
o 0 L] T T L] 1
e
8 0 2 4 6 .8 1
c - False alarm rate
S
e
©
O
£
=3
pd
0 20 40 60 80 S N Q
Spikes Sideband
Figure4. ROCanalysis as applied to classify responses observed among type H neurons. 4,

Frequency distributions showing the number of neurons (ordinate) that responded to each
stimulus at each spike count (abscissa). |, , Mean spike count. B, Family of ROC curves describ-
ing the relationship between the classification hit rate (ordinate) and false alarm rate (abscissa)
observed at each criterion level for responses to optimal and sideband stimuli in neural type H.
Legend denotes the sideband stimulus response distribution compared with that for HCl to
compute each ROC function. €, Profile showing probabilities (P, ordinate) that randomly ob-
served responses to HCl and a given sideband stimulus (abscissa) could be correctly classified on
the basis of response amplitude. S, Sucrose; N, NaCl; Q, quinine.

and HCI, thus reducing P without affecting the qualitative fea-
tures of NaCl. Rodents perceive the tastes of NaCl and HCI as
perceptually independent as shown by learned-generalization
and operant conditioning experiments (Morrison, 1967; Nowlis
et al., 1980).

Distributions of firing rates evoked by the optimal stimulus
and sideband stimuli in type H neurons are shown in Figure 4 A.
The ROC functions for optimal/sideband comparisons in this cell
type are plotted in Figure 4 B; P for each comparison is given by
the profile in Figure 4C. Responses produced by HCl and sucrose
in type H neurons could be reliably classified (P = 0.95). A
probability of correct classification of 0.85 was observed with
regard to responses produced by HCl and quinine. Poor classifi-
cation performance was observed for responses to HCl and NaCl
(P: = 0.70), which is attributable to widely overlapping variation
in the sensitivities of type H neurons to these stimuli (Fig. 4A).
Because there is substantial overlap between response distribu-
tions to HCl and NaCl and rodents perceive these stimuli as
unique (Morrison, 1967; Nowlis et al., 1980), it is questionable as
to whether the output of neuron type H could represent exclu-
sively the qualitative features of acidic stimuli.

Figure 5A shows response distributions for spike counts elic-
ited by each stimulus in type S neurons. The family of ROC curves
that reflects variability in how neurons of this class respond to
sucrose relative to other stimuli is shown in Figure 5B. Corre-
sponding values of P are represented in Figure 5C. Responses
produced by sucrose could be reliably classified relative to those
evoked by HCI (P = 0.90) or quinine (P = 0.99). However,
responses produced by sucrose and NaClin cell type S could be, at
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Figure 5.  ROCanalysis as applied to classify responses observed among type S neurons. 4,
Frequency distributions showing the number of neurons (ordinate) that responded to each
stimulus at each spike count (abscissa). |, , Mean spike count. B, Family of ROC curves describ-
ing the relationship between the classification hit rate (ordinate) and false alarm rate (abscissa)
observed at each criterion level for responses to optimal and sideband stimuliin neural type S.
Legend denotes the sideband stimulus response distribution compared with that for sucrose to
compute each ROC function. €, Profile showing probabilities (P, ordinate) that randomly ob-
served responses to sucrose and sideband stimuli (abscissa) could be correctly classified on the
basis of spike count. H, HCI; N, NaCl; Q, quinine.

best, poorly classified (P = 0.71), which is attributable to a high
degree of variability in how neurons of this class respond to these
stimuli. This variation results in responses distributions to su-
crose and NaCl that substantially overlap. Thus, one could intuit
that small adjustments in stimulus concentration could render
near equivalent mean responses in neuron type S to sucrose and
NaCl, stimuli that are perceived as perceptually independent by
rats as indexed by behavioral studies (Morrison, 1967; Nowlis et
al., 1980).

