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Deciphering the Spike Train of a Sensory Neuron: Counts
and Temporal Patterns in the Rat Whisker Pathway
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Rats achieve remarkable texture discriminations by sweeping their facial whiskers along surfaces. This work explores how neurons at two
levels of the sensory pathway, trigeminal ganglion and barrel cortex, carry information about such stimuli. We identified two biologically
plausible coding mechanisms, spike counts and patterns, and used “mutual information” to quantify how reliably neurons in anesthe-
tized rats reported texture when “decoded” according to these candidate mechanisms. For discriminations between surfaces of different
coarseness, spike counts could be decoded reliably and rapidly (within 30 ms after stimulus onset in cortex). Information increased as
responses were considered as spike patterns with progressively finer temporal precision. At highest temporal resolution (spike sequences
across six bins of 4 ms), the quantity of “information” in patterns rose 150% for ganglion neurons and 110% for cortical neurons above

that in spike counts. In some cases, patterns permitted discriminations not supported by spike counts alone.
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Introduction

Rats have a well developed texture discrimination capacity
(Carvell and Simons, 1990), and the aim of the present work is to
explore potential neuronal coding mechanisms underlying this
capacity. In rats, as in humans (Gamzu and Ahissar, 2001), tactile
object exploration derives from active palpation; rats sweep their
whiskers across surfaces in a rhythmic forward—backward cycle
to create neuronal representations of the contacted objects
(Kleinfeld et al., 2006). The signals from each whisker are trans-
duced by specialized receptors (Ebara et al., 2002); first-order
neurons with cell body in the trigeminal ganglion innervate these
receptors. From the trigeminal ganglion, signals travel to the
brainstem. Axons of the second-order neurons cross the midline
and travel to the thalamic somatosensory nuclei; thalamic neu-
rons project to the layer IV “barrels” of primary somatosensory
cortex (Woolsey and Van der Loos, 1970). Here, we analyze the
responses of neurons in the trigeminal ganglion and barrel
cortex.

The stimuli consisted of controlled movements of a mechan-
ical device, in which the motion reproduced the vibrations re-
corded earlier when a whisker swept across various surfaces: a
smooth surface and a set of sandpapers, each with a characteristic
grain size. Recently, we showed that the whisker vibrations asso-
ciated with different textures evoked ganglion and cortical re-
sponses that, averaged across trials, differed according to texture
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(Arabzadeh et al., 2005). The differences were apparent in both
the spike count and the temporal profile of spikes. To quantify
the neuronal coding of texture, we now analyze the same dataset
with the goal of determining the features and parameters of neu-
ronal activity that vary systematically from one texture to an-
other. Our approach is to apply measures of “mutual informa-
tion” (Shannon, 1948; Cover and Thomas, 1991), hereafter
referred to as “information.” Using this framework, we can de-
termine the maximum amount of knowledge (the upper bound
of information) available to an observer who “reads oft” the spike
train signals (Rieke et al., 1997; Borst and Theunissen, 1999). The
strategy is to identify biologically plausible coding mechanisms
and then to quantify how reliably neurons transmit texture infor-
mation when their responses are “decoded” according to each of
the candidate mechanisms.

Principal questions include the following. How much infor-
mation is carried by the number of spikes, and how does such
spike count information build up during a single trial? How
much additional information, beyond that available in spike
count, is conveyed by the temporal pattern of spikes? We draw
particular attention to the dependence of information transmis-
sion on the “internal clock” (the register of temporal structure
within a spike pattern) and the “external clock” (knowledge of
when the spike pattern occurred within the course of a single
trial). To what extent does the quantity of decodable information
depend on the precision of these clocks?

Materials and Methods

Measurement of neuronal responses. Methods have been described in de-
tail previously by Arabzadeh et al. (2005): an abbreviated version is given
here. Experiments were conducted in accordance with National Insti-
tutes of Health and institutional standards for the care and use of animals
in research. Subjects were adult male Wistar rats. In one set of anesthe-
tized rats (urethane, 1.5 g/kg), “electrical whisking” (Brown and Waite,
1974; Szwed et al., 2003) was generated by stimulating the right facial
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nerve for 60 ms to produce whisker protraction, followed by a passive 65
ms whisker retraction. For a selected whisker, horizontal and vertical
movements at the base were registered by a two-channel optical sensor.
The two voltage signals were digitized at 7634 samples per second. Whis-
ker movement was studied for 10 min under each of six conditions: free
whisk (no object contact) and contact with five surfaces. From the vibra-
tion signal recorded as the whisker swept through the air or along a
texture, a 50 s continuous record was extracted and sliced into 100
unique trials of 500 ms (consecutively numbered trials 1-100), each trial
composed of two-dimensional position signals across four 125 ms
whisks. For the present analysis, we selected trial number 50 and mea-
sured neuronal responses to 100 identical repetitions. This approach
allows us to focus on neuronal firing reliability because it eliminates
stimulus variability (the trial-to-trial differences in the detailed whisker
vibration that were normally caused by the slightly varying trajectory on
each of 100 unique trials).

We measure neuronal responses to the first of the four whisks, except
for analyses of external clock precision. The stimulus set was constructed
by splicing trials together at the point of maximum retraction. A free-
whisk trial always separated two successive texture trials. A block was
composed of five different texture trials (t,—t5) with free whisk trials (fw)
interspersed, e.g., fw—t;—fw—t;—fw—t,—fw—t,—fw—t,. Before stimulus de-
livery, signals were low-pass filtered at 500 Hz. The stimulus set used in
the physiology experiments originated from a C3 whisker recording.

The noise stimulus was constructed by selecting values of horizontal
velocity and vertical velocity independently from a Gaussian distribution
7634 times per second. The stimulus was then low-pass filtered (Cheby-
shev type IT) at 500 Hz. The noise stimulus was presented for 10 min after
conclusion of the texture stimuli.

In urethane-anesthetized rats, neuronal recordings were made simul-
taneously from two sites. Ganglion neurons were recorded by advancing
a single electrode (Frederick Haer Company, Bowdoinham, ME) to a
position determined by stereotaxic coordinates. Cortical recordings were
obtained by inserting a 100 microelectrode array (Cyberkinetcs, Foxbor-
ough, MA) to a depth of 700-1000 wm in left barrel cortex (Rousche et
al,, 1999). Ganglion recordings were always single units, whereas cortical
recordings consisted of a multiunit cluster at each channel.

The receptive field centers in the ganglion-only recordings were C3, E1,
D6, E6, and 1y (twice). The receptive field centers in the cortex-only record-
ings were Al, B4, E5, and E3 (twice). Receptive field centers in the paired
ganglion—cortex recordings were 8 (twice), E3 (twice), C2 (twice), and E4.

Texture stimuli were delivered to a single whisker using a motor con-
structed from two orthogonal pairs of parallel piezoelectric wafers driven
independently by horizontal and vertical signals. The whisker was in-
serted into a metal tube 1 mm from the skin. The second set of rats thus
received whisker vibrations identical to those recorded previously during
active whisking in the first set of rats.

