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Neural Mechanisms of Expert Skills in Visual
Working Memory

Christopher D. Moore,'2 Michael X. Cohen,? and Charan Ranganath?
'Department of Psychology, Princeton University, New Jersey 08540, and 2Center for Neuroscience and Department of Psychology, University of California
at Davis, Davis, California 95616

Expertise can increase working memory (WM) performance, but the cognitive and neural mechanisms of these improvements remain
unclear. Here, we used functional magnetic resonance imaging to assess the degree to which expertise acquisition is supported by tuning
of occipitotemporal object representations and tuning of prefrontal and parietal networks that may support domain-specific WM skills.
We trained subjects to become experts in a novel category of complex visual objects and examined brain activity while they performed a
WM task with objects from the expert category and from an untrained category. Visual expertise training resulted in improved recogni-
tion of expert, compared with untrained objects, and this effect was eliminated in a behavioral experiment by stimulus inversion. These
behavioral changes were accompanied by increased recruitment of bilateral dorsolateral prefrontal, posterior parietal, and occipitotem-
poral cortices during WM encoding and maintenance. Across subjects, behavioral measures of expertise reliably predicted increased
activation during maintenance of expert objects in all three regions. These neural expertise effects could not be attributed to differences
inlow-level stimulus characteristics between the two categories, familiarity with features of expert-domain objects, or familiarity with the
WM task. These results are consistent with the idea that visual expertise improves WM performance through tuning of occipitotemporal
object representations and through development of lateral prefrontal and posterior parietal networks that mediate the application of

domain-specific mnemonic skills.
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Introduction

Working memory (WM) processes support the on-line mainte-
nance and manipulation of information in the absence of exter-
nal stimulation (Baddeley, 1986). Results from a number of stud-
ies suggest that WM is capacity limited (Miller, 1956; Luck and
Vogel, 1997; Cowan, 2001; Irwin and Zelinsky, 2002), but exper-
tise can effectively increase WM capacity for stimuli within the
expert domain (Chase and Simon, 1973; Ericsson and Kintsch,
1995). For example, chess experts can encode and maintain com-
plex configurations of pieces on a chess board (Chase and Simon,
1973), but their enhanced visual memory performance is specific
to the domain of chess. Little is known about the neural mecha-
nisms by which expertise might influence WM, but available ev-
idence suggests at least two possibilities.

Neuroimaging research has focused on the effects of percep-
tual expertise acquisition in occipitotemporal cortex (OTC),
showing that activation in at least two regions [the fusiform face
area (FFA) and the lateral occipital complex (LOC)] is enhanced
during perceptual processing of expert-domain objects (Gau-
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thier etal., 1999, 2000; Grill-Spector et al., 2004; Xu, 2005). Thus,
increased WM performance in experts might reflect tuning of
posterior cortical areas with training, which in turn decreases the
need for executive control during maintenance of task-relevant
information. Accordingly, tuning of visual object representations
in OTC during expertise acquisition might support more effi-
cient and automated encoding and maintenance of expert-
domain objects.

Neuroimaging studies have not investigated the effects of ex-
pertise acquisition in regions outside of OTC. Psychological
models suggest that expertise should be associated with the de-
velopment of executive memory skills that guide the encoding
and maintenance of domain-specific information (Ericsson and
Kintsch, 1995; Gobet, 1998). Dorsolateral prefrontal cortex
(DLPFC) has been shown to play a role in directing efficient (Bor
et al., 2003, 2004; Olesen et al., 2004; Bor and Owen, 2006) and
successful (Pessoa et al., 2002; Sakai et al., 2002) WM encoding
and maintenance. Additionally, activity in the intraparietal sul-
cus (IPS) has been shown to be modulated by the amount (Todd
and Marois, 2004) and complexity (Xu and Chun, 2006) of visual
information that is encoded and maintained in WM. Thus, we
hypothesized that the development of memory skills might be
associated with increased prefrontal and parietal recruitment.

Here, we used event-related functional magnetic resonance
imaging (fMRI) to determine the extent to which the effects of
expertise on WM reflect plasticity in OTC, DLPFC, and IPS. We
trained participants for >10 h to acquire expertise with a cate-
gory of abstract visual objects. After training, they were scanned
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while performing a WM task with stimuli from the expert cate-
gory and stimuli from an untrained category (see Fig. 1A). Next,
participants completed a behavioral experiment to further assess
perceptual processing of stimuli from the expert and untrained
categories (see Fig. 1 B). Analyses of the fMRI data then examined
the effects of expertise acquisition on activation in OTC, DLPFC,
and IPS during WM encoding and maintenance.