ROC analyses were also performed on neuron types defined
using best-stimulus classification, although results only slightly
differed from those presented above. Considering the worst-case
optimal/sideband comparison, a maximum probability of cor-
rect classification of 0.79 was found with regard to responses to
NaCl and HCI in NaCl-best neurons, which is similar to P ob-
served for this comparison in neural type N. As with neural type
H, responses to HCl and NaCl in HCI-best neurons could only be
poorly classified (P = 0.73). A probability of correct classifica-
tion of 0.76 was found for responses to sucrose and NaCl in
sucrose-best neurons. Although P, for this comparison is slightly
greater than that observed for type S cells, a small reduction in the
concentration of sucrose or increase in the concentration of NaCl
would result in greater overlap of these response distributions in
sucrose-best neurons, reducing classification performance.

Phase 2: modeling rate coding by individual

gustatory neurons

Experiments in phase 2 explored how the discriminative abilities
of individual neurons would be impacted by variability in firing
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rate when under gustatory drive. These experiments were per-
formed on 16 neurons included in analyses in phase 1. Spike
trains were recorded from each neuron over multiple presenta-
tions of each tastant, making 378 total stimulus trials available for
analysis in phase 2. For each cell, ROC analysis was used to esti-
mate the probability that a hypothetical observer of the IFR could
correctly discriminate between responses to the reference stimu-
lus and secondary tastants using knowledge of the mean IFR.
Although mean IFR tends to overestimate spike count per unit
time (Lansky et al., 2004), these measures typically covary, as
found across all trials (r = +0.91; p < 0.05).

ROC analysis as applied here proceeded in a manner similar to
the description of this technique for phase 1 with several differ-
ences. Foremost, the input to this analysis consisted of distribu-
tions of firing rates measured from a single neuron. The stimulus
that elicited the highest mean IFR for a given neuron was used as
the reference to which the secondary stimuli were compared. The
response criterion (f3) was varied from 0 to the maximum firing
rate in 1 Hz increments. At (3;, the hit rate was calculated as the
proportion of IFRs that exceeded criterion for the reference stim-
ulus, whereas the false alarm rate was tallied as the proportion of
IFRs that exceed criterion for the secondary stimulus. The hit rate
was plotted as a function of the false alarm rate at each B to
produce the ROC curve. In this case, the area under this curve
provides an estimate of the probability that a hypothetical ob-
server of the neuron under study could correctly discriminate
between spike rates to two stimuli. This probability, P,, mean-
ingfully ranges from 0.5 (chance performance) to 1 (perfect dis-
crimination). Here it was assumed that P, = 0.75 represents the
just-noticeable difference (JND) threshold between spiking rates
to different taste stimuli; P, < 0.75 represented no detectable
difference (cf. Bradley et al., 1987; Vogels and Orban, 1990).

Figure 6 shows the application of this model to an individual
NST gustatory neuron, the sampling of which is described in
Figure 6 A. This neuron responded most effectively to sucrose but
nearly as well to NaCl, as reflected by the average number of
spikes evoked in 1 s (Fig. 6 B) and by the mean IFR over six trials
(Fig. 6C). Cosensitivity to sucrose and NaCl is commonly ob-
served in sweet-oriented NST neurons [i.e., cells classified as
sucrose-best or type S (Figs. 1, 2)]. A family of ROC curves de-
scribing the efficiency of rate coding by this neuron is shown in
Figure 6 D. The area under each ROC curve (i.e., Pp) is repre-
sented by the “neurometric” profile in Figure 6 E, which gives the
discrimination performance that could be had by an observer
attending to the IFR of this cell. Assuming a difference threshold
of P, = 0.75 (i.e., the JND), the observer could reliably discrim-
inate between firing rates evoked by sucrose and HCl or quinine
(Pp > 0.75) but would fail to discriminate those produced by
sucrose and NaCl (P, < 0.75) (Fig. 6 D, E).