Information theoretic analysis of spike trains. The information that the
neuronal response conveys about the stimulus can be quantified by
Shannon’s mutual information formula (Cover and Thomas, 1991), ab-
breviated hereafter as information:

P
1= P(r) P(slr)logzl%), (1)

s

where P(s) is the probability of presentation of texture stimulus s, P(s|r) is
the posterior probability of s given observation of response r, and P(r) is
the probability of response r unconditional on the stimulus. Information
determines the maximum amount of knowledge (the upper bound of
information) available to an observer who knows the posterior probabil-
ities P(s|r) and uses them to read off the signals available in a single
observation of a spike train (Rieke et al., 1997).

The amount of information transmitted by a neuron depends on as-
sumptions about how the activity is read off. We distinguished between
activity decoded according to cumulative spike count and spike pattern
(Panzeri et al., 2001; Petersen et al., 2001). Information in the cumulative
spike count was obtained by counting the spikes from stimulus onset (t =
0) until some time t = T. When T was set to the end of the stimulus
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presentation (125 ms), the cumulative spike count was referred to as
whole-whisk spike count.

To compare the relative rise time of information in ganglion and cor-
tex, we defined “information flow” as the derivative of the cumulative
information. The cross-correlogram between ganglion and cortical in-
formation flows was then measured using the following equation:

125

dIganglion t dreorex(¢ 4
C(r) = f dt ® X ¢+ 1)

dt dt ’ 2)
t=0

where I8785°0 (1) and [°°"X(¢) denote the cumulative information in
ganglion and cortex at time ¢.

Information in the spike pattern was obtained by subdividing a win-
dow of 24 ms length into time bins and then shifting the window along
the spike train in steps of 1 ms. Activity within the 24 ms window then
became a “word” made up of a sequence of “letters,” each letter signifying
the presence or absence of a spike in that bin, 1 or 0 (Strong et al., 1998).
The maximum precision allowed because of finite sampling of posterior
probabilities (see bias correction below) was six bins of 4 ms.

Optimal pattern decoding assumes the observer’s capacity to maintain
two clocks: an internal clock to register the local temporal structure of the
spikes within a window, and an external clock to register the time of the
sliding window throughout the stimulus. We measured information
while progressively degrading the two clocks. Degrading the internal
clock corresponded to increasing the bin size, AT, ..;na- 1O increase
AT, , from 4 to 8 ms, we randomly shuffled spike occurrences be-

internal
tween adjoining pairs of 4 ms time bins. To further increase AT, ornal
from 8 to 12 ms, we randomly shuffled spike occurrences between ad-
joining triplets of 4 ms time bins. Finally, to degrade the “pattern” until it
was equivalent to the spike count in the 24 ms window, we increased
AT, erna from 12 to 24 ms.

Spike pattern information at time ¢, i.e., when the sliding window
spans t-24 to t ms, results from comparing the spike pattern present in
this window with the posterior probabilities P(s|r) constructed at that
exact window position. Hence, optimal decoding would require the ob-
server to have a perfect external clock, i.e., to know the current window
position and thus obtain the correct posterior probabilities given in
Equation 1. To degrade the external clock, we added uncertainty,
AT, ernap to this alignment. The decoder then would base its interpreta-
tion of the current response r not on the correct posterior distribution
P(s|r) but on an approximated posterior distribution Q(s|r) obtained by
pooling the frequency distribution of spike pattern r across all sliding
windows between (#-24) — (AT epnar/2) and  + (AT erna/2):

t+ A Texternall 2

Q(s|r) = f dtP(rls,t) P(s,1)/Q(r), (3)

(t—24) = ATexternall 2

where P(s,t) = P(s)/AT erna» and, in this particular equation, we made
it explicit that P(r|s) = P(r|s,t) depends on the time ¢ at which the sliding
window begins.

There is in general no closed-form analytical expression for this infor-
mation lost by a decoder that uses an approximated posterior distribu-
tion (Merhav et al., 1994). However, Latham and Nirenberg (2005) de-
rived a closed-form upper bound to the information lost by a
mismatched decoder. Generalizing their work to the case of external
clock imprecision, we derived an upper bound to the information lost
when using Q(s|r) rather than P(s|r), indicated as AI,.,,,.; and expressed
as follows:

P(s|r)

Qn” @

AIexlemal = z E P(T') P(S|r)10g2

Itis useful to note that Al ... IS guaranteed not to diverge to infinity. In
fact, Q(s|r) = 0 implies that either P(s) = 0 [which in turn implies that

P(s|r) = 0] or that Q(r]s) = 0.In the latter case, P(r|s) must be 0 at all times
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tentering the integration in Equation 4. Taking A Stimulus set
into account that 0log(0) converges to 0, this is 3mm
enough to ensure the nondivergence of
AL external®
The quantit
1 ¥ Free whisk cD P1200 P400 P280 P100
Iex(emal =I- AIextemal

= Z EP(r) P(s|r>logz(§(| LIS

is a lower bound to the information that can be
extracted by a decoder that works with the im-
precise probability, Q(s|r). In the following, we
use Iy ernar in Equation 5 as a single equation to
compute how the information available to the
decoder depends on both the external and in-
ternal clocks. All quantities reported in Results
are computed through Equation 5. I ... de-
pends on the internal clock through the re-
sponse r (which is shuffled to provide the spec-
ified internal clock precision) and depends on
the external clock through Q(s|r). When
AT, iernas = 0, then Q(s|r) = P(sr), so that
I terna DecOmes equal to the full pattern infor-
mation I in Equation 1. In particular, when
AT rerna = 0and AT, . = 24 ms, Equation
5 is equal to the spike count information in the
sliding window. When instead AT, . na 1S
greater than 0, then I,.,,.; does not necessarily
equal the information in Equation 1 and is a lower
bound to the information that can be extracted by
a decoder that works with clock imprecisions
AT, external and AT, internal> respeCtiveIY'

Bias correction. The probabilities in Equation
1 were estimated from a limited number of ex-
perimental trials per stimulus, N = 100, potentially leading to an upward
bias in information (Panzeri and Treves, 1996). We used a number of
bias-correction procedures (Panzeri and Treves, 1996; Strong et al., 1998;
Nemenman et al., 2004). Because they all gave almost identical results, we
present only results based on the “quadratic extrapolation” correction
procedure of Strong et al. (1998). The bias problem was much more
prominent for spike patterns than for spike counts because computing
spike pattern probabilities involves sampling a higher-dimensional re-
sponse space. To rule out the possibility that spike pattern information
was artificially inflated upward by failure to eliminate all of the bias, we
recomputed spike pattern information using a data-robust lower bound
that is virtually unbiased and tight in most cases, as follows (for details,
see Pola et al., 2005). First, we “binarized” the spike pattern word by
setting the letter to 1 in the rare occasions in which there was more than
one spike per bin; this reduced the bias and could not increase informa-
tion. Second, instead of computing the spike pattern information
through Equation 1, we computed it through a simplified formula (Pola
etal., 2005, their Eq. 5.12), which is an unbiased lower bound to the spike
pattern information. We then verified that the values of the lower bound
approximation were not statistically different from I'in Equation 1 (¢ test,
p > 0.9). This suggests that our robust lower bound was a tight approx-
imation to the true spike pattern information in Equation 1.

