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Profile and Regulation of Apolipoprotein E (ApoE)
Expression in the CNS in Mice with Targeting of Green
Fluorescent Protein Gene to the ApoE Locus

Qin Xu,"? Aubrey Bernardo,' David Walker,! Tiffany Kanegawa,' Robert W. Mahley,">*> and Yadong Huang'23*
!Gladstone Institute of Neurological Disease and 2Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158, and Departments of
3Neurology, “Pathology, and *Medicine, University of California, San Francisco, California 94143

To study the profile and regulation of apolipoprotein E (apoE) expression in the CNS, we generated mice in which apoE expression can be
detected in vivo with unprecedented sensitivity and resolution. cDNA encoding enhanced green fluorescent protein (EGFP) with a stop
codon was inserted by gene targeting into the apoE gene locus (EGFP,,,;) immediately after the translation initiation site. Insertion of
EGFP into one apoE allele provides a real-time location marker of apoE expression in vivo; the remaining allele is sufficient to maintain
normal cellular physiology. In heterozygous EGFP,,,; mice, EGFP was highly expressed in hepatocytes and peritoneal macrophages.
EGFP was also expressed in brain astrocytes; however some astrocytes (~25%) expressed no EGFP, suggesting that a subset of these cells
does not express apoE. EGFP was expressed in <<10% of microglia after kainic acid treatment, suggesting that microglia are not a major
source of brain apoE. Although hippocampal neurons did not express EGFP under normal conditions, kainic acid treatment induced
intense expression of EGFP in injured neurons, demonstrating apoE expression in neurons in response to excitotoxic injury. The
neuronal expression was confirmed by in situ hybridization of mouse apoE mRNA and by anti-apoE immunostaining. Smooth muscle
cells of large blood vessels and cells surrounding small vessels in the CNS also strongly expressed EGFP, as did cells in the choroid plexus.
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diverse mechanisms of apoE4-related neurodegeneration.

¢ reporter mice will be useful for studying the regulation of apoE expression in the CNS and might provide insights into the
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Introduction

The &4 allele of the gene encoding apolipoprotein E (apoE) has
been linked to late-onset familial and sporadic Alzheimer’s dis-
ease (AD) and has a gene-dose effect on the risk and age of onset
of the disease (Corder et al., 1993; Saunders et al., 1993; Roses,
1996; Tang et al., 1998; Romas et al., 2002). Individuals with two
copies of the &4 allele have a 50 -90% chance of developing AD by
the age of 85, compared with ~45% for those with one allele
(Corder et al., 1993; Farrer et al., 1997) and 20% for the general
population (Corder et al., 1993). ApoE is found in amyloid
plaques and neurofibrillary tangles (two neuropathological hall-
marks of AD) and has been suggested to play important roles in
the pathogenesis of these two lesions (Namba et al., 1991; Selkoe,
1991; Wisniewski and Frangione, 1992; Crowther, 1993; Stritt-
matter etal., 1993a; Roses, 1994; Holtzman et al., 2000; Irizarry et
al., 2000; Tanzi and Bertram, 2001).
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Initially, apoE was thought to be synthesized in the brain only by
astrocytes, oligodendrocytes, and ependymal layer cells (Boyles et al.,
1985; Poirier et al., 1991). Although not all studies support the no-
tion (Page et al., 1998; Nishio et al., 2003), increasing evidence sug-
gests that under diverse pathophysiological conditions, CNS neu-
rons also express apoE, albeit at lower levels than astrocytes
(Diedrich et al., 1991; Han et al., 1994; Bao et al., 1996; Beffert and
Poirier, 1996; Metzger et al., 1996; Xu et al., 1998, 1999a,b). The
cellular origin of apoE appears to influence its effects on AD pathol-
ogy (Huang et al., 2004; Huang, 2006). Astrocyte-derived apoE3 and
apoE4 have different effects on the production, deposition, and
clearance of AB (LaDu et al., 1994; Bales et al., 1999; Holtzman et al.,
2000; Irizarry et al., 20005 Ji et al., 2001; Vincent and Smith, 2001; Ye
etal., 2005) and on cholesterol efflux (Fagan et al., 1999; Gong et al.,
2002). Neuron-derived apoE3 and apoE4 differ in their susceptibil-
ity to proteolysis (Huang et al., 2001; Harris et al., 2003; Brecht et al.,
2004; Chang et al., 2005) and in their effects on mitochondrial func-
tion (Chang et al., 2005), tau phosphorylation (Tesseur et al.,
2000a,b; Huang et al., 2001; Harris et al., 2003, 2004a; Brecht et al.,
2004), lysosomal leakage (Jietal., 2002), neurodegeneration (Buttini
etal., 1999; Buttini et al., 2002), androgen receptor deficiency (Raber
et al,, 2002), and cognitive decline (Raber et al., 1998, 2000, 2002).
Therefore, a better understanding of the profile and regulation of
apoE expression in the CNS is important for unraveling the mecha-
nisms underlying apoE4-related neurodegeneration.
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Regulation of apoE expression has been
extensively studied in transfected cells
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A Targeting Vector