Figure 7 shows the analysis of rate coding in an additional
neuron, which responded most effectively to NaCl and relatively
well to HCl and quinine but not sucrose (Fig. 7B, C). ROC anal-
ysis indicates that an observer reading the IFR of this cell could
discriminate between firing rates produced by NaCl and sucrose
(Pp > 0.75) but would fail to discriminate those evoked by NaCl
and HCI (P, < 0.75) (Fig. 7D, E). Discrimination performance
for firing rates evoked by NaCl and quinine was found to lie at the
difference threshold (P, = 0.75), although it is likely that re-
duced performance would be observed if a slightly lower concen-
tration of NaCl were tested (e.g., 0.03 M).

A failure to discriminate between firing rates to the reference
stimulus and the most effective secondary stimulus was observed
for 15 of 16 neurons tested in phase 2 (P, < 0.75) (Table 1). If we
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Figure6. Rate coding performance of anindividual NST gustatory neuron. 4, Spiking activity
sampled from neuron 16 (Table 1) when under gustatory drive. Spikes that arose from individ-
ual neurons were identified using a waveform template-matching algorithm. B, Response pro-
file showing the average == SE number of spikes produced by each stimulusin 1 over six trials.
C, Frequency distributions showing the number of observations (ordinate) of instantaneous
firing rates (abscissa) to the four stimuli. Each distribution was built using sequential interspike
intervals (s ~") acquired during the first second of evoked responding over six stimulus presen-
tations. |, , Mean spike rate. D, Family of curves describing the outcome of ROC analysis applied
to pairs of distributions in C. For this neuron, the distribution produced by sucrose (i.e., the most
effective stimulus) was compared with that for each secondary stimulus. Resulting ROC curves
are indicated by the legend according to the secondary stimulus. Each curve describes the
relationship between the hit rate (ordinate) and false alarm rate (abscissa) observed at each
response criterion level. The dashed/dotted diagonal line represents the ROC curve that would
be had if one distribution was compared against itself (i.e., equal hit and false alarm rates at
each criterion). E, Neurometric profile showing probabilities (ordinate) that an observer of the
instantaneous firing rate in this neuron could use knowledge of the means of the distributions
in Cto correctly discriminate between spike rates to sucrose and each secondary stimulus, which
are listed along the abscissa. Each probability, Py, is given by the area under the corresponding
ROC curve in D. A criterion of 75% correct discrimination (P, = 0.75) represents the JND be-
tween responses to sucrose and a secondary stimulus (dashed line). Chance discrimination
performance (P, = 0.50) is indicated by the dotted/dashed line. S, Sucrose; H, HCI; N, NaCl; Q,
quinine.

further consider these cells according to which group they were
assigned to by HCA in phase 1, six cells were of type H (H =
0.85 = 0.03; mean spontaneous discharge, 3.2 = 0.8 spikes), six
were type N (H = 0.79 = 0.04; mean spontaneous discharge,
2.0 = 1.1 spikes), and four were type S (H = 0.79 = 0.08; mean
spontaneous discharge, 0.2 * 0.2 spikes). As shown in Table 1,
spike rates to HCl and NaCl could not be reliably discriminated in
type H cells. Spike rates to NaCl and sucrose or HCl could not be
reliably discriminated in five of six type N neurons. For the one
exceptional cell, the probability of correctly discriminating be-
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sampled from neuron 3 (Table 1) when under taste drive. Template-matched spikes are also
shown. B, Response profile showing the average = SE number of spikes produced by each
stimulusin 15 over six trials. €, Frequency distributions of instantaneous firing rates to the four
stimuli built over six presentations of each stimulus. |, , Mean spike rate. D, Family of curves
describing the outcome of ROC analysis applied to pairs of distributions in €. For this neuron, the
distribution produced by NaCl was compared with that for each secondary stimulus. Resulting
ROC curves are indicated by the legend according to the secondary stimulus. Each curve de-
scribes the relationship between the hit rate (ordinate) and false alarm rate (abscissa) observed
at each response criterion level. E, Neurometric profile showing probabilities (ordinate) that an
observer of the instantaneous firing rate in this neuron could use knowledge of the means of the
distributions in Cto correctly discriminate between responses to NaCl and each secondary stim-
ulus, which are listed along the abscissa. Each probability, Py, is given by the area under the
corresponding ROC curve in D. P, = 0.75, JND between responses to NaCl and a secondary
stimulus (dashed line). P, = 0.50, chance discrimination performance (dotted/dashed line). S,
Sucrose; H, HCI; N, NaCl; Q, quinine.

