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Statistical decision theory suggests that choosing an ideal action requires taking several factors into account: (1) prior knowledge of the
probability of various world states, (2) sensory information concerning the world state, (3) the probability of outcomes given a choice of
action, and (4) the loss or gain associated with those outcomes. In previous work, we found that, in many circumstances, humans act like
ideal decision makers in planning a reaching movement. They select a movement aim point that maximizes expected gain, thus taking
into account outcome uncertainty (motor noise) and the consequences of their actions. Here, we ask whether humans can optimally
combine prior knowledge and uncertain sensory information in planning a reach. Subjects rapidly pointed at unseen targets, indicated
with dots drawn from a distribution centered on the invisible target location. Target location had a prior distribution, the form of which
was known to the subject. We varied the number of dots and hence target spatial uncertainty. An analysis of the sources of uncertainty
impacting performance in this task indicated that the optimal strategy was to aim between the mean of the prior (the screen center) and
the mean stimulus location (centroid of the dot cloud). With increased target location uncertainty, the aim point should have moved
closer to the prior. Subjects used near-optimal strategies, combining stimulus uncertainty and prior information appropriately. Observer
behavior was well modeled as having three additional sources of inefficiency originating in the motor system, calculation of centroid
location, and calculation of aim points.
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Introduction
Statistical decision theory delineates four factors that should
be taken into account in choosing an action: (1) prior knowl-
edge, (2) sensory data, (3) uncertainty of the outcomes of
planned actions, and (4) costs and benefits of the actual out-
comes of actions (Blackwell and Girshick, 1954; Ferguson,
1967; Berger, 1985).

Because sensory data are corrupted by noise, estimation of
world properties is necessarily uncertain. An observer may
choose to combine several available sources of sensory informa-
tion to achieve an estimate of a world property having minimum
variance or maximum likelihood (ML). However, given addi-
tional prior information concerning the probability of various
world states, one can combine prior and sensory information
using Bayesian methods and generate estimates of possible world
states having maximum a posteriori probability (MAP). Bayesian
methods are currently popular as a model of perception (Knill
and Richards, 1996; Mamassian et al., 2002; Kersten et al., 2004),
using such priors as a preference for slower speeds (Weiss et al.,
2002), illumination from above (Mamassian and Landy, 1998;
Sun and Perona, 1998), convexity, and view from above (Mamas-
sian and Landy, 2001).

Decisions or actions may result in variable outcomes. For ex-
ample, Trommershäuser et al. (2003a,b) asked subjects to point
rapidly at targets while avoiding nearby penalty regions. Because
movements were rapid, they were also noisy. Subjects’ move-
ments were nearly optimal in the sense of choosing an aim point
that maximized expected gain (MEG). Subjects also modified
aim points appropriately when fingertip location feedback was
artificially altered, suggesting they estimated their own move-
ment outcome uncertainty (Trommershäuser et al., 2005).

ML or MAP estimation may appear ad hoc. However, because
actions have costly or beneficial consequences, estimation meth-
ods can be described as optimal only with respect to a particular
loss function. If one wishes to maximize the percentage of correct
estimates, then ML and MAP are ideal methods (Maloney, 2002).
If the costs and benefits of various outcomes are more compli-
cated, the ideal method is MEG. Importantly, without a known
loss function, the optimal course of action is undefined.

The work cited above suggests that observers combine sensory
and prior information, but there has been very little work to
determine whether humans can combine uncertain sensory and
prior information optimally. Previously, Körding and Wolpert
(2004a) concluded that humans behaved in a manner that was
qualitatively consistent with a Bayesian computation. Subjects
relied more on prior information as sensory uncertainty in-
creased. But, sensory uncertainty was not measured; hence, it
could not be established whether subjects behaved optimally.

Here, subjects performed a rapid pointing movement at an
uncertain target location, with additional information concern-
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ing the prior probability distribution of target locations. We con-
sider the combination of prior information with stimulus uncer-
tainty and also other sources of error that affect optimal behavior
as well as those that only affect overall performance. By measur-
ing each source of error in our task and analyzing their impact on
the outcome of each movement, we quantitatively demonstrate
that human performance results from a nearly optimal combina-
tion of sensory and prior information.

Materials and Methods
Task
Subjects performed rapid pointing movements to a screen, trying to hit
targets. The task was described to subjects using the following allegory.
They were told that a coin had been inadvertently tossed into a fountain,
and they were to attempt to retrieve it. Because the water was deep, they
had to reach the object quickly before it sank. Subjects did not see the
target itself, but only saw the resulting splash. They were also told that the
person who threw the coin was aiming, albeit imperfectly, at the center of
the fountain. Thus, they were effectively told to use both uncertain sen-
sory information (the splash) and prior information (the aim and accu-
racy of the thrower). Subjects were given information about the prior
distribution and were trained on the timing requirements of the task.
Subjects were paid a bonus for good performance in the task.

Apparatus
Subjects were seated in a dimly lit room with the head positioned in a
chin and forehead rest in front of a transparent polycarbonate screen
mounted vertically just in front of a 21 inch computer monitor [Sony
(Tokyo, Japan) Multiscan G500, 1920 � 1440 pixels, 85 Hz]. The viewing
distance was 42.5 cm. An Optotrak (Northern Digital, Waterloo, On-
tario, Canada) three-dimensional motion capture system (with two
three-camera heads) was used to measure the position of the subject’s
right index finger. The camera heads were located above and to the left
and right of the subject. Three infrared emitting diodes (IREDs) were
located on a small (0.75 � 7 cm) wing, bent 20° at the center, attached to
a ring that was slid to the distal joint of the right index finger. Position
data for each IRED were recorded at 200 Hz. The cameras were spatially
calibrated before each experimental run, providing root-mean-squared
accuracy of 0.1 mm within the volume immediately surrounding the
subject and monitor apparatus (�2 m 3). A custom aluminum table se-
cured the monitor and polycarbonate screen. The screen was machined
to accurately locate four IRED markers. A calibration procedure was
repeated before each experimental run to ensure that the monitor display

was in register with the Optotrak system, based
on the calibration screen and an additional
IRED located at the front edge of the table. The
experiment was run using the Psychophysics
Toolbox software (Brainard, 1997; Pelli, 1997)
and the Northern Digital software library (for
controlling the Optotrak) on a Pentium III Dell
Precision workstation.