(Reardon et al" 1986; Smith et al_’ 1988; e BRI
Garciaetal., 1996; Harris et al., 2004b) and

in transgenic mice (Shachter et al., 1993; EcoRl GFP  sac1 LoxP L oxP EcoRl
Simonet et al., 1993; Allan et al., 1995, »| neo |

1997; Shih et al., 2000; Grehan et al., Exons 1 p2 3 4

2001a,b; Zheng et al., 2004) expressing Wildtype Allele

apoE genomic or cDNA constructs. Al-
though these systems have provided valu-
able information, practical considerations
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have limited systematic study of apoE ex-
pression. The high guanine and cytosine
(GC) content of apoE coding sequences
requires critical in situ hybridization con-
ditions to limit nonspecific background
signals while still providing acceptable
sensitivity. Transfected cells are useful for
mapping fine structures but have not
yielded a fully accurate definition of any
cell-specific regulation that reflects in vivo
apoE expression. Transgenic models are
hampered by variegated expression be-
cause of random integration of transgenes B
into the mouse genome. Enhancers and si-
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To avoid such limitations, we gener-
ated mice that express enhanced green flu- "=
orescent protein (EGFP) under control of
the endogenous apoE gene promoter and
Figure 1.

enhancers (EGFP,,,;), providing a real-
time marker of in vivo apoE expression
with unprecedented sensitivity and resolu-
tion. EGFP knock-in is a new approach to
monitor gene expression in vivo (Aubert et
al., 2003; Toyooka et al., 2003). Because it
has no signal peptide, EGFP remains intra-
cellular, and surrounding cells are not vis-  cells.

ible, avoiding confusion as to whether the

immunostained apoE in certain cells is produced in situ or taken
up through its receptors from the extracellular pool. Insertion of
EGFP into one allele of the apoE gene provides a marker of apoE
expression in vivo, and the remaining allele maintains normal
lipid metabolism and cellular physiology and enables us to con-
firm the expression of apoE in various cells.

Materials and Methods

Reagents. Minimum essential medium, Opti-MEM, and fetal bovine se-
rum were obtained from Invitrogen (Rockville, MD). ECL was obtained
from Amersham Biosciences (Arlington, IL). Polyclonal rabbit anti-
mouse apoE antibody was kindly provided by Dr. Karl Weisgraber (Glad-
stone Institutes, San Francisco, CA). Kainic acid and monoclonal anti-
a-actin were obtained from Sigma (St. Louis, MO). Monoclonal
anti-neuron-specific nuclear protein (NeuN) and monoclonal anti-
CD11b were from Chemicon (Temecula, CA). Rabbit anti-GFAP was
from Dako (Carpinteria, CA). Fluorescein isothiocyanate- and Texas
Red-coupled anti-rabbit and anti-mouse were from Vector Laboratories
(Burlingame, CA).

Preparation of EGFP knock-in vector. The gene-targeting vector (Fig.
1 A) was constructed from a subclone of an 8.3 kb EcoR1 fragment span-
ning exons 1—4 of mouse Apoe isolated from a 129/SvJae mouse genomic
bacterial artificial chromosome library (Invitrogen, Carlsbad, CA) (Raf-
faietal.,2001). An EGFP cDNA with a stop codon and a poly-A sequence
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Generation and characterization of EGFP-targeted mouse ES cells. A, An EGFP (DNA with start and stop codons and a
poly-A sequence (~1 kb) was inserted into the basic gene-targeting vector used to generate apoE-Arg-61 knock-in mice at the
Gladstone Institutes (Raffai etal., 2001). Homologous recombination between the gene-targeting vector and the Apoe locus in ES
cellsintroduces the EGFP cDNA. A Neo cassette was placed inintron 3. Targeted ES cell clones and mice were identified by PCR with
primers and by digestion of genomic DNA with Sacl and subsequent Southern blotting with an Apoe 3" flanking sequence probe,
which reveals an expanded 5.3 kb fragment; the wild-type fragment s 3.3 kb. B, PCR screening for ES cell clones with homologous
recombination of EGFP revealed a 1.5 kb band in targeted (+/—) ES cells but no band in wild-type (WT) ES cells. ¢, Southern
blotting revealed both 5.3 kb and 3.3 kb DNA fragments in targeted (+/—) ES cells but only a 3.3 kb fragment in wild-type ES