tween spike rates to NaCl and HCl was found to be equal to the
difference threshold (P, = 0.75), and it is likely that detection
performance would drop below this level if small adjustments in
stimulus concentration were made (e.g., slightly reducing the
concentration of NaCl). Finally, the decision rule that sucrose
always produces a faster spike rate than NaCl could not be used to
reliably distinguish between responses to these stimuli in type S
cells.

The outcome of our statistical model indicates that stimuli of
different taste qualities elicit similar firing rates during the first
second of stimulus processing in individual gustatory neurons
representative of each NST cell type. This suggests that a reader of
the firing rates of individual neurons could not reliably identify
sucrose, NaCl, or HCl by attaching a message about each stimulus
to dedicated neurons and attending to which of these cells are
active. The nervous system could be faced with a similar dilemma
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if it adopted this stimulus decoding strategy. Moreover, poor
discrimination performance, at best, would likely also result if the
spike outputs of neurons of a type were pooled, yet rats readily
distinguish among sucrose, NaCl, and HCl in learned-
generalization and operant conditioning experiments (Morrison,
1967; Nowlis et al., 1980). Although NST neurons that responded
optimally to quinine were not available for analysis in phase 2,
such neurons do not respond differentially, as indexed by spike
count, to bitter stimuli relative to tastants of other quality cate-
gories, such as Na ¥ salts (Lemon and Smith, 2005), suggesting
that the firing rate of such neurons would also poorly signal stim-
ulus quality.

If the firing rate of individual gustatory neurons provides
equivocal information about taste quality, how is this message
carried by neural activity? Pfaffmann et al. (1976) proposed that
the ambiguity about stimulus quality that arises from the multi-
sensitive nature of gustatory neurons could be resolved through a
comparison of the activities of multiple cells with different re-
sponse properties. In example, let us assume two hypothetical
neurons, i and j, where each cell responds to stimulus x and y.
Suppose that neuron 7 responds more strongly to stimulus x than
neuron j, but that j responds greater to stimulus y. A reader at-
tending to both cells could use the following rules to know the
stimulus: x is present when the response in i is larger than j (i.e.,
i > j) and y when i < j. A similar hypothetical model has been
used to explore the detection of visual motion by cortical neurons
(Newsome et al., 1989; Britten et al., 1992).

We investigated the plausibility of such a model for taste by
using ROC analysis to compare firing rate distributions to each
stimulus between pairs of NST neurons. The resulting area under
the ROC curve provided an estimate of the probability than an
observer of the IFR in these neurons could reliably discriminate
whether one cell fires faster than the other when under the drive
of a particular stimulus. Here we assume that all neurons are
representative of those that would be encountered in a single
animal. Figure 8 shows the outcome of this analysis as applied to
neurons 5 (ns) and 7 (n,) in Table 1. In this figure, the IFR
distributions sampled from these neurons under each stimulus
condition are shown to the left, and the outcome of ROC analysis
of each pair of distributions is shown to the right. In each analysis,
the distribution with the larger absolute mean spike rate was used
as the reference. Let us first consider responding to sucrose be-
tween these neurons. Assuming a difference threshold of 0.75, an
observer with knowledge of the means of the sucrose firing rate
distributions could reliably categorize responses randomly
drawn from each distribution as produced by either neuron, as
P, > 0.75. This is taken to indicate that neurons ns and n, fire at
noticeably different rates when under the drive of sucrose, with n,
firing detectably faster than n,. Applying this same logic to the
other stimuli, these neurons respond similarly to NaCl (P, <
0.75), but n5 responds to HCl and quinine at a faster rate than n,
(Pp > 0.75).