Stimuli
In an initial training session, target locations
were chosen randomly and uniformly from a
16 � 10 cm rectangle centered on the screen. In
the experimental session, target locations were
chosen from an isotropic two-dimensional
Gaussian distribution (SD of this prior proba-
bility distribution for target location was �p � 2
cm) centered on the screen (the prior distribu-
tion). Also in the experimental session, a white
bivariate Gaussian blob (�p � 2 cm) with cross-
hairs at its center was displayed centered on the
screen to provide a visual representation of the
prior distribution. Next, in both training and
experimental sessions, the locations of N sam-
ple dots were chosen randomly and indepen-
dently from an isotropic two-dimensional
Gaussian distribution centered on the target lo-

cation (with SD �d � 4 cm). Sample dots were displayed as black dots
(0.3 cm diameter) on a gray background (Fig. 1). The target itself was not
displayed but was a 1.3 cm radius circle to which subjects attempted to
point.

Procedure
Training session. Subjects viewed an animation in which the target ap-
peared (2.6 cm diameter, colored green), followed by N � 32 sample
dots. They were told the allegory of a coin being tossed into a fountain,
with the dots representing the resulting splash. The animation was iden-
tical to the stimuli used in the training session except for the display of the
target itself. Subjects viewed the target and sample dots five times. They
were then told “more or less water might splash up,” and watched 15
additional examples where N � 2, 4, 8, 16, or 32, chosen randomly. After
watching the animation, subjects were instructed: “In the experiment,
you’ll see the splash, and your job will be to point quickly at where the
coin landed.”

The timing of each training trial was as follows. First, sample dots were
displayed, followed 500 ms later by a brief tone (50 ms) indicating that
the subject could begin the reach. Movement time was defined as the time
elapsed from when the fingertip passed through the start plane (located at
the front edge of the table, parallel to the screen) until it reached the
screen. If the movement time was longer than 700 ms, a timeout penalty
was imposed. During the reach, a light gray disk (0.2 cm diameter) indi-
cated the position of the fingertip projected orthogonally onto the screen.
After completing the reach, feedback was given: the target was displayed
(green, as in the animation), and a red dot (0.2 cm diameter) indicated
the end point of the reach (for display purposes only; end points them-
selves had no size). Auditory feedback indicated whether or not the target
was hit, and whether the subject had timed out. The next trial was trig-
gered when the subject moved his/her pointing finger behind the start
plane. Training included 30 trials each of N � 2, 4, 8, 16, and 32 sample
dots in random order. These 150 trials took �15 min to complete.

Experimental sessions. The analogy of tossing a coin into a fountain was
maintained along with new information that the coin was now being
tossed into the center of the fountain but with imperfect aim. Subjects
viewed an animation of 20 sample coin tosses: the target was displayed on
top of the white prior representation, and target location was chosen
from the two-dimensional Gaussian prior distribution of target location
(see above, Stimuli).

Following the animation, subjects were told again to attempt to touch
the target (unseen green coin) but with the added knowledge that it
would tend to be near the center of the white image (thrown inexpertly at

Figure 1. The sequence of events in a single experimental trial. a, A gray screen was displayed until the subject moved his or her
fingertip to the start position, which triggered the display of the prior distribution (b). After 1000 ms, the target dots were
displayed (c), followed 50 ms later by a tone indicating that the subject could begin the reach. d, Starting at the onset of the
movement, the subject had 700 ms to complete the reach to the screen. e, After the reach, auditory feedback was provided.

Tassinari et al. • Combining Priors and Noisy Cues J. Neurosci., October 4, 2006 • 26(40):10154 –10163 • 10155



the center of the screen). A trial began when the subject’s pointing finger
moved behind the table edge, which triggered the appearance of the prior
image, followed 1000 ms later by the sample dots. Trials were identical to
those of the training session, except that feedback was only given by
auditory indications of hit, miss, or timeout. No indication of target
location or finger position was given. Both the sample dots and white
Gaussian prior distribution display remained onscreen for the duration
of each trial. In addition to a base pay of $10.00/hour, subjects earned five
cents for each hit and lost 25 cents for each timeout. A running tally of
money earned was displayed after each trial. The sequence of events in a
single experimental trial is shown in Figure 1. Subjects ran six experimen-
tal blocks. In each block, subjects completed 30 trials in each of the five
conditions (2, 4, 8, 16, and 32 sample dots). Experimental blocks lasted
�15 min.

Motor noise control session. Each subject participated in an additional
control experiment designed to measure uncertainty of motor outcome.
On a second day, subjects made 150 reaches at 0.75-cm-long crosshairs;
the location of the crosshairs on each trial was chosen from a 16 � 10 cm
uniform distribution centered on the screen. The timing was identical to
the training session. Subjects were instructed to touch the center of the
crosshairs as accurately as possible. There was no feedback or extra pay
for accuracy in this session, but timeouts were indicated by a beep. Data
from trials resulting in a timeout were omitted from the analysis.

Centroid uncertainty control session. Following the motor control ses-
sion, additional trials were run to estimate subjects’ accuracy in pointing
at the centroid of a set of dots. Subjects participated in five blocks iden-
tical to the earlier training session but without feedback concerning the
finger and target positions. Thus, there were 150 reaches for each of the
five values of N. Subjects were instructed to aim at the centroid of the set
of dots. Target and sample dot locations were chosen randomly as in the
training session. No feedback was given other than to indicate timeouts.
Again, data from trials resulting in a timeout were omitted from the
analysis.

Subjects
Three subjects participated in the experiment. All participants had nor-
mal or corrected-to-normal vision and were members of the Department
of Psychology or Center for Neural Science at New York University.
Subjects gave informed consent before testing and were paid for their
participation. Ages ranged from 21 to 45, and all subjects were naive to
the purposes of the experiment.