Data manipulation both for experimental and analytical work was in
Matlab (MathWorks, Natick, MA).

Figure 1.

Results

Features of neuronal responses to texture stimuli

In anesthetized rats, we stimulated the facial nerve to produce
forward—backward whisking (Brown and Waite, 1974; Szwed et
al., 2003) across textures and measured the accompanying vibra-
tions of the whisker shaft. There were six experimental conditions
(Fig. 1A). In free whisk, the whisker moved forward and back-
ward through the air, at the rate of eight whisking cycles per

B Recording Sites

C Neuronal response

cop L= P280 <%t
Ganglion ] || l
all
Cortex
S - ;..,.______._IIII..i
0 Protraction Retraction 125 ms 0 Protraction Retraction 125 ms

Texture stimuli and neuronal responses. A, Stimuli consisted of whisker trajectories previously recorded during free
whisking and contact with five different surfaces. B, Simplified scheme of the sensory pathway. The primary afferent neuron has
a cell body in the ganglion (1) and projects into the brainstem trigeminal nuclei (2). The second-order neuron projects to the
contralateral thalamus (3). The thalamic neuron projects to barrel cortex (4). The data consist of ganglion and cortical activity. C,
Spike trains recorded from ganglion (top row) and cortex (bottom row) in response to 10 randomly selected whisker sweeps along
the CD surface (left column) and P280 sandpaper (right column). PSTHs below the raster plots represent summated activity across
all 100 trials. The timescale corresponds to the two phases, protraction and retraction, of a 125 ms whisk cycle. Note that the
cortical cluster responded during both phases of whisker movement and the ganglion cell only during retraction.

second, without contacting any object; in the five other condi-
tions, the whisker moved at eight cycles per second, in contact
with the following surfaces: a smooth compact disk (CD) and
four different sandpapers (P1200, P400, P280, and P100, ordered
by increasing grain size). We later used the vibrations as a stim-
ulus set for a second group of rats, “playing back” the vibrations
in a randomized sequence while recording neuronal activity at
two stages of the sensory pathway: the trigeminal ganglion cells
(first-order neurons that innervate the sensory receptors) and the
barrel cortex neurons, which are the first site of cortical integra-
tion (Fig. 1B). Recordings in the ganglion were single units,
whereas cortical recordings consisted of a small cluster of neu-
rons at each electrode.

Figure 1C illustrates neuronal activity recorded simulta-
neously at two levels of the pathway in response to CD (left col-
umn) and P280 (right column). Stimulus site was whisker E4.
Several potential texture coding mechanisms are evident. Both
the ganglion neuron (top row) and the cortical cluster (bottom
row) responded with a greater number of spikes on each trial to
P280: clearly, an observer could read off spike count per whisk to
distinguish the stimuli. Beyond firing rate, it is clear that the
temporal sequence of spikes differed according to the texture. For
example, for the ganglion cell, CD contact gave rise to one peak in
the peristimulus time histogram (PSTH), followed at a short tem-
poral interval by a smaller peak; P280 resulted in three separate
PSTH peaks with slightly longer intervals between them. For the
cortical cluster, the different textures appear to have evoked re-
sponses with differing spike sequences, yet the impact of spike
timing in representing textures cannot be evaluated solely by
visual inspection.

Although the spike counts and temporal patterns are most
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visible in the PSTH from summated trials, sensory judgments
usually are made from single contacts or small numbers of con-
tacts (Carvell and Simons, 1990) (M. von Heimendahl, personal
communication). Both the ganglion and cortex neurons exhib-
ited trial-to-trial variations, which pose limits to how well the
stimulus could be identified on a single trial. Thus, the key ques-
tion in coding is not whether the average neuronal responses
differed according to the stimulus; rather, what was the scale of
this difference compared with the trial-by-trial response variabil-
ity? We now investigate how reliably stimuli were encoded in a
single whisk and which features of the neuronal response contrib-
uted to stimulus discriminability.

In this report, we present a detailed analysis of the cortical
neuronal cluster and the ganglion neuron illustrated above. We
then show the generality of their principal results to the full set of
recorded neurons.

Spike counts

Behavioral experiments indicate that rats require only a few
whisks over a texture to perform a roughness discrimination task.
We analyzed the spikes recorded during single whisking cycles
whose time course is given at the top of Figure 2A. Each whisk
lasted 125 ms and consisted of protraction (0—60 ms) and retrac-
tion (60—125 ms). Aligned below the whisk cycle time course are
the spike trains of the cortical cell cluster for trial numbers 51-55
on two texture stimuli, CD (black traces) and P280 (gray traces).

How would the stimulus discrimination proficiency of a spike
count observer develop along the time course of stimulus presen-
tation? We evaluated this by measuring the cumulative spike
count: the buildup of spikes from stimulus onset until some time
T, at which point the discrimination would be made. The mech-
anism is illustrated schematically along the time axis at the bot-
tom of Figure 2A. A cumulative spike count code can be evalu-
ated over any accumulation time (Fig. 2A, bottom, ;). One
important time point to consider is for T equal to the end of the
stimulus presentation (t, along the time axis); in this case, the cumu-
lative spike count is equivalent to the whole-stimulus spike count.
This is the most commonly used activity measure in the study of
stimulus discrimination and behavior (Britten et al., 1992; Gold and
Shadlen, 2001; Luna et al., 2005) and we consider it first.

Frequencies of spike counts accumulated across the entire
whisk (0—125 ms), from 100 trials on textures CD (black) and
P280 (gray), are given in the left panel of Figure 2 B. For P280, the
spike count distribution was shifted to higher values compared
with the distribution for CD. From this, we can derive the condi-
tional probability distributions: the probabilities that either of the
two stimuli was presented given that a particular spike count
occurred (Fig. 2 B, right). Observing from zero to two spikes on a
single trial would lead an observer to assign the stimulus with
higher probability to CD, whereas observing three or more spikes
would lead to assignment of P280.

The elements of the conditional probability distributions pro-
vide an intuitive account for how spike counts can support stim-
ulus discrimination and appear in the calculation of the mutual
information (Eq. 1).

Information carried by spike counts

We now apply information analyses to quantify how the cumu-
lative spike count distributions could support texture discrimi-
nations and how information varied dynamically across the re-
sponse period. Information carried by the cortical cluster about
the pairwise discrimination CD-P280 (the same stimulus pair
shown in Fig. 2) is given in the left panel of Figure 3A. Stimulus
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Figure 2.  Texture-speific spike counts. A, Cortical activity during five successive trials on
two textures, (D (black) and P280 (gray). The scale under the bottom panel indicates the time
from stimulus onset until T over which cumulative spike counts can be computed. B, Left,
Distribution of whole-whisk spike counts measured from 100 presentations of (D (black) and
P280 (gray). Right, Conditional probabilities of the two stimuli of interest given an observed
value of spike count.

entropy was 1 bit. Information showed a rapid rise beginning at 7
ms and reached a peak of nearly 0.6 bits during whisker protrac-
tion, ~23 ms into the whisk cycle. As the whisker rested in the
forward position, cumulative information decreased slightly be-
fore rebounding at 100—125 ms as a result of stimulus-evoked
responses during retraction.