The outcome of this procedure suggests that a reader of these
neurons in parallel could reliably report that they respond at
different or similar firing rates depending on which stimulus is
used to drive them. What is more, assuming a priori knowledge of
the stimulus associated with each response relationship, this
reader could categorize the stimuli tested here in a manner that,
to a certain degree, agrees with rat behavioral categorizations of
these tastants. Learned-generalization and operant conditioning
studies have shown that rodents recognize the taste of sucrose or
NacCl as unique out of the group of stimuli we tested (Morrison,
1967; Nowlis et al., 1980). However, in these same behavioral



7440 - ). Neurosci., July 12, 2006 - 26(28):7433-7443

experiments, rodents tend to generalize to
a certain degree between the tastes of HCI
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Table 1. Posterior probabilities for correctly discriminating between spike rates evoked by different tastants
(i.e., Pp) for each neuron tested in phase 2

and quinine, indicating that these stimuli

Neuron Cell type Traditional best stimulus  Most effective stimulus (S;)  2nd most effective stimulus (S,) Py S, versus S,

elicit a common qualitative feature. Fol-

lowing these behavioral data, a reader that ; : :glq
attends to the spiking activities of the neu- 3 H Hl
rons in Figure 8 could know that sucroseis 4 H Hal
present when n, responds at a detectably 5 H HCl
greater firing rate than n; (i.e., n; <n,), 6 H H
that NaCl is present when ns and n, re- 7 N NaCl
spond at the same rate (n5 = n,), and that 8 N NaCl
the stimulus is HC or quinine when n, 2 N Nadl
responds at a noticeably faster rate than n, 1? m mgg:
(i.e., n5 > n,). Because the relationship n 2 N Hal

> n;is observed for both for both HCland 43 5 Sucrose
quinine, the reader would generalize be- 14 S Sucrose
tween these stimuli, as do rodents. Su- 15 5 Sucrose

crose, NaCl, HCl, and quinine were found 16 S Sucrose

NadCl HC 0.57
Nadl HC 0.56
NadCl HC 0.60
NadCl HC 0.54
Ha Nadl 0.55
HC Nadl 0.53
Nadl Sucrose 0.70
NadCl HC 0.56
NadCl HC 0.75
Nadl Sucrose 0.71
NadCl Sucrose 0.60
NadCl Sucrose 0.64
Nadl Sucrose 0.62
Sucrose Nadl 0.67
Sucrose Nadl 0.67
Sucrose Nadl 0.58

to produce this particular pattern of rela-
tive spiking relationships in 10 additional
pairs of neurons (data shown in Fig. 9)
(see following text).

Learned-generalization tasks provide
an assessment of perceived similarity between stimuli but do not
necessarily reflect whether or not two stimuli could be discrimi-
nated (Heyer et al., 2004). Although rodents indeed generalize to
a certain degree between the tastes of HCl and quinine, such
generalization is not complete (Morrison, 1967; Nowlis et al.,
1980), which could suggest that rodents perceive these tastants as
similar but not identical. Assuming this to be so, we postulated
that a reader of NST neurons might resolve differences between
HCI, quinine, and other stimuli by considering relative spiking
relationships among several neurons in parallel. Figure 9 shows
for each stimulus a half-matrix that graphically describes such
relationships among all possible pairs of neurons in our sample of
16. Each element within a half-matrix is color coded to reflect the
relative spiking relationship observed between a particular pair of
neurons under the drive of a given stimulus (see legend), as de-
termined by ROC analysis applied to spike rate distributions be-
tween these cells. For each ROC analysis, P, was compared with
a difference threshold of 0.75 to determine the relative spiking
relationship. As examples, when under the drive of sucrose, neu-
ron 9 generated spikes at a detectably faster rate than neuron 1,
denoted by a blackened matrix element for this comparison in
Figure 9, whereas neuron 4 responded detectably faster than neu-
ron 8, as indicated by a halftone element. It can be seen in Figure
9 that different taste stimuli produced unique relative spiking
relationships among NST neurons during the first second of
stimulus processing. Our analytic approach reliably estimates
these relationships as data were sampled over multiple trials. A
downstream processor of these cells that reads the relative spiking
relationships among them and knows the stimulus associated
with each pattern of relationships could, in principle, discrimi-
nate among the stimuli tested here. What is more, the processor
could compute these discriminations making use of the relative
activities of only a small number of cells with different tuning
properties, as shown in Figure 10.