Data analysis
Before each experimental session, subjects (fitted with IREDs) placed
their pointing finger at a calibration location on the screen while the
Optotrak recorded the location of the three IREDs on the finger 150
times. For each set of measurements, we computed the vectors from the
central IRED to the two others, the cross product of those vectors (thus
defining a coordinate system centered on the central IRED), and the
vector from the central IRED to the known calibration location. We
determined the best linear transformation that converted the three vec-
tors defining the coordinate frame into the vector indicating fingertip
location. On each trial, we recorded the three-dimensional positions of
the IREDs at a rate of 200 Hz and converted them into fingertip location
using this transformation. Trials in which the subject failed to reach the
screen within 700 ms of movement onset were excluded (8 of 2700 ex-
perimental trials). The focus of our analysis was the finger landing point
on the screen relative to the actual target location. Thus, end point data
were transformed from Optotrak to screen coordinates. Data were ana-
lyzed separately for each subject.

Results
We begin by defining the ideal aiming strategy that maximizes
gain in our task. We next discuss our subjects’ aim points as a
function of the number of sample dots, N, compared with the
ideal strategy. Next, we analyze several aspects of subjects’ perfor-
mance including suboptimal aiming strategy, motor noise, sen-
sory uncertainty, and errors in determining the aim point. We
found that a simulated subject with these characteristics results in

an efficiency (i.e., number of targets hit) indistinguishable from
the performance obtained from our subjects. We conclude with
an analysis of possible learning effects during the experimental
trials.

Model and conditions
In the experiment, the number of target dots, N, was varied. If the
observer perfectly determined the centroid of the set of dots, then
uncertainty of target location (based on the dot cloud) would be
given by the width of the centroid distribution (�d/�N). The
optimal movement strategy was to aim along the line connecting
the center of the screen (i.e., the best estimate of target location
before observing the sample dots) and the centroid of the dots
(the ML estimate of target location from the sample dots alone).
If little was known about the target location from the data (i.e., if
N was small), the estimate should have been closer to the center of
the prior distribution. As N increased, the centroid of the dots
became a more reliable estimate of target location, and the best
estimate of target location approached the centroid of the dots.

We determined the probability of hitting the target for various
choices of aim point by simulating our task. Five million trials
were simulated for each value of N. In each trial, we determined
the outcome of each of 100 aim points positioned evenly along
the line from the center of the prior to the centroid of the dots.
Target and dot locations were determined as in the experiment.
We repeated this simulation for varying levels of noise added to
the aim point, effectively adding simulated isotropic Gaussian
motor noise with SD �m. We also varied the width of the prior
distribution (�p) and the target dot distribution (�d). Let Dd be
the distance between the center of the prior distribution and the
centroid of the dots. An aim point will be described as the pro-
portion � of the way from the center of the prior to the centroid
of the dots at which the simulated subject aimed. For each value
of N, �p, �d, and Dd, we determined the optimal proportion �opt

that led to the maximum probability of hitting the target.
The results show that �opt is independent of Dd (results binned

by Dd are identical). Furthermore, �opt is determined by the ratio
of the SDs of the sampling distribution of the centroid and the
prior [i.e., as a function of (�d/�N)/�p]. Figure 2 shows hit
probability as a function of � and N for the values of �p and �d

Figure 2. Simulation results. The height of the surface represents the probability of a target
hit as a function of the number of target dots and the aim point from a simulation of the task.
The optimal aim strategy that maximizes the number of hits (for a given number of sample dots)
is indicated by the solid curve.
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used in the experiment. The filled circles and curve along the
ridge indicate the aim points resulting in maximum hit probabil-
ity and hence, in our task, maximum expected gain. That is, they
represent the optimal aim points �opt as a function of N for the
likelihood and prior probability distributions used in the exper-
iment. We repeated these simulations with a large range of motor
noise (from 0 to 16 cm variance) and found that increasing motor
noise �m flattened the probability surface but did not change the

location of the ridge. Also, we found neg-
ligible effects of target size on the aiming
strategies for sizes close to our target size.
In other words, target size affects the prob-
ability of a hit but does not change the aim-
ing strategy that maximizes that probabil-
ity. The values of �p and �d were chosen
because they produced a set of values of
�opt with a reasonably large range.

Aiming strategy
The simulation results discussed above
(see Model and conditions) suggest that
the optimal aiming strategy (defined by
the ridge of the surface in Fig. 2) is inde-
pendent of motor noise and of the distance
between the center of the prior distribu-
tion and the centroid of the dots; these
sources of uncertainty simply decrease the
maximum expected gain. The aim point
should move closer to the centroid of the
sample dots as the number of sample dots
is increased to maximize the probability of
hitting the target. Figure 3 shows the me-

dian normalized aim point as a function of N for three subjects.
The end point of the reach on each trial was projected onto the
line joining the center of the prior distribution and the centroid
of the sample dots. This location was expressed as a proportion �
of the distance Dd from the center of the prior distribution to the
centroid of the sample dots, and the median proportion over all
trials with a given value of N was determined. A value of zero
indicates that a subject aimed at the center of the prior distribu-
tion; a value of one indicates the subject aimed at the centroid of
the sample dots.

It is clear from Figure 3 that subjects changed their aim point
as a function of N. The dashed lines indicate the ideal aiming
strategy based on our simulations and the value �d/�p � 2 used to
generate the stimuli. One subject (SWW) used an aiming strategy
(set of � values) that was indistinguishable from optimal. The
other two subjects’ reaches were in qualitative agreement with the
predictions but compressed in range so that reaches were too
close to the centroid for small N and too close to the center of the
prior distribution for large N.