mRNA B Protein

A
reot (N 8wk - EDED e
cin il D A " v ower

Figure2. Heterozygous EGFP,,,. mice expressapoE at ~50% of the levelin wild-type mice.
A, Northern blotting analysis of apoE and actin mRNA in brains of wild-type and heterozygous
EGFP, . mice at 5 months of age. B, Western blotting analysis of apoE and actin in brains of
wild-type and heterozygous EGFP, . mice at 5 months of age.

(~1 kb) was inserted into the mouse apoE gene locus, immediately after
the translation initiation site in exon 2. Insertion at this position is un-
likely to affect the activities of the promoter and regulatory elements of
the apoE gene. The insertion lengthens the apoE gene by only ~1 kb
toward the 3'-end, and the downstream enhancers are not position sen-
sitive in regulating tissue/cell-specific apoE expression in transgenic mice
(Shachter et al., 1993; Simonet et al., 1993; Allan et al., 1995, 1997; Shih et
al., 2000; Grehan et al., 2001a,b; Zheng et al., 2004). LoxP sites upstream
of EGFP and downstream of Neo allow cell-specific deletion of these
genes by crossing EGFP mice with cell-specific Cre recombinase mice
(Raffai et al., 2001; Raffai and Weisgraber, 2002).

Generation of EGFP knock-in mice. The EGFP-targeting vector was
electroporated into embryonic stem (ES) cells (129/Svjae) as described



Xuetal.» ApoE Expression in CNS Astrocytes and Neurons

A

Liver Cells B
&;q Y ’

‘ Culture Day 1

3%
b

Figure 3.

LDL (AcLDL; 100 peg/ml) for 16 h and analyzed by confocal microscopy.
EGFP GFAP
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Figure 4.

previously (Raffai et al., 2001), and G418-resistant clones were selected
and screened by PCR with primers covering Neo (forward) and 3’ flank-
ing sequence of mouse Apoe (reverse). The DNA sequence recognized by
the reverse primer was not included in the vector (Fig. 1A). Therefore, a
1.5 kb fragment could only be amplified from the DNA of the targeted ES
cells. Of 200 clones screened, 21 were positive (Fig. 1B).

The PCR-positive ES cell clones were also screened by Southern blot-
ting. Sacl-digested DNA was hybridized with a probe that detects frag-
ments of 5.3 kb (targeted allele) and 3.3 kb (wild-type allele) in targeted
ES cells (+/—) but only a 3.3 kb fragment in wild-type cells (Fig. 1A, C).
Screening yielded 15 positive ES cell clones (Fig. 1C). Three were micro-
injected into C57BL/6 blastocysts in the Gladstone Blastocyst Core, yield-
ing >50 chimeric mice harboring EGFP ¢cDNA in the apoE locus. Six
male chimeras (>90% brown fur) were crossed with C57BL/6 females to
generate heterozygous EGFP,,;; mice. Germline transmission resulted
in heterozygous F1 EGFP, ., mice (confirmed by PCR and Southern
blotting analyses; data not shown) that are 50% C57BL/6. Three addi-
tional crosses resulted in F4 mice that are >93% C57BL/6. Heterozygous
EGFP,,,,; mice were then bred to generate homozygotes to maintain the
line. For the current study, we used heterozygous EGFP,,, mice, gener-
ated by crossing homozygous EGFP,,;; and wild-type C57BL/6 mice.
Mice were weaned at 21 d of age, housed in a barrier facility at the
Gladstone Animal Core with a 12 h light/dark cycle, and fed a chow diet
containing 4.5% fat (Ralston Purina, St. Louis, MO).