Materials and Methods

Subjects. Eleven right-handed subjects (three females and eight males)
were recruited from the University of California Davis undergraduate
student population. In addition to these subjects, 11 control subjects
participated in one behavior-only testing session (for comparison of per-
formance with the 11 experts on the last day of training). Each subject
provided informed consent before participation in the expertise training
and fMRI experiment.

Stimuli. Two categories of novel stimuli were generated as structures of
polygons in MATLAB (MathWorks, Natick, MA). Each category was
constructed from the same set of polygons, but the categories differed in
the orientation and configuration of these parts. Within each category,
800 individual exemplars were generated by varying a prototype object
along 40 feature dimensions (e.g., the width of a polygon) along a normal
distribution. Each category was divided into four families, with each
family having a distinctively extreme set of features. Three of the four
families were used during training, and the fourth was used during scan-
ning. For each of the 800 stimuli, foil stimuli were created at three diffi-
culty levels, which differed from their respective exemplars along 30, 20,
and 10 dimensions, respectively. These stimuli were used during the
discrimination training tasks and allowed for the task difficulty to be
increased as subjects progressed through their expertise training.

Expertise training. Each subject was trained to become an expert on one
of the two categories of novel stimuli and was not exposed to the other
category until the day of the scanning session. To minimize the possibil-
ity that expert-novice differences in brain activity could be attributed to
physical differences between the stimuli in each category, we trained five
subjects on one category and six on the other. Results were collapsed
across the two groups in all described analyses. Before the scanning ses-
sion, each subject participated in seven 90 min expertise training sessions
over the course of 10 d. During each training session, subjects performed
four tasks: simultaneous match-to-sample, delayed recognition, family
placement, and family discrimination. These tasks are schematically de-
picted in a figure in the supplemental material (available at www.jneurosci.
org). Over the course of training, each training task was made progres-
sively more difficult, forcing subjects to develop skills to rapidly process
objects from the training category. In the match-to-sample task, subjects
were required to determine which of two objects matched a simulta-
neously presented sample object. In the delayed recognition task, sub-
jects were required to hold a shape in memory during a brief delay (3—-6
s) and then determine whether a second shape was identical. For these
tasks, difficulty was increased over the course of training by increasing
the similarity between targets and foils and progressively decreasing pre-
sentation times. During the first session, stimuli were presented for 5 s,
and targets and foils differed along 30 feature dimensions (of 40 possible
dimensions). During the last session, stimuli were presented for 1 s, and
targets and foils differed along only 10 dimensions. In the family place-
ment task, subjects were required to assign stimuli to a family (labeled
Family 1, 2, and 3). During the family discrimination task, subjects were
shown three objects, two of which were from the same family. Subjects
were required to indicate which shape was the “odd” one (i.e., from the
other family). In these categorization tasks, stimuli were presented for
progressively shorter periods, and subjects were given immediate feed-
back after each trial. Training was complete when the subject had fin-
ished the 10.5 h of training. To assess the effectiveness of the training
procedure, 11 control participants were tested in one session, using the
tasks that experts completed in their final training session.

MRI session. Immediately before MRI scanning, subjects were famil-
iarized with six exemplars from the untrained category. Specifically, we
had subjects perform 300 trials of a match-to-sample task with these
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objects as stimuli. These stimuli were subsequently used in the “familiar
untrained” trials in the WM task performed in the scanner. During the
MRI scanning session, subjects performed a WM task with novel stimuli
from the expert category and novel and familiar stimuli from the un-
trained category (see Fig. 1). The expert objects were taken from an
untrained family that the subject had not encountered during training,
and each object presented during the test was unique. On each trial, a cue
object was presented for 1.25 s, followed by a variable delay of 6.75-12.75
s. Next, a probe object was presented for 1.25 s, during which time the
subject was to decide whether it matched the cue object. The intertrial
interval was jittered from 8.75 to 14.75 s. Within each scanning run,
expert and untrained trials were randomly intermixed to minimize at-
tentional or motivational confounds. Across the session, subjects com-
pleted a total of 45 novel expert, 45 novel untrained, and 45 familiar
untrained trials.