We determined above that the optimal strategy can be sum-
marized as a percentage shift � along the line between prior and
sample dot centroid that, for the fixed value of �d/�p used here, is
a function of N but is independent of the distance Dd from the
center of the prior to the sample dot centroid (see above, Model
and conditions). To test whether subjects used a shift � that was
independent of Dd, we computed an estimate of the distance Da

from the center of the prior to the aim point for different values of
Dd (binned at 5 mm intervals separately for each value of N). For
this purpose, the movement end points were plotted in a rotated
coordinate system (with the center of the prior at the origin, and
the centroid of the dots on the positive x-axis). Da was estimated
as the distance from the center of the prior to the centroid of the
movement end points in each bin. Figure 4 shows Da as a function
of Dd along with least-squares fitted lines constrained to pass
through the origin. Straight-line fits to the combined data shown
in Figure 4 account well for aim point as a function of Dd (all r 2 �
0.92), indicating that � was indeed independent of Dd. This anal-
ysis was repeated for individual subjects; r 2 never fell below 0.90
for three subjects and five values of N.

Figure 4. Median aim point distance Da (the distance from the center of the prior to the aim
point) as a function of the distance Dd from the center of the prior to the centroid of the dots. The
data are well fit by a model in which subjects maintained a constant shift proportion � inde-
pendent of Dd. We first performed a linear fit of the data and found that no y-intercepts were
significantly different from zero. Thus, we performed a second linear fit of the data constrained
to pass through the origin. Resulting r 2 values are negligibly smaller than those associated with
the unconstrained fit and never fell below 0.92 for any value of N. The data allowed for a range
of Dd from 0 to 7 cm (bin width, 0.5 cm). Data were averaged over subjects. The variability of the
data contributing to this plot is displayed in Figure 6 (dashed line).

Figure 3. Results of the main experiment. Filled circles indicate subjects’ median normalized landing point as a function of the
number of target dots. An ordinate value of zero indicates the subject aimed at the center of the prior; a value of 1 indicates a
median value at the centroid of the sample dots. Error bars represent the 95% confidence interval of the median. The dashed line
corresponds to the optimal aiming strategy for an ideal model that calculates the centroid of the dots perfectly. The dotted line
corresponds to the optimal aiming strategy for each subject based on an estimate of that subject’s variability in estimating the
centroid of the dots added to the sampling variability of the centroid as an estimate of the target location.
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Motor noise
Movements are variable and increasingly
so for faster movements [speed-accuracy
tradeoff (Meyer et al., 1982)]. We mea-
sured motor noise in a session separate
from the main experiment. Subjects
pointed at crosshairs under identical time
constraints as in the experiment sessions
(movements were self-initiated, and
movement time was limited under 700
ms). Under these conditions, motor noise
was far larger than the uncertainty in local-
izing the crosshairs. This motor noise in-
cluded the neural noise in motor com-
mands controlling the arm as well as
uncertainty in converting from retinal to exocentric coordinates.
For each subject, we measured the variability of end point loca-
tions (measured relative to the location of the crosshairs in each
trial) in the horizontal and vertical directions (�x and �y). In
previous investigations (Trommershäuser et al., 2003a,b, 2005)
using similar tasks to the one used in the current study, variability
in reach end points was isotropic over a wide range of conditions
and did not vary as a function of screen location or experimental
condition. Here, Levene (1960) tests indicated no significant dif-
ference between �x and �y ( p � 0.05). Therefore, for each sub-
ject, we calculated a pooled motor SD �m, represented in Figure 5
by the bottom dashed line.

Centroid localization noise
An ideal observer can calculate the location of the centroid of the
sample dots perfectly; such an observer will mislocalize the true
target position only because of uncertainty in the prior (�p), vari-
ability of dot locations (�d) or mislocalization of the dots them-
selves. However, our subjects may have miscalculated sample dot
centroids as well.

In a second separate session, we asked subjects to point at the
centroids of sets of random dots. The conditions were the same as
in the training and experimental sessions in terms of the number
of dots, the distribution from which they were drawn, and the
timing/speed constraints. However, subjects were required to
point at the centroid, not at an unseen target, and there was no
reference to an underlying prior distribution of targets. For each
number of sample dots, N, we calculated the SD of end point
locations (relative to the actual centroid) in the x- and
y-directions. Levene tests indicated no significant differences be-
tween �x and �y (Bonferroni correction, five tests per subject).
Accordingly, we calculated a pooled sensorimotor SD �s�m(N)
for each subject, plotted as the solid line in Figure 5.

Note the sharp increase in variability from the two-dot con-
dition to conditions with greater numbers of dots. Pointing at the
centroid in the two-dot condition is essentially a two-
dimensional spatial alignment task. Performance in the constit-
uent one-dimensional tasks (bisection and three-point align-
ment) is extremely precise (Klein and Levi, 1985). Jiang and Levi
(1991) found that performance in a two-dimensional alignment
task was almost as good as for these one-dimensional tasks. Thus,
it is not surprising that performance in the two-dot condition was
more precise than in conditions with a greater number of dots, in
which subjects must localize the centroid based on multiple dots.
This nonmonotonic performance as a function of the number of
dots has also been found for an alignment task (Hess et al., 1994).

Performance in this control task combined sensory uncer-
tainty in estimating the centroid location with motor noise from

performing the speeded reach. We assume that these noise
sources were independent. Thus, we estimated the sensory uncer-
tainty of observers’ estimates of centroid location as �s�N�
� 	� s�m

2 �N� � � m
2 
1/ 2 (Fig. 5, dotted line).

Unlike the other noise sources, such as motor noise, uncer-
tainty in calculating the sample dot centroid location impacts the
optimal aim point. Variability in the calculation of the centroid
compounds the uncertainty from the sampling variability of the
dots themselves. Thus, observers with large values of �s(N)
should rely more on prior information (and hence use a smaller
value of �). We recomputed each subject’s optimal strategy
based on their total uncertainty in estimating target location
	� s

2�N� � �� d
2/N�
1/ 2. This strategy is shown in Figure 3 as the

dotted line; it differs little from that which ignores errors in cen-
troid location calculations and changes none of our conclusions.
The original ideal strategy (Fig. 3, dashed line) only takes into
account the uncertainty produced by the stimulus at the screen.
This revised strategy (Fig. 3, dotted line) also takes into account
an additional source of error in the observer. This is analogous to
the sequential ideal observer analysis of Geisler (1989).