Northern blotting and quantitative analysis of apoE mRNA. Total RNA
from brains of wild-type and heterozygous EGFP,,,;; mice was isolated

Peritoneal Macrophages
Culture Day 4

Day 4 + AcLDL

Expression of EGFP in hepatocytes and peritoneal macrophages in a heterozygous EGFP, ., mouse at 2 months of
age. A, Expression of EGFP in hepatocytes as determined by confocal microscopy. B, Peritoneal macrophages were cultured in vitro
for 1or4 d and analyzed by confocal microscopy. Alternatively, after 4 d of culture, macrophages were incubated with acetylated

Merged

Expression of EGFP in hippocampal astrocytes in heterozygous EGFP,,,, mice at 4 —6 months of age before (A-C)
and 6 d after (D—F) kainicacid (KA) treatment (25 mg/kg body weight). Astrocytes were identified by anti-GFAP immunostaining
and confocal microscopy. In the merged image, yellow indicates colocalization of EGFP (green) and GFAP (red).
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with Triazol (Invitrogen). Total RNA (~20 ug)
was separated by electrophoresis in a 1% aga-
rose gel containing 20% formaldehyde, trans-
ferred to Hybond membrane (Amersham Bio-
sciences) and hybridized to a mouse apoE
cDNA probe labeled with [**P]dCTP in Ultra-
hyb solution (Ambion, Austin, TX) at 60°C
overnight. The blot was washed in high-
stringency buffer (Ambion) at 68°C for 15 min
(twice) and exposed to x-ray film for 2—-6 h. The
blot was then washed with a Strip-EZ buffer
(Ambion), rehybridized to a mouse B-actin
probe as an internal loading control, and ex-
posed to x-ray film for 2—-8 h. The bands of
apoE and B-actin mRNAs were scanned, and
the ratios of apoE to B-actin were calculated.
= : Preparation of mouse brain tissues. Brains
from wild-type or heterozygous EGFP,,,; mice
were collected after a 2 min transcardial perfu-
sion with PBS. One hemibrain from each
mouse was homogenized and analyzed for apoE
by Western blotting (Huang et al., 2001). In
brief, brain tissues were homogenized in ice-
cold lysis buffer (50 mm Tris/HCL, pH 8.0, 150
mMm NaCl, 4% SDS, 1% Nonidet P-40, 1% so-
dium deoxycholate, and a mixture of protease
and phosphatase inhibitors), placed in a TLA
100.3 rotor, and centrifuged at 35,000 rpm for
30 min at 4°C in an Optima TL ultracentrifuge
(Beckman, Fullerton, CA).

Western blotting and quantitative analysis of
apoE. The supernatant (solubilized protein)
was subjected to SDS-PAGE and analyzed by
Western blotting with a rabbit polyclonal anti-
body against mouse apoE or a monoclonal an-
tibody against a-actin. The bands of apoE and
a-actin from individual mice were scanned,
and their intensities were calculated (Huang et
al., 2001).

Immunohistochemistry. The other hemibrain
from each mouse was fixed in 3% paraformal-
dehyde, sectioned, and stained with anti-mouse
apoE, anti-NeuN (neuron marker), anti-GFAP
(astrocyte marker), anti-a-actin (smooth mus-
cle cell marker), and anti-CD11b (microglial marker) (Buttini et al.,
1999; Huang et al., 2001). To block nonspecific reactions, all sections
were incubated for 1 h in 10% normal serum from the species that pro-
duced the secondary antibodies (Jackson ImmunoResearch, West Grove,
PA) in PBS or for 7 min in Superblock (Scytec, Logan, UT), followed by
a 1 h incubation in PBS with primary antibodies. Sections were then
washed three times in PBS and incubated for 1 h with the corresponding
secondary antibodies coupled to Texas Red (Jackson ImmunoResearch).
After three washes in PBS, the sections were mounted in VectaShield
(Vector Laboratories) and examined for both green (EGFP) and red
(other marker staining) channels with a Radiance 2000 laser-scanning
confocal system (Bio-Rad, Hercules, CA) mounted on an Optiphot-2
microscope (Nikon, Tokyo, Japan). The images were processed with
Photoshop (Adobe Systems, San Jose, CA).