Information carried about the total stimulus set (six different
stimuli) is given in the right panel of Figure 3A. Stimulus entropy
was 2.58 bits. Similar to the pairwise case, information rose rap-
idly and reached a peak at 16 ms. A second wave of information
was transmitted during whisker retraction.

We can better understand the time course of information
present in cortical spike trains by examining subcortical inputs.
For the ganglion cell recorded simultaneously with the cortical
cluster, spike count information about CD versus P280 is given in
the left panel of Figure 3B. Because the neuron was sensitive only
to whisker retraction, information was at baseline until 90 ms,
when it rose sharply as the whisker moved backward. At the end
of the response period, the cumulative information was ~0.9
bits. Information carried about the total stimulus set is given in
the right panel (solid line). Absence of information during whis-
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Figure3.  Spike countinformation. 4, Cumulative information carried by the cortical cluster

during presentation of stimulus pair CD—P280 (left) and the total stimulus set (right). To high-
lightinformation accumulation in relation to the whisk cycle, the protraction phase is shaded. In
thisand all figures, time steps were 1 ms. B, Cumulative information carried by the ganglion cell
during presentation of stimulus pair (D—P280 (left) and the total stimulus set (right, solid line).
During the protraction phase (shaded), the cell carried no information. A second ganglion cell
carried information only during whisker protraction (right, dashed line). C, Correlation between
ganglion and cortex spike times (top trace), and correlation between the rate of ganglion and
cortexinformation flow (bottom trace). D, Matrix of all pairwise information values for ganglion
(top left) and cortex (bottom right). Circles indicate the stimulus pair P400—P1200. Note the
different information scales for the two plots.

ker protraction resulted from the complete silence of the neuron
during this phase of the whisking cycle.

Whereas the cortical cluster carried information during both
whisking phases, the ganglion cell was directionally selective (re-
traction only) for both the stimulus pair CD-P280 and the total
stimulus set. The dataset included a comparable number of gan-
glion cells with opposing phase preference. For one such cell,
cumulative information about the total stimulus set is illustrated
by the dashed line in Figure 3B, right panel. Information rose
sharply within a few milliseconds of whisker protraction onset.
The constant value of cumulative information from 40 ms on-
ward reflects the fact that this “protraction cell” added no additional
spikes during whisker retraction. Although the protraction cell was
not recorded simultaneously, it is nevertheless clear that the time
course of information seen in cortex could result from the integra-
tion of cells with time courses of information like those of the two
ganglion cells.

Arabzadeh et al. e Encoding of Texture Information in Spike Trains

Because one of the two illustrated ganglion cells (Fig. 3B, solid
lines) was recorded simultaneously with the cortical cluster, it
was possible to directly tap into signal transmission along the
ascending sensory pathway. We measured (1) the correlation be-
tween ganglion and cortical spike times and (2) the correlation
between the rate of ganglion and cortical information flow. Rate
of information flow was computed as the derivative in 1 ms steps
of the cumulative information (see Materials and Methods).
Spike correlations are best examined during white-noise stimu-
lation because the random stimulus variation over time prevents
the appearance of cross-correlation peaks attributable solely to
stimulus structure. The top plot of Figure 3C shows the spike time
cross-correlogram between ganglion and cortex (the reference
signal) constructed from a 10 min period of velocity white noise
(see Materials and Methods). Ganglion cell spikes preceded cor-
tical cell spikes by 5-7 ms, consistent with the known transmis-
sion time between the two centers. The bottom plot of Figure 3C
shows the information flow cross-correlogram between ganglion
and cortex, drawn from the total texture stimulus set (Fig. 3A, B,
right columns), and its peak is exactly aligned with the ganglion—
cortex spike correlogram. The numbers of spikes in cortex, in
quantities specific to certain stimuli, thus appear to be the result
of rapid integration of ascending signals, such that the informa-
tive message emerges in cortex after a delay equivalent to the
pathway transmission time. The cortical representation of tex-
ture, at least as measured by this spike count of the cluster, does
not emerge from prolonged intracortical reverberations.

Coding efficiency is the ratio between measured information
and stimulus set entropy (Arabzadeh et al., 2004). For the gan-
glion cell, pairwise information between CD and P280, based on
whole-whisk spike counts, had an efficiency of 90% (0.9 bits
compared with stimulus entropy of 1 bit). Ganglion cell effi-
ciency for the total stimulus set was 48% (1.24 bits; stimulus
entropy, 2.58 bits). For the cortical cluster, coding efficiency was
44% for the selected stimulus pair and 14% for the total stimulus
set. The markedly higher efficiency for the CD-P280 stimulus
pair suggests that the spike counts evoked by other stimuli within
the set might have been poorly discriminable. To visualize the
heterogeneity of coding efficiency, we plotted the whole-whisk
(0-125 ms) cumulative spike count information for all 15 stim-
ulus pairs. Figure 3D illustrates pairwise stimulus discriminabil-
ity for the ganglion cell (top left) and the cortical cluster (bottom
right). Rows and columns are labeled by a stimulus, and colored
entries give the information available between the two corre-
sponding stimuli. For the ganglion cell, free whisk could be per-
fectly discriminated from all sandpaper textures (P100, P280,
P400, and P1200); information values were above 0.96 bits. Free
whisk versus CD could be discriminated slightly less reliably (0.72
bits). CD showed highly reliable discriminability against the re-
maining textures (0.65—0.9 bits). In contrast, all pairwise com-
parisons between P100, P280, P400, and P1200 resulted in much
lower discriminability.