Aim point shift error
After localizing the center of the prior distribution and the cen-
troid of the sample dots, the aim point can be calculated from �
and Dd. The optimal strategy is to shift a fraction of the way from
the center of the prior toward the sample dot centroid, Da � �Dd,
where the fraction � is a function of N (Fig. 2). The center of the
prior was indicated by crosshairs, and its localization should have
been quite precise. However, aim point computation may have
involved additional error. The amount of error might have de-
pended on the magnitude of the shift, as would be predicted by
Weber’s law for position (Klein and Levi, 1985; Wilson, 1986;
Whitaker et al., 2002). For example, if the strategy called for � �
0.5, the subject’s uncertainty in locating this point on the screen
should increase with Dd. Having already determined the median
shift amounts for each subject and number of target dots (Fig. 3,
filled circles), we next analyzed the variability of end point loca-
tions around the median shift values as a function of Dd.

The analysis was performed as follows. We set the origin of a
coordinate system at the center of the prior distribution. On a
given trial (Fig. 6a), the centroid of the sample dots was at loca-
tion (xc, yc) � (Dd cos�, Dd sin�). For a given value of N, the data
of Figure 3 determine the shift strategy �, resulting in aim point
(�xc, �yc). The landing point on that trial, (x, y), differed from the
aim point by � � (�x, �y) � (x, y) � (�xc, �yc). We define radial
error (�r) as the component of � projected onto the direction
from the center of the prior to the centroid of the dots, and
circumferential error (�c) as the remaining orthogonal compo-

Figure 5. Sensory and motor uncertainty. The dashed line indicates estimates of motor noise �m from the motor control
experiment. The solid line indicates the uncertainty, �s�m, in rapid pointing movements at the centroid of sets of dots. The dotted
line indicates the uncertainty in sensory-based calculations of the centroid �s, determined as the portion of �s�m not accounted
for by �m.
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nent of � (Fig. 6a). The values of �r and �c were pooled over trials
in which Dd fell in a given range (bin width, 0.75 cm). In each
pool, the spread of the landing points around the aim point was
then estimated, resulting in the values �r(Dd) (radial variability)
and �c(Dd) (circumferential variability). Pooling across our sub-
jects’ collective 2700 trials, this bin width resulted in at least 100
trials in each of the first nine bins, including over 300 trials in bins
2–5. Results should be considered with caution beyond 8.25 cm
(11th bin), because only 28 data points fell within this centroid
distance range. There were too few data points to analyze cen-
troid distances beyond Dd � 9.75 cm.

Figure 6b shows that �c changed little, whereas �r increased
dramatically with increasing Dd. The value of �c was comparable
with sensorimotor noise, �s�m. The results in Figure 6b were
pooled across subjects. We repeated the analysis within subjects
(�900 experimental trials each) with bin size set to 1.5 cm to
maintain similar numbers of trials per bin. The results showed
the same trends.

We interpret the additional variability in the radial direction
relative to the circumferential as error in the calculation of the
aim point, because that calculation required the subject to deter-
mine the location along the radial direction corresponding to the
proportion �. We assume that sensorimotor variability was inde-
pendent of error in aim point calculation. Thus, for each value of Dd,
we estimated the SD of calculating the screen position correspond-
ing to the aim point as �a�Dd� � 	� r

2�Dd� � � c
2�Dd�


1/ 2. This was
done separately for each subject using the 1.5 cm bin size and used in
subsequent analyses. Figure 6b (dotted line) shows �a pooled over
subjects.

Subjects’ imprecision �a at calculating the aim point � in-
creased with increasing Dd. Although this result parallels Weber’s
law for spatial judgments such as bisection (Levi et al., 1988; Levi
and Klein, 1990), it is unlikely that this error was attributable
primarily to errors in sensory coding, because the errors were too
large. To test this possibility, we had one subject perform a spatial
bisection between pairs of points that were oriented randomly
from trial to trial. Distance between the points ranged from 2 to
10 cm. The subject adjusted a third point in two dimensions until
it appeared to lie halfway between the two points along the line
joining them. Setting variability increased linearly with separa-

tion. Variability ranged from 0.022 cm for a 2 cm separation to
0.105 cm in the 10 cm condition. However, these values are nearly
an order of magnitude smaller than the estimated values of �a.
We suggest the large values of �a compared with those just de-
scribed are attributable to differences in the task from two-point
bisection. Our subjects were not simply bisecting two points
when they chose aim points. Aiming strategies varied from �30 –
80% of the distance between the prior and the centroid. Aim
points must also undergo a change in coordinate system in our
task (unlike visual bisection judgments), as the aim point was
used to direct a reaching movement.

It is important to point out that, like the motor error discussed
above, the aim point variability �a reduces overall expected gain
but does not change the optimal aim point. Thus, in our model-
ing, �a represents a noise source that limits overall performance
but does not change our estimate of the behavior (aim points)
that constitutes the best possible movement plan.

Ideal observer comparison
The results shown in Figure 2 were based on simulations of an
ideal movement planner that was hampered only by the sampling
variability in the target dots. As we have seen, our subjects dif-
fered from the ideal subject in several ways. Their choice of aim
point was both suboptimal (Fig. 3) and imprecise (�a), and there
was added uncertainty because of sensory miscalculation of the
centroid location (�s) and errors in motor control (�m). We sim-
ulated the experiment using each subject’s aiming strategy, ham-
pered by these three additional sources of noise estimated as de-
scribed above. For each subject and number of dots, 150 trials
were simulated. In each trial, the centroid of the set of dots was
calculated, and this location was perturbed by an amount chosen
from an isotropic, two-dimensional Gaussian of width �s(N).
Next, an aim point was determined based on the number of target
dots and the subject’s median aim point in that condition from
Figure 3. This location was perturbed along the line joining the
center of the prior and the noisy estimate of the centroid by a
draw from a one-dimensional Gaussian of width �a(Dd). The
resulting location was perturbed again by a draw from a two-
dimensional Gaussian of width �m. For each condition, we com-
puted the proportion of times this simulated movement end
point landed within the target region. Figure 7 shows subjects’
performance in each condition versus the performance from the
simulations. The simulations predicted subjects’ performance
accurately, suggesting that performance is well characterized by
these four sources of inaccuracy and imprecision.