After the completion of the WM task, subjects performed localizer
tasks to identify the FFA (Puce et al., 1995; Kanwisher et al., 1997) and
LOC (Malach et al., 1995; Kourtzi and Kanwisher, 2000; Grill-Spector et
al.,, 2001). In the LOC localizer task, subjects passively viewed alternating
blocks of intact and scrambled objects from the expert category (Murray
and Wojciulik, 2004). In the FFA localizer task, subjects performed a
one-back task while viewing face and scene stimuli (Ranganath et al.,
2004a). After performing the localizer tasks, each subject performed a
visuomotor response task that was used to derive a subject-specific he-
modynamic response function (HRF) (Aguirre et al., 1998b; Hand-
werker et al., 2004).

Expertise evaluation session. Ten of the 11 participants from the MRI
study also completed a behavioral experiment that was designed to assess
differences between processing of expert and untrained objects. The
mean time between the MRI study and the subsequent behavioral exper-
iment was 11.4 d, and the distribution was as follows: 1, 1, 1, 2, 3, 13, 14,
32, 33. As described later, there was no relationship between the time
between testing sessions and performance on the behavioral experiment.
Subjects performed a simultaneous match-to-sample task (see Fig. 1).
On each trial, a target object was presented on the top of the screen, and
two test shapes were presented on the bottom. The array of stimuli was
presented for 1 s, and subjects were given a total of 2 s to determine which
of the bottom objects was identical to the test object. After the subject
responded, there was a 1 s delay until the next trial. On each trial, stimuli
were either upright or inverted objects from the expert or untrained class
(80 trials in each condition).

Image acquisition and processing. MRI data were collected ona 1.5T GE
SIGNA scanner at the University of California Davis Imaging Research
Center. Functional imaging was performed using a gradient echo echo-
planar imaging sequence (repetition time, 2000; echo time, 40; field of
view, 240 mm; 64 X 64 matrix), with each volume consisting of 24
contiguous 5 mm axial slices oriented parallel to the AC-PC (anterior
commissure—posterior commissure) line. Coplanar and high-resolution
T1-weighted images also were acquired in the same session. fMRI data
preprocessing was performed with statistical parametric mapping
(SPM99) software for all subjects. For map-wise statistical analyses, im-
ages were sinc-interpolated in time to correct for interslice timing differ-
ences in image acquisition, realigned using a six-parameter, rigid-body,
transformation algorithm, spatially normalized to the template from the
International Consortium for Brain Mapping Project (Cocosco et al.,
1997), resliced into 3.5 mm isotropic voxels, and spatially smoothed with
an 8 mm full-width at half-maximum Gaussian filter. Analyses of data
from the FFA and LOC regions of interest (ROIs) were performed on
native-space data to maximize the ability to discriminate these areas from
adjacent cortical areas (Kanwisher et al., 1997; Aguirre et al., 1998a). For
these native-space ROI analyses, images were sinc-interpolated in time
and spatially realigned, but no spatial normalization or smoothing was
performed.

fMRI analysis. As in previous studies (Courtney et al., 1997; Zarahn et
al., 1997b; Postle et al, 2000; Rowe et al., 2000; Ranganath and
D’Esposito, 2001; Munk et al., 2002; Sakai et al., 2002; Curtis et al., 2004;
Ranganath et al., 2004a, 2005), activity changes associated with different
trial components were deconvolved using multiple regression. In this
approach, the time course of BOLD signal changes on any given WM trial
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is considered as a combination of cue, delay, and probe-related neural
activity changes that are convolved with the HRF. The vectors of expected
neural activity during the cue, delay, and probe phases for each delay-
length are depicted in the supplemental material (available at www.
jneurosci.org). Covariates modeling BOLD signal changes were con-
structed by convolving these vectors for each trial type with a subject-
specific HRF estimated from responses in the central sulcus during the
visuomotor response task (Aguirre et al., 1998b; Handwerker et al., 2004;
Ranganath et al., 2004a). Because the length of the delay period varied
from trial to trial, our design allowed us to efficiently deconvolve delay
period activity from activity occurring during the cue and probe phases
(Rowe et al.,, 2000; Sakai et al., 2002; Sakai and Passingham, 2003;
Ranganath et al., 2005). Inspection of observed activity time courses
confirmed that the model estimates accurately characterized the data.