Kainic acid injections. Kainic acid crosses the blood—brain barrier and
induces excitotoxic CNS injury, particularly in the hippocampus and
neocortex (Spinler and Cziraky, 1994; Masliah et al., 1997). At 4-6
months of age, heterozygous EGFP,,;; mice were injected intraperito-
neally with kainic acid (Sigma) dissolved in saline (0.9%) at 25 mg/kg
body weight in one dose, as described previously (Buttini et al., 1999).
Within ~15 min, all mice developed seizures. Seizure activity was as-
sessed as described previously (Schauwecker and Steward, 1997). The
groups did not differ in the time from injection to seizure onset or in the
incidence, intensity, or duration of seizures (data not shown). Mice were
killed 1 or 6 d after the injection of kainic acid.
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In situ hybridization. RNA probe comple-
mentary to nucleotides 492-783 of mouse apoE
mRNA was labeled with [**P]JUTP with an
RNA transcription kit (Stratagene, La Jolla,
CA). The labeled probe was purified through
Micro Bio-Spin 30 chromatography columns
(Bio-Rad). In situ hybridization was performed
as described previously (Grehan et al., 2001b).
Briefly, brain paraffin sections (7 um) were in-
cubated with 20 pg/ml proteinase K (Boehr-
inger Mannheim, Indianapolis, IN) in 50 mm
Tris-HCI, pH 8.0, 5 mm EDTA, and 150 mm
NaCl for 15 min at room temperature. Proteo-
lytic activity was stopped by immersion for 10
min in 0.2% glycine in PBS. After fixation, acet-
ylation, and dehydration, the sections were in-
cubated for 14-18 hin a humidified chamber at
45°C with labeled probe in a buffer containing
50% formamide, 300 mm NaCl, 20 mm Tris, pH
8.0, 5 mm EDTA, 0.2% polyvinylpyrrolidone,
0.02% Ficoll, 0.02% bovine serum albumin,
10% dextran sulfate, 250 ug/ml sperm DNA,
and 0.1 mg/ml tRNA. After two washes at room
temperature in 2X SSC and 1.0 mm EDTA for
10 min, the sections were immersed in 20 pug/ml
ribonuclease (RNase) A (Sigma) in 500 mwm
NaCl and 10 mm Tris, pH 8.0, and 10 U/ml T1
RNase (Boehringer Mannheim) for 1 h at 37°C,
washed at 60°C in six changes of 0.1X SSC with 1.0 mm EDTA for 4 h,
rinsed twice for 10 min each in 0.5X SSC, and dehydrated. For dark-field
and bright-field microscopy, the slides were dipped in NTB2 nuclear
track emulsion (Eastman Kodak, Rochester, NY), incubated at 4°C for
2-5d, and developed with D19 developer (Eastman Kodak). The sections
were then stained with hematoxylin and eosin (Fisher Scientific, Tustin,
CA). After dehydration in a graded series of ethanol (80, 95, and 100%),
the slides were rinsed three times in xylene and overlaid with coverslips.

Statistical analysis. Results are reported as mean * SD. Differences
were evaluated by a t test.

Before KA

After KA

Figure5.

Results

Heterozygous EGFP,,,; mice express both EGFP and apoE

As shown by Northern blotting, the average level of brain apoE
mRNA in heterozygous EGFP,,.; mice was 58% of that in wild-
type mice (Fig. 2A), consistent with the expected inactivation of
one apokE allele. The average level of apoE protein was 51% of
wild-type, as shown by anti-apoE Western blotting (Fig. 2B).
Similar Western blotting results were obtained from liver and
peritoneal macrophages of heterozygous EGFP,,,; mice (data
not shown).

EGFP is expressed in hepatocytes and macrophages

EGFP was expressed at high levels in liver cells (Fig. 3A), the
primary source of apoE in both humans and mice. Peritoneal
macrophages also expressed EGFP, and the expression was en-
hanced by cholesterol loading (Fig. 3B), as reported previously
(Basu et al., 1981). Thus, in heterozygous EGFP,,,; mice, EGFP
representing apoE was correctly expressed in hepatocytes and
macrophages that normally express apoE.

EGFP is expressed in many, but not all, CNS astrocytes

EGFP was also expressed in CNS astrocytes and was confirmed by
anti-GFAP immunofluorescent staining (Fig. 4 A—C). Strikingly,
EGFP revealed the full cell volume of astrocytes with very fine
resolution of cellular processes, whereas anti-GFAP staining
highlighted only large processes. Thus, EGFP is better than im-
munostaining for characterizing cell identity and morphology.
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CD11b

Expression of EGFP in hippocampal microglia in heterozygous EGFP, . mice at 4 — 6 months of age before (A~() and
6 dafter (D—F) kainicacid (KA) treatment (25 mg/kg body weight). Microglia were identified by anti-CD11b immunostaining and
confocal microscopy. In the merged image, yellow (arrow) indicates colocalization of EGFP (green) and (D11b (red).

Interestingly, some GFAP-positive cells (26 = 4%) did not ex-
press EGFP, suggesting that a subclass of astrocytes might not
express apoE, at least under normal conditions.