We define efficiency as the fraction of ideal performance
achieved by our subjects. Efficiency values (Table 1) were high
but less than 100. We simulated ideal task performance in much
of the same way as in Figure 7 but using the ideal aiming strategy
(Fig. 2) and setting �a, �s, and �m to zero. By repeatedly simulat-
ing the ideal for the same number of trials as our subjects com-
pleted, we were able to estimate the distribution of possible per-
formance (gains) generated by the ideal model. All efficiency
values in Table 1 are significantly suboptimal (i.e., they fall below
the fifth percentile of the frequency distribution of gains obtained
from simulations of the ideal performance model).

There are four factors that contribute to subjects’ inefficiency
(1 � efficiency): suboptimal choice of aim point (Fig. 3) and the
three noise sources (�a, �s, and �m). We analyzed subjects’ inef-
ficiency in two ways. First, we determined how much inefficiency
resulted from each factor alone compared with the ideal perfor-
mance model. Second, we determined the amount by which in-
efficiency was reduced by eliminating each factor while retaining

Figure 6. Aim point shift error. a, For each trial, we determined the radial and circumferen-
tial components of the deviation of each movement end point from the aim point (as defined by
the results in Fig. 3), �r and �c. b, The variability of these deviations, �r and �c, was calculated
as a function of the distance Dd between the center of the prior distribution and the centroid of
the sample dots in bins of width 0.75 cm, pooled over subjects. As Dd increased, �r increased
whereas �c remained relatively constant. We estimated the aim point shift error �a (dotted
line) as the portion of �r not accounted for by �c.
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the other three, compared with that resulting from all four to-
gether. In each case, the change in inefficiency was computed as a
fraction of the total inefficiency for that subject in each condition.

The results of this analysis are shown for subject SGF in Figure
8. The dashed lines indicate the proportion of inefficiency that
was eliminated by removing each factor (leaving the other three
factors intact). A value of zero indicates that inefficiency was not
reduced by eliminating the factor, and a value of 1 indicates that
inefficiency was completely accounted for by that factor. For ex-
ample, changing SGF’s aiming strategy to the optimal strategy
accounted for �30% of the total inefficiency in the two-dot con-
dition (Fig. 8a). Inefficiency in the eight-dot condition was not
reduced by adopting the optimal strategy, because SGF’s aiming
strategy in this condition was nearly optimal (Fig. 3). Similarly,
sensory noise had almost no effect on inefficiency in the two-dot
condition (Fig. 8b), because this noise was small (Fig. 5, dotted
line). In the other conditions, sensory noise accounted for a sub-
stantial fraction of overall inefficiency. In Figure 5c, the removal
of shift noise from the simulations can be seen to account for a
slightly greater fraction of SGF’s inefficiency in the two-, four-,
and eight-dot conditions versus the 16- and 32-dot conditions.
This is because of the fact that centroid distances tend to be
further from the prior when the number of target dots is low
(because of the nature of the random sampling of dots around the
true target location). Motor noise was small and independent of
dot number and hence accounted for a small and relatively con-
stant fraction of inefficiency (Fig. 8d).

The solid lines in Figure 8 represent the increase in inefficiency
(from ideal toward subject SGF’s) when single sources of error
(noise or suboptimal aiming strategy) were introduced into the
simulations. It is not surprising that the solid and dashed lines do
not overlap. The effect of added noise is greater when it is the only
factor than when added to other noise sources. However, the
solid line is also above the dashed line in Figure 8a where the
factor is aiming strategy rather than added variability. As stated in
the Introduction, adding noise to our simulations resulted in a
flattening of the gain surface (relative to that shown in Fig. 2). For
this reason, switching to a suboptimal aiming strategy has a
greater effect when there is no noise (Fig. 2, solid line) than when
all noise factors are present (Fig. 2, dashed line).

Tests for learning
In our previous work, we have seen very little evidence for learn-
ing in speeded reaching tasks with payoff and penalty regions,
other than learning to deal with the time constraints of the task
(Trommershäuser et al., 2003a,b). Figure 9 shows the proportion
of hits on the target as a function of experimental session. Only
one of the three subjects showed a significant effect of experimen-
tal session (one-way ANOVA, subject SWW; p 
 0.01). A
planned linear contrast found small but statistically significant
linear trends for two subjects (SGF, p � 0.04; SWW, p 
 0.01).
Feedback about the target location was not given during the ex-
perimental session; subjects only received hit or miss information
(and the overall hit rate was under 40%). Although we found
significant increasing trends for two of three subjects, we suggest
that the learning trend was small, and that learning was not re-
quired for subjects to attain the near-optimal integration of sen-
sory and prior location information found in our task.

Subideal observers
The ideal observer we used assumes, consistent with the instruc-
tions given to our subjects, that the target dot distribution width
(�d) was constant over the duration of the experiment. This as-
sumption resulted in an ideal aiming strategy that depended only
on N and the ratio of �p to �d [i.e. (�d/�N)/�p]. Although we

Figure 7. Model predictions. Performance of each subject in each condition is plotted versus
simulated performance using estimates of each subject’s aiming strategy (Fig. 3) and sensory,
motor, and aiming imprecision (Figs. 5, 6). The dashed line represents a perfect correspondence
between data and simulation. Error bars represent 95% confidence intervals determined from
1000 bootstrap replications of the simulated experiments.

Table 1. Efficiency as a function of the number of dots for three subjects

Efficiency (%)

2 dots 4 dots 8 dots 16 dots 32 dots

SWW 88.21 86.75 81.89 75.16 72.18
SGF 82.36 83.96 83.37 75.41 71.41
DS 85.45 84.81 81.23 74.27 73.51

Efficiency is defined as the number of target hits achieved by the subject divided by the number that would be
scored, on average, by an ideal performance model that used the optimal strategy and was hampered only by the
widths of the prior probability distribution and the normalized likelihood function. All efficiency values are signifi-
cantly less than 100%.