To understand the distribution of pairwise information values
for the cortical cluster, we can posit three classes of stimuli along
a gradient: (1) free whisk and CD, (2) P1200 and P400, and (3)
P280 and P100 (the coarsest sandpapers) (Fig. 1A). For any dis-
crimination between classes 1 and 3, the neuronal response car-
ried a relatively high amount of information. For any discrimi-
nation between class 2 and either class 1 or 3, the neuronal
response carried an intermediate amount of information. For any
discrimination between textures within a class, the neuronal re-
sponse carried essentially no information. One such within-class
stimulus pair, P400-P1200, is highlighted by the circles in Figure
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terns. The three most frequent patterns for
each stimulus are shown on the right side
of Figure 4B (these same patterns were
present in the two sets of trials given in A).
From the relative frequencies of each spike
pattern, we can derive the conditional
probability distributions: the probabilities
that either of the two stimuli was presented
given that a particular spike pattern oc-
curred within the window of interest. Ob-
serving pattern numbers 48, 50, or 52 on a
single trial would lead an observer to assign

trial ——— Spike count Spike pattern
P1200 — 63 T
51 —\ ‘¢ 3 11110 1|0f0 [1T1 o] To]o]
52— AR J 1 3 1[1]ofo]1]o0 - -
53 —\ % 3 | |1[1]o]1[o]o = [[1JoJo[1]o] p P(P1200)= 1.0
54 =\ % 3 1|1]of1]ofo] s \_
\ P1200
55 =\ \ 2 | [1]1lo[ofofo| =] [1]1[ofojo]o]
=
®
) [T
[ | P20
S —— 0 E
= — |
0 t=92:116 ms 125 ms 0 80
# of occurrences
Figure4. Texture-specific spike patterns. A, Left, Ganglion activity during five successive trials on two textures, P1200 (black)

the stimulus with certainty to P1200,
whereas observing pattern numbers 5, 21, or
22 would lead an observer to assign the stim-
ulus to P400.

and P400 (gray). The box outlines a 24 ms sliding window spanning 92 to 116 ms along the whisk cycle (see time axis below spike

trains). The window is in turn subdivided into six bins of 4 ms. Middle, Spike counts during the indicated window did not
distinguish between the stimuli. Right, Spike patterns during the same window, in which binary values indicate the presence or
absence of a spike in each bin, discriminated between the stimuli. B, Distribution of observed spike patterns from 100 presenta-
tions of P1200 (black) and P400 (gray). “pattern #” refers to binary value of the 64 possible spike patterns. For each stimulus, the
three patterns with the highest number of occurrences are illustrated with their corresponding conditional probabilities.

3D. We will now test whether stimulus pairs such as this, indis-
criminable by spike count alone, may become discriminable by
spike patterns.

Spike patterns

The preceding section described the amount of information
available to a decoder that discriminated between stimuli based
purely on the number of spikes accumulated over a period lasting
some tens or hundreds of milliseconds. In contrast, a decoder
may be sensitive to “spike patterns:” the specific temporal se-
quences of spikes across the response. If so, then such patterns
might convey additional information beyond that present in the
spike count (MacKay and McCulloch, 1952). To illustrate how
spike patterns can be texture specific when spike counts are not,
Figure 4 illustrates both ways of characterizing spike trains. The
data are from the ganglion cell discussed previously. In A, re-
sponses to textures P1200 and P400 (the two stimuli circled in
Fig. 3D) are given for trials 51-55. A temporal window of 24 ms
length was shifted along the spike train in steps of 1 ms; the
window is shown at a position of 92—-116 ms. To the right of the
spike train, spike counts in this window are given for five trials.
Because the numbers of spikes in this window did not differ
according to texture, spike counts could not support reliable dis-
crimination. To consider a potential spike pattern code, the win-
dow was subdivided into six bins of 4 ms, and the occurrence or
absence of a spike in each bin was registered as 1 or 0 (see Mate-
rials and Methods). Now the response in the window of interest is
a spike sequence on each trial (Fig. 4 A, right).

The firing patterns are informative, of course, only if they
occur reliably and in a stimulus-specific manner across a large
number of trials. In an analogous procedure to spike counts, the
reliability of patterns can be assessed by determining how fre-
quently each possible pattern occurred across 100 trials. A pattern
was designated by the decimal value of the base 2 word; for ex-
ample, 01 010 1 was called pattern number 21. With six digits,
there are 64 patterns with decimal values going from 0 (00000
0)to 63 (11111 1).InFigure 4B, the vertical axis gives pattern
number and the horizontal axis the number of occurrences across
100 trials for the window position of interest, 92-116 ms. It is
evident that P1200 and P400 each induced distinctive spike pat-

Information carried by spike patterns
Having seen the mechanism through
which a temporal sequence of spikes can
improve texture discriminations, we now
present the spike pattern information car-
ried by the same ganglion and cortical
neurons examined previously. We applied a 24 ms sliding win-
dow, subdivided into six bins of 4 ms, and the occurrence or
absence of a spike in each bin was registered as 1 or 0 (see Mate-
rials and Methods). Figure 5A plots the time course of pattern
information for the ganglion cell about the stimulus pair P1200—
P400. At ~95 ms, pattern information reached 1 bit (thus able to
support perfect discriminability) and remained there. The
whole-whisk spike count information about this stimulus pair is
indicated by the arrow (Fig. 3D, circled value), and it is evident
that the spike pattern yielded substantially more information
than did the spike count alone.

The right panel in Figure 5A plots the information of ganglion
cell about the total stimulus set. Peak spike pattern information
reached the entropy of the stimulus set (2.58 bits). In contrast, the
whole-whisk spike count information was ~1.2 bits (arrow).

Figure 5B presents the same analysis for the simultaneously
recorded cortical cell cluster. For the stimulus pair P1200-P400
(left panel), pattern information approached 0.7 bits during
whisker protraction and ~0.45 bits during whisker retraction.
The two phases of the whisk cycle are now readily apparent as two
discrete epochs of high information flow. These values can be
contrasted with the absence of whole-whisk spike count informa-
tion (see arrow near 0). For the total stimulus set, the pattern
information of the cortical cluster reached a peak value of ~0.75
bits during protraction and 1 bit during retraction (right panel).
Whole-whisk spike count information was ~0.4 bits (arrow). In
summary, as was found for the ganglion cell, the ongoing spike
pattern carried much more information than did the number of
spikes across the entire stimulus.

To assess the heterogeneity across the whole-stimulus set, Fig-
ure 5C illustrates the peak spike pattern information about each
stimulus pair. For the ganglion cell (top left), peak information
values for all pairwise discriminations were 1 bit (errorless). For
the cortical cluster (bottom right), peak pattern information val-
ues ranged from 0.4 to 1 bit, with the exception of CD—free whisk,
which remained poorly discriminable (0.2 bits) even when pat-
terns were considered. A direct comparison between pairwise pat-
tern and count information can be made by computing the infor-
mation gain I,;, supported by spike pattern: Ly, = lyaern — Leount