Discussion

Analyses in phase 1 indicate that NST neurons that belong to a
purported functional neural group vary widely in their sensitivi-
ties to taste stimuli. This is evidenced by ROC analysis indicating
that, in some cases, responses to optimal and sideband stimuli

Neurons are denoted in the first column by an integer, and the neuron type (S, N, or H) to which each was assigned by multivariate analysis in phase 1is given
in the second column. The best stimulus for each cell as determined using a common method (net spikes per 5 s stimulus period) is indicated in column three.
For each neuron, the most and second most effective stimuli, as determined by the mean IFR during the first second of taste responding, are, respectively,
indicated in columns four and five. P, as computed by ROC analysis of spike rate distributions to these stimuliis given in column six. Bold indicates P, = 0.75.

observed among such cells could not be reliably classified on the
basis of response magnitude. For example, responses to HCl and
NaCl in neurons of type H and those to sucrose and NaCl in
neurons of type S could be classified only poorly at best. These
results suggest that stimuli of different taste qualities produce
similar levels of activation across cells within each group, which
questions whether the aggregate signal of such neurons could
faithfully encode a single stimulus quality. Experiments in phase
2 explored how variability in the spiking activities of individual
NST neurons drawn from each cell type could impact their abil-
ities to signal information about stimulus quality. Here, ROC
analysis was used to explore whether or not a hypothetical ob-
server could reliably discriminate between firing rates to different
stimuli in individual neurons during the first second of stimulus
processing. Spike rate was found to be an unreliable predictor of
stimulus quality for each neuron tested. Thus, it might prove
difficult, if not impossible, for a downstream processor of NST
neurons to decode stimulus quality by attaching taste messages to
dedicated groups of cells or individual neurons and simply re-
porting the message assigned to a unit when activated. Con-
versely, the tastants tested here were found to produce unique
relative firing relationships among several NST neurons consid-
ered in parallel, as shown by ROC analysis of spike rate distribu-
tions between neurons under the drive of each stimulus. A reader
of these cells that attends to this information and has a priori
knowledge of the stimulus associated with each pattern of relative
responding could discriminate among sucrose, NaCl, HCI, and
quinine, prototypical stimuli of basic taste qualities. Moreover,
under this decoding strategy, it was shown that the activities of a
small number of cells may, in principle, be sufficient to arrive at a
judgment about stimulus quality.

Experiments in phase 2 used the IFR measured during the first
second of taste responding to estimate the coding performance of
individual neurons. This length of time was chosen to balance
allowing sufficient data for the statistical model while focusing on
the initial phasic period of the neuronal response, which is par-
ticularly important in the representation of taste quality informa-
tion. For example, rats can detect and respond appropriately to
different taste stimuli in <1 s (Halpern and Tapper, 1971; Scott,
1974). Cross-adaptation procedures, which produce diminished
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Figure8. Decoding stimulusinput by comparing firing rates between two differently tuned
neurons in parallel. The left column shows frequency distributions of instantaneous firing rates
to each stimulus observed for neurons 5 (n5) and 7 (n, ) from Table 1. |, , Mean spike rate. For
each stimulus, ROCanalysis was used to estimate the probability that a hypothetical observer of
the firing rates of these neurons could use knowledge of their mean firing rates to correctly
categorize responses as produced by one cell or the other. This probability, Py, is given by the
area under the ROC curve. The curve computed for each stimulus is shown in the right column.
The outcome of this procedure bears on if two neurons fire at similar or reliably different rates to
a given stimulus. Assuming a difference threshold of 0.75, the observer could reliably discrim-
inate between responses in neurons 5 and 7 when under the drive of sucrose (P, > 0.75). This
suggests that sucrose elicits detectably different firing rates in these neurons, with n, respond-
ing noticeably faster than n; (i.e., n; < n, indicated by the size of the circles in the “readout”
inset). Following this logic, n; = n for NaCl, and ng > n, for HCl and quinine. A reader of these
two neurons in parallel with a priori knowledge of the stimulus associated with each response
relationship could use this information to categorize the stimuli tested here in a manner that, to
a certain degree, agrees with rodent perceptual categorizations of these stimuli as shown in
learned-generalization and conditioning experiments.