Figure 8. Causes of inefficiency (subject SGF). The dashed lines indicate the fraction of inef-
ficiency accounted for by adopting the ideal aim strategy (a) or by removing sensory (b), shift
(c), or motor (d) noise. A value of zero indicates that the factor had no effect on efficiency. Solid
lines indicate the fraction of total inefficiency as calculated by adding each factor to the ideal
performance model.
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cannot determine from our results whether subjects maintained a
constant estimate of �d over the course of the experiments, the
close quantitative fit of our model to the observed data suggests
that one estimate was learned in the training trials, and that sub-
jects maintained that estimate into the experimental sessions.

However, consider a second, subideal observer who assumes
nothing about �d and, rather, estimates target dot uncertainty
trial by trial. We simulated this subideal observer in the following
way. First, we calculated the optimal aimpoint for �p � 2 cm and
�d ranging from 0 to 12 cm for each value of N. Next, we repeated
our ideal observer simulations, except that on each trial, the sim-
ulated observer used the optimal shift strategy � based on the
current values of N of the trial and the current sample dot vari-
ance of the stimulus. We included centroid calculation noise
when calculating the sample variance. That is, the estimate of dot
variance was based on distances of the stimulus dots from an
estimated dot centroid corrupted by centroid calculation noise,
rather than from the precise centroid of the sample dots. The
average aiming strategy of this model was nearly identical to the
optimal aiming strategy for N � 16 and 32. The model used
slightly higher � values for N � 2, 4, and 8 (i.e., average shifts were
closer to the centroid compared with the MEG aim points). More
important, this simulation resulted in a variability in choosing
the aimpoint highly dependent on N. Because of the estimate of
sample dot variance that was highly uncertain for N � 2, the
estimates of � of the model varied between 0 and 0.925 (mean �
2 SDs). That is almost a uniform distribution of shifts between
the prior and the centroid for N � 2. For N � 4, � varied between
0.253 and 0.806, also spanning almost the entire range of possible
shifts. As N increased, the � range decreased to be almost indis-
tinguishable from an ideal observer using a perfect estimate of �d

(for N � 32, � varied between 0.855 and 0.922). Variability in the
aiming strategies of our subjects showed no such dependency on
N. We conclude that subjects followed our instructions and used
a stable estimate of �d.

Another possible source of subideal performance would be for
subjects to use an incorrect value of �p or a value that varies from
trial to trial. Were subjects to use a fixed value of �p different from
the true value of 2 cm, it would have affected all predictions of the
shift similarly. For example, a reduced value of �p would have
resulted in smaller predicted shifts for all values of N in Figure 3,

which would have fit the data no better than the ideal Bayesian
model. Similarly, a model that used a value of �p that varied from
trial to trial would have resulted in an increase in variability over
and above that we predicted based on sensory and motor uncer-
tainty. We conclude that observers learned the width of the prior
during the demonstration before the experiment, estimated the
center of the prior easily as it was fixed and indicated by the cross
hairs, and thus have no reason to adopt a more complicated
model with additional parameters that we cannot estimate with
our experimental design.

Discussion
We presented data from a rapid pointing task in which subjects
show clear evidence of integrating uncertain stimulus informa-
tion with prior knowledge of the distribution of possible target
locations. Subjects modified aim points in a near-optimal man-
ner as stimulus uncertainty was varied. The ideal observer was
hampered only by the inherent location uncertainty of the target
stimulus. We found that human subjects were further hampered
by suboptimal shift strategies as well as uncertainty in estimation
of the centroid of the target dots, in determination of the aim
point, and in motor outcome. Motor noise made the smallest
contribution to observer inefficiency in the task. Additionally, the
effects of these factors were not additive. For example, the sub-
optimal aiming strategy had a large effect on inefficiency if it was
the only factor but a far smaller effect if it was added on top of the
three variability factors. Finally, although there was a small but
significant trend of improvement across the course of the exper-
iment (for two of three subjects), subjects did not require
feedback-based learning to attain their near-optimal shift strat-
egy in this task. In light of our subjects’ nearly constant perfor-
mance across blocks, it is unlikely that subjects learned any cog-
nitive strategies during the experiment (although we cannot rule
that out).

Two other studies have compared human performance with a
Bayesian solution combining sensory and prior probability infor-
mation (Körding and Wolpert, 2004a; Miyazaki et al., 2005). In
these studies, it was impossible to determine whether subjects
adopted the optimal Bayesian strategy that accounts for their
specific motor and sensory uncertainty (rather than a strategy
consistent with the optimal strategy for some observer). For ex-
ample, Körding and Wolpert (2004a) asked subjects to point at a
target with the hand blocked from view. Midway through the
movement, a brief indication of finger position was displayed
that was perturbed laterally from the actual finger position. The
perturbation was random, and the prior distribution of pertur-
bations was a Gaussian centered on a perturbation of 1 cm. The
task was to point at (i.e., have the visual cursor land on) the target,
so that subjects had to counteract the perturbation. Visual reli-
ability of the brief positional feedback was varied (using a blurry,
noisy cursor), and feedback as to final cursor position was only
provided in the high-reliability condition. Consistent with a
Bayesian calculation, they found that subjects relied more on the
prior information (and less on the brief cursor display) as the
cursor display was made less reliable. However, there was no
independent measure of visual and other, extraretinal sources of
uncertainty about the shift, so there was no independent way they
could determine the optimal strategy to compare with subjects’
performance. Instead, the investigators assumed the strategy was
optimal Bayesian and used the measured shifts in movement end
points to estimate subjects’ uncertainties. Then, taking these un-
certainty estimates as true and fixed and assuming an optimal
Bayesian calculation, they estimated the precise form of the prior

Figure 9. Proportion of hits scored by each subject over the course of the experiment. Evi-
dence for learning across the six blocks is weak.
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distribution subjects could have used based on details of subjects’
movement end point shifts. In summary, they showed that per-
formance was qualitatively consistent with the use of prior infor-
mation but not necessarily with the optimal Bayesian calculation.