(Fig. 5D). For the ganglion cell, some stimulus pairs for which
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whole-whisk spike count in.for.mation was A Ganglion B cortex
near 0 became perfectly discriminable when
patterns were considered (P400_P100 and P1200 - P400 i 1pit Total stimulus set 26 P1200 - P400 1t Total stimulus set 1bit
P1200-P280). The stimulus pair P1200— - I
P400 that was chosen for illustration in Fig- r" ) ‘ 'jﬂl J
ure 4 is another example of a pair whose dis- . | "nﬁ L [ "H VI
criminability was near 0 by spike count for e e =t 0 ol = e L
both ganglion and cortex (Fig. 3D) yet be- ' i i ' i i
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came highly discriminable when spike
patterns were considered. As a general
ru.l © .stlrn.u.h.ls palrs that showed high dis- C Peak spike pattern Information D Information gain
criminabilities by spike counts (e.g., free
whisk or CD vs P100 or P280) show little Ganglion Ganglion
additional gain by spike patterns. In con- - &g
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criminabilities by spike counts gave high P10 | |
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information on the internal clock and col ) RS Sl: o . ) S

the external clock
In the spike pattern analysis up to this
point, the information carried by any ob-
served pattern was computed according to
the stimulus—response conditional proba-
bilities within a single temporal window.
This is illustrated concretely in Figure 4, in
which the pattern detection window was
set at 92-116 ms. Optimal pattern decod-
ing thus assumes the observer’s capacity to
maintain two clocks: (1) the internal clock
would register the local temporal structure
of the spike pattern (e.g,010101),and (2)
the external clock would register the time of
the sliding window along the stimulus
course (e.g., 92-116 ms). The decoder would use both clocks to solve
the following problem: what is the probability of each stimulus given
thatpattern (010 10 1) has occurred during the window 92—116 ms?
It is important to consider how well a spike pattern decoder
could discriminate between stimuli if it could apply only subop-
timal temporal precision. Suppose a target neuron could accu-
rately register the position of the ongoing response window with
respect to the whisking cycle, yet its long membrane time con-
stants for integrating inputs (or some other physiological prop-
erty) would not permit it to distinguish incoming temporal pat-
terns; this would correspond to a precise external clock coupled
with an imprecise internal clock (Victor and Purpura, 1996;
Strong et al., 1998; Panzeri et al., 2001). To mimic this situation,
we measured information when the external clock was left intact
but the precision of the spike times within the ongoing window
was made progressively coarser. Precision of spike times is deter-
mined by bin size, referred to as AT, erna- TO widen ATy crnal
from 4 ms (the most precise internal clock evaluated) to 8 ms, we
randomly shuffled spike occurrences between adjoining pairs of 4
ms time bins. In practice, this created a 24 ms window comprising
three 8 ms bins, each time bin containing the same number of
spikes as previously. To further widen AT, ,,,.; from 8 to 12 ms,
we randomly shuffled spike occurrences between adjoining trip-
lets of 4 ms time bins; this created a 24 ms window with the same
number of spikes but with their timing registered with 12 ms
precision. Finally, we widened AT}, na to 24 ms. In this condi-
tion, all information in spike timing within the sliding window
was lost, whereas spike count information was unchanged.

Figure 5.

GOQ.\'L@ @ h@ ?‘1%% Q\%Q
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|1 B
. . .. . Free whisk
OOQ\'L@ ?h@ Q-'L?p Q\QQ
Cortex

Free whisk 0.2t

o

Cortex

Spike pattern information. 4, Time course of spike pattern information about stimulus pair P1200 —P400 (left) and
the total stimulus set (right) for the ganglion cell. Each point reports information in the 24 ms window (6 bins of 4 ms) preceding
the point. The horizontal arrow indicates the whole-whisk spike count information. B, Time course of spike pattern information
about the stimulus pair P1200 —P400 (left) and the total stimulus set (right) for the cortical cell cluster. Conventions asin A. €, For
each stimulus pair, peak spike pattern information is indicated for the ganglion cell (top left) and the cortical cluster (bottomright).
Stimulus pair P1200—P400, illustrated in A and B, is indicated by the circles. The ganglion cell carried errorless information about
this and all stimulus pairs. The cortical cluster carried ~0.7 bits. D, The gain in information available from the spike pattern
compared with the whole-whisk spike count, for the ganglion cell (top left) and the cortical cluster (bottom right). These values
result from the subtraction of the values in Figure 3D from those in C.

Results are given for the ganglion cell and the cortical cell
cluster in Figure 6, A and B, respectively. The information about
stimulus pair P1200-P400 is shown in the left panels and for the
total stimulus set in the middle panel. For clarity, the plots for
AT ernal = 8 ms are not illustrated. The degree of dependence of
information on internal clock precision was not dramatically dif-
ferent for ganglion and cortex, as summarized in the right panels
of Figure 6, A and B. Refining AT, ., from 8 to 4 ms caused a 23
and 11% increase in information for ganglion and cortex, respec-
tively. This suggests that cortical spike trains conserved the spik-
ing sequence as relayed to them by subcortical inputs at least up
to the 4 ms resolution tested here and that the precise temporal
structure of spikes carried stimulus information.

Suppose an observer receiving the spike trains had imperfect
signals regarding the time course of the whisking cycle (the so-
called “reference signal”) (Fee et al., 1997). We refer to the whisk-
ing signal by a general term, the external clock. In this case, the
observer must decode the stimulus by registering the internal
temporal structure of the spike pattern, while assigning the time
label to the current position of the sliding window with some
uncertainty. The problem to be solved is as follows (again referring
to the example in Fig. 4): what is the probability of each stimulus
given that a pattern (e.g., 0 1 0 1 0 1) has occurred at some poorly
defined temporal position within the stimulus cycle?

To see the effect of external clock imprecision, we measured
information (I in Materials and Methods; Eq. 4) when the
internal temporal structure of the spike pattern was left intact but
the time label assigned to the current position of the sliding win-
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Figure 6.  Effect of internal clock precision on available information. A, Time course of the ganglion cell pattern information

about stimulus pair P1200 —P400 (left) and the total stimulus set (middle). Each plot refers to a different degree of internal clock
precision; AT; oz IS indicated simply as AT. Right, Peak spike pattern information about the total stimulus set as a function of
internal clock precision (AT). B, Time course of the cortical cell cluster pattern information about the stimulus pair P1200 —P400
(left) and the total stimulus set (middle). Conventions are the same as in A. Right, Peak spike pattern information about the total
stimulus set as a function of internal clock precision (AT).
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Figure 7.  Effect of external clock precision on available information. A, Time course of the ganglion cell pattern information about

stimulus pair P1200—P400 (left) and the total stimulus set (middle). Each plot refers to a different degree of external clock precision;
AT emal 18 indicated simply as AT. Right, Peak spike pattern information about the total stimulus set as a function of external clock
precision (AT). B, Time course of the cortical cell cluster pattern information about stimulus pair P1200 —P400 (left) and the total stimulus
set (middle). Conventions are the same as in A. Right, Peak spike pattern information about the total stimulus set as a function of external
clock precision (AT). To prevent the expanded time window (widened by the amount AT,,.,/) from including spike pattems corre-
sponding to the preceding stimulus, the analysis of the external clock precision was performed on the second whisk responses (see
Materials and Methods). Information values corresponding to the first 24 ms of the whisk cycle are also excluded because they partially
correspond to the late retraction phase of the preceding whisk cycle and are not specific to the second whisk. Slight differences with Figure
5,Aand B, and the black traces of Figure 6 result from the fact that different whisks are analyzed.
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external clock was errorless (AT, erma = O
ms). The dark gray and light gray lines give
the ongoing spike pattern Information
when AT, ema = 18 and 78 ms, respec-
tively. Information diminished as external
clock uncertainty increased. A similar result
holds for the information about the total
stimulus set (Fig. 7A, middle). Still, it is im-
portant to note that peak ongoing spike pat-
tern information was >1 bit, even for
AT, ierna = 78. The right panel of Figure 7A
reports this peak information value for each
value of external clock precision, revealing a
gradual decrease as AT, increased. This
signifies that spike patterns could be de-
coded, although not optimally, even without
the presence of an external clock.