taste sensation, result in reduced responding in gustatory nerves
primarily during the transient phase (Smith and Frank, 1972).
These data indicate that critical and likely sufficient information
about stimulus quality is carried by the earliest portion of the
phasic component of the neuronal response. For some neurons,
this period may only correspond to several action potentials max-
imum when under gustatory drive. Thus, the coding perfor-
mance of gustatory neurons during the initial transient phase of
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Figure9.  Decoding stimulus input by comparing firing rates among multiple neurons con-

sidered in parallel. Each half-matrix describes for a stimulus the pattern of relative spiking
relationships that emerged across all possible pairs of NST neuronsin our sample of 16 (Table 1).
Neurons are sequentially ordered into vectors i and j along the columns and rows, respectively,
of the half-matrices. Each matrix element is color coded to reflect the relative spiking relation-
ship (legend) observed between a particular pair of cells, as determined by ROCanalysis of spike
rate distributions. For this analysis, the distribution of the neuron with the higher absolute
mean spike rate was used as the reference, and the resulting probability of correct discrimina-
tion, Py, was compared with a difference threshold of 0.75 to determine the direction of the
relative spiking relationship. It can be seen that sucrose, NaCl, HCl, and quinine produce unique
patterns of relative spiking among these cells. A priori knowledge of the pattern of relative
responding associated with each stimulus could, in principle, be used to discriminate among
these stimuli.

responding may be more meaningfully indexed by the rate of
action potential generation, as performed here, rather than the
absolute number of spikes produced per trial. Although the stim-
uli tested here evoked different numbers of spikes in many cells
(Figs. 6, 7), one must consider that concentrations of perceptu-
ally different stimuli can typically be matched to produce equiv-
alent numbers of spikes in gustatory neurons (Scott and Giza,
2000). For example, although the neuron in Figure 6 responds
best to sucrose as given by the mean number of spikes per trial
(Fig. 6B), this cell could be made to respond equivalently to
sucrose and NaCl, for example, by slightly adjusting the concen-
trations of these stimuli (e.g., decrease the sucrose concentration
or increase the NaCl concentration). A similar situation arises for
spike counts produced by NaCl and HCI for the cell shown in
Figure 7. Given that small adjustments in concentration would
not affect the qualitative features of these stimuli and could also
result in a changeable “best” stimulus in many cells, the mean
spike count, along with the mean firing rate, of a gustatory neu-
ron is a poor indicator of stimulus quality.

Our analyses of pairs and small ensembles of neurons con-
ducted in phase 2 indicate that information about taste quality
could be carried by the relative activities of different gustatory
neurons considered in parallel (Figs. 8—10). This idea is beyond
the scope of labeled-line theory, which would not permit any
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Figure 10.  Decoding stimulus input by comparing firing rates among a small number of
neurons considered in parallel. Each half-matrix describes the pattern of relative spiking (leg-
end) that was observed to sucrose, NaCl, HCl, and quinine among six neurons (Table 1; two cells
were randomly drawn from each cell type) using the same approach as presented in Figure 9. As
with Figure 9, a priori knowledge of the stimulus associated with each pattern of relative
responding could be used to discriminate among these stimuli. However, these data show that
such discriminations could, in principle, be computed making use of the activities of relatively
few cells.