Optimality was also not defined within these experiments,
because there was no explicit loss function imposed. Rather, they
effectively assumed a quadratic loss function. In another study,
Körding and Wolpert (2004b) sought to estimate the loss func-
tion used by their subjects in an aiming task by using an
experimenter-imposed skewed error distribution. Again, the fit-
ting procedure assumed optimality (in this case, MEG) rather
than demonstrating that subjects were, indeed, behaving opti-
mally. In contrast to their assumption in Körding and Wolpert
(2004a), they concluded that a quadratic loss function provided a
poor description of their data, because subjects penalized large
errors less severely than that would predict. In the experiment
presented here as well as in our previous work (Trommershäuser
et al., 2003a,b, 2005), we avoid the problem of inferring an intrin-
sic loss function by imposing a specific loss function through
monetary payoffs and penalties for different outcomes. Here, we
obtained independent estimates of each source of uncertainty
that would impact the definition of the optimal strategy for a
given subject. We then determined the extent to which subjects
were, in fact, optimal given both the inherent limits of their own
sensory and motor systems and the imposed loss function.

It has recently become popular to compare human perfor-
mance in perceptual and motor tasks to an ideal observer (e.g.,
ML, MAP, or MEG). Such work suggests that probability theory
provides a suitable framework for understanding the sensory or
motor system under study. This approach has been followed on
both theoretical (Maloney, 2002; Kersten and Yuille, 2003; Ker-
sten et al., 2004; Knill and Pouget, 2004) and empirical (Geisler,
1989; Mamassian and Landy, 2001; Lee, 2002; Battaglia et al.,
2003; van Ee et al., 2003) grounds.

However, since the work of Sherrington (1918), it has been
recognized that the pattern of errors (i.e., suboptimal behavior)
can provide information concerning the underlying information
sources and computations performed by sensory and motor sys-
tems. In modeling this task, we have identified four sources of
error that lead to suboptimal behavior. Three of these factors
added noise to movement end points; the fourth was a subopti-
mal choice of aim point.

One of these factors is �s(N), the uncertainty in locating the
centroid of a cloud of N dots. Although we have described this as
a sensory error (in contrast to motor noise �m), it may have
several causes. It could arise from poor localization of the indi-
vidual dots, although this is dubious, because observers are quite
accurate in such localization tasks. It could be an additional fixed
source of noise because of the calculation of the centroid from
multiple dots, but that would not explain the dependence of �s on
N. It could arise as a result of observers basing their centroid
estimate on a subset of the dots. This behavior results in lowered
calculation efficiency (Pelli and Farell, 1999). The degree of sub-
sampling can be estimated by investigating performance as a
function of added noise. For example, Dakin (2001) has used this
technique to analyze an observer’s ability to determine the mean
orientation of a collection of oriented texture elements. However,
the nonmonotonic behavior of �s(N) (Fig. 5) argues against at-
tributing this uncertainty solely to subsampling.

Uncertainty in determining the centroid of the dot cloud
combines with the sampling variance of the dots themselves as a
cue to target location. As a result, the optimal strategy for our
observers differs slightly from that of an ideal performance model

that is not hampered by this source of uncertainty. Including this
noise in the determination of the optimal aim point (Fig. 3) re-
sults in an optimal prediction that better matches subjects’ per-
formance in some cases, but not in others.

Aim point noise �a might be attributable to a sensory problem
(determining the location corresponding to a shift value �) or
could be an error in computation (noise in the determination of
� itself). The nonlinearity of �a as a function of Dd is a clue to the
source of this noise, but our experiments were not designed to
uncover this source.

The work described here fits within a growing literature that
views sensory and sensorimotor behavior within the context of
statistical decision theory. As has been pointed out previously
(Maloney, 2002; Kersten et al., 2004), perceptual tasks are for-
mally identical to hypothesis testing or statistical estimation.
There is a large literature on perceptual estimation as an optimal
combination of sensory cues, as if observers use ML estimation
(Landy et al., 1995; Landy and Kojima, 2001; Ernst and Banks,
2002; Gepshtein and Banks, 2003; Knill and Saunders, 2003; Alais
and Burr, 2004; Hillis et al., 2004). Other studies also include a
prior probability distribution and hence use MAP estimation as
the model of performance. Some of these studies fit the MAP
model to behavioral data by adjusting parameters of a model of
(1) a prior distribution of possible world states (Mamassian and
Landy, 1998, 2001; van Ee et al., 2003), (2) a prior distribution of
the observer’s sensory reliability (Battaglia et al., 2003), or (3) a
model of sensory reliability (Körding and Wolpert, 2004a;
Miyazaki et al., 2005). Another approach has been to measure the
frequency of various events in the world from a sample of images
or scenes and then adopt that distribution as a prior distribution
to account for behavior (Geisler et al., 2001; Elder and Goldberg,
2002). The work presented here is different in that the prior dis-
tribution is neither fit to the data nor estimated from a sample of
the environment. Rather, we have imposed a known prior and
measured the sources of uncertainty in the task. Hence, we were
able to predict performance with no additional free parameters.
In this sense, we have been able to determine, for our task, how
close performance is to optimal and the ways in which it falls
short of that ideal.
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Trommershäuser J, Gepshtein S, Maloney LT, Landy MS, Banks MS (2005)
Optimal compensation for changes in task-relevant movement variabil-
ity. J Neurosci 25:7169 –7178.

van Ee R, Adams WJ, Mamassian P (2003) Bayesian modeling of cue inter-
action: bistability in stereoscopic slant perception. J Opt Soc Am A
20:1398 –1406.

Weiss Y, Simoncelli EP, Adelson EH (2002) Motion illusions as optimal
percepts. Nat Neurosci 5:598 – 604.

Whitaker D, Bradley A, Barrett BT, McGraw PV (2002) Isolation of stimu-
lus characteristics contributing to Weber’s law for position. Vis Res
42:1137–1148.

Wilson HR (1986) Responses of spatial mechanisms can explain hyperacu-
ity. Vis Res 26:453– 469.

Tassinari et al. • Combining Priors and Noisy Cues J. Neurosci., October 4, 2006 • 26(40):10154 –10163 • 10163