Figure 7B illustrates the effects of exter-
nal clock uncertainty on the cortical cell
cluster for the stimulus pair P1200—P400
(left panel) and for the total stimulus set
(middle panel). A striking difference from
the ganglion cell is that the capacity to ex-
tract information from the cortical spike
patterns became negligible when AT, a1
increased beyond ~40 ms. The plot in the
right panel indicates a steep decline in in-
formation even for small values of AT, ., a1-
This could occur if, for example, a given
spike pattern were characteristic of one tex-
ture if it occurred in a certain time window,
but were characteristic of another texture if
it occurred in a different time window.

Generalization of the principal results
to the entire neuronal population

To extend the main findings from the si-
multaneously recorded ganglion cell and
cortical cluster described previously, we
now consider the full set of recorded neu-
rons. Two issues are of interest: how much
information could be extracted from spike
counts, and how much additional infor-
mation could be extracted from spike pat-
terns compared with spike count? To what
degree does spike pattern information de-
pend on the precision of the observer’s in-
ternal and external clocks? For the total
stimulus set, the peak information carried
by the ongoing spike pattern versus that
carried by the whole-whisk spike count is
given in Figure 8 A for the 10 ganglion cells
(left panel) and 10 cortical clusters (right
panel). Mean values for the scatter plots

dow was made uncertain. In practice, this is equivalent to mea-
suring the stimulus specificity of a given pattern after the pattern
probability distributions have been pooled across a window position
widened by the amount AT, ,..» referred to as the external clock
uncertainty (see Materials and Methods). The expanded time win-
dow spanned both sides of the ongoing sliding window, with
AT, erma/2 on each side. In Figure 7A, left panel, the ganglion cell
responses are examined for the stimulus pair P1200—P400. The
black line gives the ongoing spike pattern information when the

are given by the red points; on average, the spike pattern gain was
150% for the ganglion and 110% for the cortex. At both stages of
the pathway, every recording showed some information gain
when decoded by pattern. For the ganglion cell examined in the
preceding sections, pattern information reached the entropy of
the stimulus set such that the spike train of this cell alone could
supply the decoder with perfect knowledge concerning which of
six possible stimuli was presented on a single trial (arrow).

With what temporal precision must a target population read
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Figure8. Countand pattern information for the full set of recorded neurons. 4, Scatter plot
of the whole-whisk spike count information versus peak spike pattern information about the
full stimulus set for 10 ganglion single units (left) and 10 cortical clusters (right). The neurons
analyzed in the preceding sections are indicated by arrows. Although they carried more infor-
mation than average (red points), their ratio of pattern to count information was comparable
with the rest of the dataset. B, Effect of both external clock precision (AT erma) and internal
clock precision (AT, erna) 0N Spike pattern information, averaged for the full set of ganglion
(left) and cortical (right) neurons. From the surface plots, the interaction between the two
clocks can be discerned.

off the spike train to obtain all of the available information in the
patterns? Figure 8 B illustrates the available texture information
as a function of the clock precision with which the observer de-
codes the spikes within the sliding 24 ms window. The surfaces
represent values averaged across the full dataset, the same neu-
rons as A. The points corresponding to maximum internal and
external clock precision (AT erna = 0 ms and AT, na = 4 ms)
are equivalent to the average peak pattern information values
(red points in A).

For both ganglion and cortical neurons, the precise sequence
of spikes within the window carried supplementary information
provided that the time of occurrence within the whisk cycle was
known. This is given by the strong dependence of information on
AT erna When AT .. = 0 ms. In particular, when AT, pa =
4 ms, the ganglion and cortical population carried on average 1.5
and 0.45 bits of information, respectively. Increasing AT, .;na tO
24 ms (i.e., considering only spike counts within the sliding win-
dow) caused a drop in information to 0.8 and 0.28 bits for gan-
glion and cortex, respectively. In general, then, spike counts car-
ried much less information than did patterns, whether the count
was made over a 24 ms sliding window or over the full whisking
cycle, as reported previously.

We consider next the dependence of information on the ex-
ternal clock imprecision. For the ganglion cells, the structure of
spike patterns carried information even if the observer had poor
knowledge of the time of pattern occurrence within the whisk
cycle. For AT, ernal = 78 ms, such that the time of occurrence of
the spike pattern would not even be specified as whisker protrac-
tion or retraction, the decoder could still obtain more informa-
tion than it could from spike count. In contrast, for cortex, there
was little dependence of information on internal clock precision
when external clock uncertainty was greater than ~ 18 ms: lack of
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dependence on AT ..na implies that pure spike count in the
ongoing window (AT, = 24 ms) was equally informative as

nternal
spike pattern (AT, ieina = 4 ms). In other words, the spike pat-
terns of cortical neurons carried significant amounts of addi-
tional Information only when the observer had access to a precise
external clock.

In conclusion, substantially different signals about texture can
be extracted from spike trains of ganglion and cortical depending
on the temporal precision available to the decoder. Information
increased as responses were considered as spike patterns with
progressively finer temporal precision. Moreover, the neurons
receiving input from the ganglion cells and the cortical cell clus-
ters could decode the patterns optimally if there were an indepen-
dent signal reporting when, in the course of the whisk cycle, the
spike patterns occurred; dependence on external clock was par-
ticularly strong for cortical spike trains. In Discussion, we will
argue that such pattern information could indeed be read off
because independent signals about whisking cycle are present in
barrel cortex.

Discussion
How much information is carried by spike count, and what is
its temporal profile?
Each trial [a 125 ms forward—backward movement of the whisker
(a whisk)] consisted of a texture-specific vibration (Hipp et al.,
2006). Response magnitudes in both ganglion and cortex are cor-
related with the integral of the velocity spectrogram across the
whisk [a quantity known as “equivalent noise level” (ENL) (Ar-
abzadeh et al., 2005)]. Thus, some pairs of texture vibrations with
widely separated ENL values evoked significantly different num-
bers of spikes. For the most discriminable pairs of stimuli, cumu-
lative spike counts over the whole whisk carried up to 1 bit of
information for the selected ganglion cell and 0.5 bits for the
cortical cluster (Fig. 3D).