To determine whether brain insults can induce EGFP-
negative astrocytes to express EGFP, we treated heterozygous
EGFP,,,,; mice with kainic acid, which can activate astrocytes,
induce gliosis, and increase apoE expression in animal models
(Sperk et al., 1983). Hippocampal astrocytes were activated, as
indicated by much stronger GFAP staining and enlarged cell bod-
ies and branches; however, 17 * 3% of astrocytes still did not
express EGFP (Fig. 4D-F).

EGFP is expressed in <10% of microglia

after kainic acid treatment

EGFP was not expressed in CNS microglia as demonstrated by
anti-CD11b, a microglial marker (Chen et al., 2005), immuno-
fluorescent staining (Fig. 5A-C), suggesting that these cells do
not express apoE under normal conditions. To determine
whether brain insults can induce microglia to express EGFP, we
treated heterozygous EGFP,,.; mice with kainic acid, which can
activate microglia and induce gliosis (Sperk et al., 1983). Hip-
pocampal microglia were activated by kainic acid treatment, as
indicated by much stronger CD11b staining and enlarged cell
bodies and branches; however, only 6 * 3% of microglia ex-
pressed EGFP (Fig. 5D-F).

EGFP is expressed in hippocampal neurons

in response to exitotoxic injury

EGFP was not expressed in hippocampal neurons in heterozy-
gous EGFP,,,; mice, as demonstrated by staining for NeuN (a
neuronal marker) (Fig. 6A) and GFAP (Fig. 6 B). Thus, hip-
pocampal neurons do not express apoE under normal condi-
tions. However, kainic acid treatment induced intense expression
of EGFP in injured hippocampal neurons (Fig. 6C-G). Impor-
tantly, both EGFP and apoE were only present in injured neurons
in the treated mice (Fig. 7A, B, D, E). Neuronal expression of apoE
was confirmed by in situ hybridization of mouse apoE mRNA in
heterozygous EGFP,,.; mice treated with kainic acid (Fig. 7F).
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Figure 6.

astrocytic marker. Images in A-D and G are merged, and yellow indicates colocalization.

ApoE protein and mRNA were undetectable in hippocampal neu-
rons in untreated mice (Fig. 7 B, C), in which no neuronal injury was
found, as determined by silver staining (Fig. 7A).

EGFP is expressed along CNS vessels

and in the choroid plexus

EGFP was highly expressed along vessels in the CNS, as indicated
by the close proximity or colocalization of EGFP with a-actin
(Fig. 8 A—C), a smooth muscle cell marker (Deaton et al., 2005).

EGFP/GFAP

Hippocampal CA3 neurons express EGFP, representing apoE, in response to excitotoxic injury. Heterozygous
5-month-old EGFP,,,, mice received peritoneal injections of kainic acid (KA; 25 mg/kg) (€~6), and the brains were collected 1d
(E-G) or 6 d (C, D) later. Untreated age-matched heterozygous EGFPaPDE mice served as controls (A, B). Confocal images of
immunostained brain sections were collected for EGFP (green) and anti-NeuN (red), a neuronal marker, or anti-GFAP (red), an
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Interestingly, EGFP surrounded smooth
muscle cells of small vessels in the hip-
pocampus (Fig. 8A) and cortex (Fig. 8 B)
but colocalized with smooth muscle cells
in large vessels in the cortex (Fig. 8C). In
situ hybridization with a probe specific for
mouse apoE demonstrated apoE mRNA in
cells in or surrounding vessel walls (Fig.
8D). Anti-GFAP immunostaining indi-
cated that the cells expressing EGFP along
vessels were negative for GFAP, and thus
were not astrocytes (Fig. 8 E, F). EGFP was
not expressed along veins in the CNS (data
not shown). Cells of the choroid plexus
also expressed high levels of EGFP (Fig.
9A) and contained apoE mRNA, as shown
by in situ hybridization (Fig. 9B).

MO 9

Discussion

This study of EGFP,,,; reporter mice pro-
vides insights into the profile and regulation
of apoE expression in the CNS. Our findings
demonstrate that neurons in the CNS pro-
duce apoE in response to injury. They also
show that a subclass of astrocytes and most
microglia do not express apoE, even after
brain insults, and that many types of CNS
cells in addition to astrocytes express apoE,
including smooth muscle cells in larger
blood vessels, cells surrounding small ves-
sels, and cells of the choroid plexus. EGFP,-
pok reporter mice will be invaluable for
studying the regulation of apoE expression
in the CNS at different developmental stages
or in response to various brain insults and
will likely provide additional insights into
the roles of apoE in neurobiology and
the diverse mechanisms of apoE4-related
neurodegeneration.