approach that considers the relative activities of different neurons
but along the lines of a neural pattern code for taste, in which the
activity of any one cell is only meaningful when taken in the
context of its neighbors (cf. Erickson, 1963; Pfaffmann et al.,
1976; Smith and St. John, 1999; Scott and Giza, 2000). However,
the present model differs from the common conceptualization of
pattern theory in gustation, which has been primarily based on
the degree of pairwise correlation between activity profiles pro-
duced by different tastants across a large number of gustatory
neurons. Under this framework, discriminability between two
stimuli is inversely proportional to the degree of correlation be-
tween their patterns produced across a population of cells (Erick-
son et al., 1965). In contrast, a processor using the parallel com-
parison strategy presented here could decode stimulus input
making use of the activities of only a few NST neurons with
different tuning properties, as shown in Figure 10. That the rela-
tive spiking activities of a small number of cells could, in princi-
ple, be sufficient to compute discriminations among tastants and
that the response properties of these cells would be common to
many other neurons in the NST might suggest that there exists a
good deal of redundancy and amplification of tastes messages
under this coding strategy. One can intuit that the relative spiking
relationships observed here could be invariant to changes in stim-
ulus concentration assuming that the relative sensitivities of neu-
rons remained consistent, although this remains to be empirically
assessed. It is also important to emphasize that the neurons ana-
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lyzed here were sampled from different rats. To more effectively
explore this model of taste coding would require spike data from
several simultaneously recorded neurons, ideally sampled from
an awake and behaving animal performing a gustatory discrimi-
nation task. Nevertheless, the idea that perceptual judgments
could be based on the activities of a small number of neurons has
been proposed for visual processing. In monkeys performing vi-
sual motion discrimination tasks, psychophysical threshold and
the shape of the psychometric function can be accounted for by
comparisons between the activities of individual visual cortical
neurons and hypothetical cells with different tuning properties
(Newsome et al., 1989; Britten et al., 1992).

The recent discoveries of the T1r and T2r taste receptors for
sweets, amino acids, and bitter stimuli have provided insight into
mechanisms of taste processing in the periphery. These receptors
exist in nonoverlapping subsets of TBCs, which has been inter-
preted as evidence of cellular specificity to a single stimulus qual-
ity (Adler et al., 2000; Nelson et al., 2001; Scott, 2004). Mice
engineered to express receptors for a normally tasteless com-
pound in TBCs that harbor T1r sweet or T2r bitter receptors
display corresponding preference or aversion of this ligand (Zhao
et al., 2003; Mueller et al., 2005). These molecular findings have
been argued to indicate that different taste qualities are encoded
along labeled neuronal lines (Zhang et al., 2003; Zhao et al., 2003;
Scott, 2004; Mueller et al., 2005). However, the perceptual con-
sequences that follow the activation of specific categories of TBCs
ultimately arise from the activities of central neurons down-
stream. These consequences would follow regardless of how cen-
tral gustatory circuits are organized to handle and encode input
from taste receptors. The present results indicate that, rather than
assigning meaning to individual neurons, central gustatory cir-
cuits could effectively encode quality information by the relative
activities of multiple kinds of cells with different sensitivities to
taste stimuli. Moreover, the temporal features of spike trains in
individual NST neurons (Di Lorenzo and Victor, 2003) and time-
dependent changes in firing rate within ensembles of cortical
neurons (Katz et al., 2002a,b) have also been suggested to convey
information about taste. The gustatory neural code could be both
spatial and temporal by nature, with both features synergistically
increasing the information-handling capacity of the taste net-
work in the brain. Such coding capacity could be necessary to, for
example, give rise to fine perceptual differences among similar yet
distinct tastants, such as the sugars sucrose and maltose, which
are discriminable by rats (Spector et al. 1997), and to integrate or
multiplex information related to other aspects of taste stimuli
such as texture and temperature, stimulus features that modulate
activity in gustatory neurons (Travers and Smith, 1984; Ogawa et
al., 1988; Verhagen et al., 2003; Kadohisa et al., 2004). Whether
the brain indeed adopts algorithms to encode gustatory informa-
tion along such parameters remains an open question.
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