What would be the optimal spike count decoding mechanism?
A common simplifying assumption is that sensory information is
conveyed by the number of spikes fired across the whole response
period (Britten et al., 1992; Gold and Shadlen, 2001), a quantity
captured by our whole-whisk spike count. However, recent stud-
ies suggest that cortical cell spike counts during the initial re-
sponse period better covary with the animal’s judgment of the
stimulus (Luna et al., 2005). Consistent with this idea, the cortical
spike trains illustrated here could support stimulus discrimina-
tion as well by the spike count from 0-30 ms (Fig. 3A) as they
could by the whole-stimulus spike count. This rapid time course
is consistent with the buildup of spike count information in rat
somatosensory cortex during simpler decoding problems, such as
the location of a stimulus site on the whisker pad (Petersen and
Diamond, 2000; Panzeri et al., 2001; Petersen et al., 2001, 2002)
and the forepaw (Foffani et al., 2004), or the velocity of a sinusoi-
dal vibration (Arabzadeh et al., 2003, 2004); it also agrees with
investigations in other sensory modalities in which the earliest
cortical responses carry large quantities of stimulus information
(Tovee et al., 1993; Buracas et al., 1998; Rolls et al., 1999; Fu-
rukawa and Middlebrooks, 2002).

How much additional information is conveyed by the
temporal pattern of spikes?

Spike timing codes were first conjectured on the basis that they
could constitute an additional information channel beyond that
available in the spike count, thus increasing the channel capacity
of the nervous system (MacKay and McCulloch, 1952). Solid
evidence for spike pattern information in mammalian cortex has
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been difficult to obtain, and it was thus suggested that the precise
pattern of spikes across the stimulus presentation reflects random
processes, unrelated to the stimuli (Shadlen and Newsome,
1994). Subsequently, experiments using simplified, stereotyped
stimuli were able to reveal the presence of spike timing informa-
tion in mammalian cortex in limited quantities [i.e., <50% above
that in spike count alone (Victor and Purpura, 1996; Panzeri et
al., 2001, Foffani et al., 2004)]. In our dataset, the motivation to
test the potential information in spike patterns was particularly
compelling given that an observer using only spike counts would
completely fail in some texture judgments (Fig. 3D). The result
was that spike patterns could allow some stimulus discrimina-
tions to be performed reliably, even when those discriminations
were “noisy” by spike count alone.

In the present study, spike patterns conveyed much more extra
information (beyond counts) than was found using simplified, ste-
reotyped stimuli; it is tempting to conjecture that, as stimulus com-
plexity increases, the nervous system resorts increasingly to the extra
timing channel to increase its information capacity.

Although the spike times carried informative signals about the
texture, it should be noted that the spike timing patterns were not
generated ex novo in the brain but rather emerged in the stimulus
itself. Rather than converting a spatial stimulus into a temporal
code (Panzeri et al., 2001; Petersen et al., 2001; Foffani et al., 2004;
Johansson and Birznieks, 2004 ), the whisker system conserves the
velocity profile of the vibration itself (Arabzadeh et al., 2005;
Hipp et al., 2006) in the temporal pattern of spikes.

What is the dependence of spike pattern information on

clock precision?

Studies of information transmission normally consider “ideal
observers” that are able to extract all available signals in the spike
train. Following this convention, we first evaluated spike pattern
information by considering an observer with maximal internal
clock and external clock precision; in other words, the observer
could register spike times with precision corresponding to six
time bins of 4 ms each and also had knowledge of when the spike
pattern occurred within the course of a single trial (Fig. 5). Spike
pattern information was >100% greater than spike count infor-
mation. Still, it is notable that cortical information was less sen-
sitive to errors in internal timing than was that of the trigeminal
ganglion (Fig. 8). Although the functional significance is a matter of
speculation, one possibility is suggested by the fact that, when a whis-
ker contacts a textured surface multiple times under controlled arti-
ficial whisking (Arabzadeh et al., 2005) and presumably under nat-
ural behavioral conditions, there are minute differences in the
precise vibration profile on each contact. Cortical neurons, by their
reduced sensitivity to such minute differences, might carry a message
that is more informative about stimulus identity (stable temporal
features common to the multiple trials) while avoiding information
loss attributable to trial-to-trial temporal variation.

We then evaluated the information that would be available to
an observer with nonmaximal internal clock precision. Internal
clock degradation, generated by increasing AT, ..o from 4 to 8,
12, and 24 ms, caused a reduction in information content. This
means that a decoder could gain full pattern information only if it
could register a sequence of incoming spikes with at least 4 ms
precision. The fact that there were still significant information
gains for both ganglion and cortex when AT}, ... Was reduced
from 8 to 4 ms (Fig. 6, right column) suggests that the true pre-
cision of the spike train may exceed 4 ms.

We then evaluated the information that would be available to
an observer with nonmaximal external clock precision: the ob-
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server might register the local structure of the spike pattern but
not the time of the pattern within the whisk cycle. External clock
degradation, generated by adding AT, a1 to the time window
across which the spike pattern probability distribution was com-
piled, caused a reduction in information content. Given its de-
pendence on the external clock, could spike pattern information
be fully exploited? Recently, evidence has been accumulating for
a “whisking signal” in barrel cortex with good temporal precision
(Fee et al., 1997; O’Connor et al., 2002; Ganguly and Kleinfeld,
2004). The external clock signal appears to arise by both motor
copy (Ahrens and Kleinfeld, 2004) and sensory signals from the
whisker follicle (Szwed et al., 2003). Full spike pattern informa-
tion could be recovered by integration of the whisking signal
together with the spike pattern. Targets of barrel cortex include
motor cortex, basal ganglia, pons, and cerebellum. Only those
populations possessing knowledge of the external clock would be
able to optimally extract texture information from spike patterns.

Connection to behavior

The current experiments were run under conditions in which the
sensory input was precisely controlled and yet resembled as
closely as possible what occurs during natural tactile behavior. It
is difficult at this point to relate the information available in spike
trains to the rats’ tactile capacities. For our stimuli, the mean size
of the sandpaper grains was 15, 35, 52, or 162 um. Rats can
discriminate between sandpapers with grain sizes of 400 and 2000
um with over 85% performance (Guic-Robles et al., 1989); mice
can reliably discriminate between sandpapers with grain sizes 50
and 190 um (Cybulska-Klosowicz and Kossut, 2001). However,
the selected stimulus pairs were presented to the animals at the
outset of training, and the experimental design did not include a
ladder protocol for estimating threshold. It is safe to assume that
rats could learn to make much finer discriminations than those
cited above and could likely be trained to discriminate between
most stimulus pairs in the present work.

Likewise, it is not possible to state how many whisking cycles,
and what kinetics, rats would use to perform such discrimina-
tions during behavioral testing. There is evidence for changes in
whisking motor strategy according to the discrimination task. In
general, rats whisk a greater number of times, and with higher
speed, when the task is difficult (Carvell and Simons, 1995). In
our experience, rats perform an easy texture discrimination task
by directing approximately two to four whisks along the surface of
interest (M. von Heimendahl, unpublished observations). We be-
lieve, therefore, that the number of whisk cycles examined in the
present analysis approximates the behaviorally relevant quantity.

Still, the ultimate measure of sensory coding mechanisms re-
quires investigations of behaving animals. In particular, one must
look for the connection between neuronal spike trains and sen-
sory discriminations. If, for example, a rat could be trained to
discriminate between two textures that evoke equivalent firing
rates but distinctive firing patterns and the spike pattern present
in single trials could predict behavior, this would constitute
strong evidence that spike patterns encode texture.
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