Our study lays to rest a long-standing
controversy concerning the neuronal ex-
pression of apoE. Some previous studies
showed that at least some neurons express
apoE (Diedrich et al., 1991; Poirier et al.,
1991; Han et al.,, 1994; Bao et al., 1996;
Metzger et al,, 1996; Xu et al., 1996,
1999a,b; Dupont-Wallois et al., 1997; Bos-
chert et al., 1999; Ferreira et al., 2000; Dek-
roon and Armati, 2001; Hartman et al.,
2001; Aoki et al., 2003; Harris et al., 2003);
others suggested that they do not (Page et
al., 1998; Nishio et al., 2003). More recent
studies suggest that neurons might not
normally express apoE but do so in re-
sponse to brain injuries, such as excito-
toxic or ischemic injury (Boschert et al., 1999; Aoki et al., 2003).
ApoE is also expressed in primary cultured human and rat CNS
neurons (Dekroon and Armati, 2001) and in many human neu-
ronal cell lines, including SY-5Y, Kelly, and NT2 cells (Poirier et
al., 1991; Dupont-Wallois et al., 1997; Ferreira et al., 2000; Hart-
man et al., 2001).

In previous studies, anti-apoE immunostaining and in situ
hybridization were used to define apoE expression in neurons.
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Both methods have been criticized for
technical or data interpretation limita-
tions. For example, anti-apoE immuno-
staining can not differentiate whether
the apoE in neurons is generated in those
cells or taken up from the astrocyte-
secreted pool. Likewise, in situ hybrid-
ization data are also questioned as false
positive, because of the GC-rich nature
of the apoE gene. In addition, in situ hy-
bridization might also yield false-
negative results because of the poor
sensitivity of the technique in detecting
low-abundance mRNA in cells. Our
EGFP,,, . reporter mice avoid those lim-
itations. Thus, our findings conclusively
demonstrate that neurons express apoE
in response to excitotoxic injury and
support the notion that understanding
how apoE expression is regulated in neu-
rons is important for unraveling the
mechanisms of apoE4-related neurode-
generative disorders.

Surprisingly, ~20% of hippocampal
and cortical astrocytes did not produce
apoE, even in response to brain insults. We
speculate that apoE-positive and apoE-
negative astrocytes play different roles in
brain development, neuronal injury and
repair, and even some disease processes.
Therefore, it would be interesting to know
whether aging or neurodegenerative dis-
orders such as AD alter the ratio of those
two types of astrocytes.

It has been reported that cultured rat
primary microglia and murine micro-
glial cell line express apoE in vitro (Xu et
al., 2000; Naidu et al., 2002; Saura et al.,
2003; Mori et al., 2004). ApoE protein
has also been found in activated micro-
glia in AD brains and in lesioned olfac-
tory bulb of mice by immunocytochem-
istry (Uchihara et al., 1995; Nathan et al.,
2001). We demonstrated in the EGFP,-
poE reporter mice that microglia do not
express apoE under normal conditions,
and <10% of microglia produce apoE in
response to brain insults. Therefore, mi-
croglia are not a major source of brain
apoE, at least in mice.

Smooth muscle cells of artery walls in
peripheral tissues express apoE (Majack
et al., 1988; Moore et al.,, 2004), and
apoE has been detected in cells along
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Silver Staining /Anti-apoE

Before KA

Figure 7.
Heterozygous 5-month-old EGFP,,, mice received peritoneal injections of kainicacid (KA; 25 mg/kg) (D—F), and the brains were
collected 6 d later. Untreated age-matched heterozygous EGFP, ., mice served as controls (A~C). A, D, Gallyas silver staining of
the hippocampal CA1 region. B, E, Merged confocal images of EGFP (green) and anti-apoE (red) in the CA1 region. C, F, In situ
hybridization of mouse apoE mRNA in the CA1 region.

EGFP and apoE protein and mRNA are present only in injured hippocampal neurons in kainic acid-treated mice.

EGFP/a-Actin

EGFP/GFAP

Figure8.  Expression of EGFP in smooth muscle cells in large blood vessels and cells surrounding small blood vessels in brains
of heterozygous EGFPapuE mice. A-C, Merged confocal images of EGFP (green) and anti-a-actin (red), a smooth muscle cell
marker, were collected from a 5-month-old heterozygous EGFP,,,, mouse. A, Small blood vessels in the hippocampus. B, A small
blood vesselin the cortex. C, Alarge blood vessel in the cortex. D, In situ hybridization shows mouse apoE mRNA along the wall of
alarge blood vessel in the cortex. E, F, Merged confocal images of EGFP (green) and anti-GFAP (red), an astrocyte marker, were
collected from a 5-month-old heterozygous EGFP,_ . mouse.

apol

vessels in the CNS by anti-apoE immunostaining (Boyles et al.,
1985), but the source was unclear. We demonstrated that apoE
is produced in smooth muscle cells in large vessels and in cells
surrounding small vessels in the CNS. Clearly, those apoE-
expressing cells surrounding small vessels are not astrocytes,
because they are negative for anti-GFAP immunostaining. Al-
though the cellular identity remains to be determined, apoE
generated in these locations may be important in maintaining
the integrity and normal function of the blood—brain barrier.

In fact, apoE deficiency causes leakage of this structure (Ful-
lerton et al., 2001; Methia et al., 2001). Furthermore, apoE has
been found in lesions of cerebral amyloid angiopathy (CAA),
and apoFE4 is associated with increased severity of CAA in
humans and amyloid protein precursor transgenic mice
(Schmechel et al., 1993; Greenberg et al., 1995; Fryer et al.,
2005).

It has been generally accepted that apoE in CAA is secreted by
astrocytes (Fryer et al., 2003, 2005). ApoE4 might deliver more
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EGFP/GFAP In Stu

Figure 9.
Merged confocal image of EGFP (green) and anti-GFAP (red) from a 5-month-old EGFP.
mouse. B, In situ hybridization revealed mouse apoE mRNA in the choroid plexus.

Expression of EGFP in choroid plexus cells of heterozygous EGFP,,, mice. 4,

apoE

A peptide than apoE3 from the brain parenchyma to vessel walls
(Fryer et al., 2005). However, our observation that CNS cells in or
around the vessel wall produce copious amounts of apoE raises
the possibility that apoE4 generated in this location might retain
more A than apoE3, leading to more severe CAA in apoE4 car-
riers. In line with this hypothesis, CAA in AD brains occurs along
the perivascular spaces of small blood vessels and between
smooth muscle cells in large vessels (Weller et al., 1998). Interest-
ingly, apoE was not expressed along veins in the CNS of the
EGFP,,,; mice, and CAA is seldom found along the veins in AD
brains (Weller et al., 1998).

Finally, cells in the choroid plexus expressed high levels of
apoE. The choroid plexus secretes CSF, expresses many receptors
(e.g., apoE receptor-2), secretes numerous molecules (e.g.,
growth factors), transports nutrients from the blood to CSF, and
clears brain metabolites (e.g., A peptides) (Kim et al., 1996;
Martel et al., 1997; Serot et al., 2003; Crossgrove et al., 2005; Moir
and Tanzi, 2005). ApoE levels in the CSF have not been reported
in mice, but in humans are 5-15% of those in plasma (Pitas et al.,
1987; Fukumoto et al., 2003). Our results suggest that the choroid
plexus is the major source of apoE in CSF. Because the choroid
plexus clears brain A peptides by transporting them from CSF
to blood (Crossgrove et al., 2005) and because apoE isoforms
interact differently with AB peptides (Strittmatter et al., 1993b;
LaDu et al., 1994, 1995; Ma et al., 1994; Sanan et al., 1994;
Wisniewski et al., 1994), apoE generated by the choroid plexus
might affect AB clearance in an isoform-specific manner. In fact,
apoE knock-out mice have higher AB levels in CSF than wild-type
mice (DeMattos et al., 2004). Furthermore, the function of the
choroid plexus declines with aging and in AD patients (Serot et
al.,, 2003), which might lead to decreased clearance of A
peptides.

Clearly, apoE is expressed in different types of cells, in addi-
tion to astrocytes, in the CNS. We hypothesize that apoE from
different cellular sources has distinct roles in both physiological
and pathophysiological pathways, including the pathogenesis of
AD (Huang et al., 2004; Huang, 2006). For example, apoE4 gen-
erated in injured neurons may be involved in mitochondrial dys-
function and neurofibrillary tangle formation (Huang et al.,
2001; Harris et al., 2003; Brecht et al., 2004; Chang et al., 2005),
apoE4 generated in astrocytes may be primarily responsible for
amyloid plaque formation, apoE4 generated in or around blood
vessels may be important for CAA formation, and apoE gener-
ated in the choroid plexus may participate in the clearance of A3
peptides. This hypothesis is supported by the early observation
that apoE generated locally in the liver is much more efficient
than that generated in the periphery in mediating the hepatic
clearance of remnant lipoproteins (Mahley and Ji, 1999; Raffai et
al., 2003).
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