Responses during each task phase were modeled separately for each
trial type (novel expert, novel untrained, and familiar untrained). These
covariates only modeled responses for trials that were associated with
correct match/nonmatch decisions on the WM probe. Trials associated
with incorrect WM decisions were modeled with separate nuisance co-
variates. Additional nuisance covariates modeled global signal changes
that could not be accounted for by variables in the design matrix (Des-
jardins et al., 2001), trial-specific baseline shifts, and an intercept. Each
regression analysis was performed using the modified general linear
model (Worsley and Friston, 1995), in which the convolution matrix
included a time-domain representation of the 1/f power structure and
filters to remove frequencies above 0.25 Hz and below 0.02 Hz (Aguirre et
al., 1997; Zarahn et al., 1997a).

Each regression analysis yielded parameter estimates indexing the fit of
the covariates for each component (cue, delay, and probe) of each type of
WM trial (novel expert, novel untrained, familiar untrained) to the ob-
served data. The magnitude of each parameter estimate can be inter-
preted as an estimate of the BOLD response amplitude attributable to the
corresponding trial component. After single-subject analyses, contrast
images were created for each subject by computing the difference in
parameter estimates between expert and untrained trials across the cue
and delay periods. In this contrast, the parameters were weighted as
follows: expert cue = +2, expert delay = +2, novel untrained cue = —1,
novel untrained delay = —1, familiar untrained cue = —1, familiar
untrained delay = — 1. These contrast images were entered into a second-
level, one-sample # test, in which the mean estimate across participants at
each voxel was tested against zero. Significant regions of activation were
identified using an uncorrected, one-tailed threshold of p < 0.001 and a
minimum cluster size of at least 10 contiguous voxels. Thresholded sta-
tistical parametric maps were overlaid on TI1-weighted images using
MRIcro software (Rorden and Brett, 2000). Suprathreshold clusters of
voxels in the left and right middle frontal (DLPFC) gyri, middle occipital
(OTC) gyri, or IPS were used to define ROIs that were interrogated in
subsequent analyses. The time course of activity on each trial was ex-
tracted from these ROIs, and the time courses were temporally realigned
to cue and probe stimulus onsets before averaging. Mean parameter
estimates were also extracted for each ROI and contrast of interest.

In addition to ROIs defined from group analyses, we additionally cre-
ated individually defined ROIs for the FFA and LOC to test a priori
hypotheses regarding expertise in visual WM. Each was defined by ana-
lyzing single-subject native space data acquired during a functional lo-
calizer task. The FFA was defined to include all contiguous suprathresh-
old voxels in the right midfusiform gyrus in the contrast between activity
during viewing of blocks of faces and blocks of scenes. Using these crite-
ria, we were able to define an FFA in 9 of the 11 participants. The LOC was
defined to include all contiguous suprathreshold voxels in the lateral
ventral occipital cortex in the contrast between viewing of blocks of intact
objects and blocks of scrambled objects. LOC ROIs were identified for 10
of the 11 participants (because of technical difficulties, data for the LOC
localizer scan were not available for one participant).

To assess the degree of overlap between the OTC ROI (defined in
stereotactic space) and the LOC and FFA ROIs (defined in native space),
we spatially normalized each subject’s native-space ROIs. This allowed us
to determine whether any voxels were included in the analysis of both the
OTC region and the LOC or FFA region. This analysis revealed that no

J. Neurosci., October 25, 2006 - 26(43):11187-11196 = 11189

voxels overlapped between the FFA (which was in the right midfusiform
gyrus for all subjects) and OTC (which was in the middle occipital gyrus)
ROL. The lack of overlap between the OTC ROI and the FFA is consistent
with previous findings showing that areas that show large expertise ef-
fects do not substantially overlap with fusiform areas that show a high
degree of face-specificity (Rhodes et al., 2004). There was also no overlap
between the LOC and OTC ROIs, with the exception of two subjects, for
which there was a slight overlap in the left hemisphere. For one of the
subjects, 2 of the 734 voxels in the LOC ROI (0.3%) overlapped with the
OTC ROL For the other participant, 5 of 867 LOC voxels (0.6%) over-
lapped with the OTC ROL. This overlap constituted 0.5 and 1.2% of the
406 voxels that comprise the normalized LOC ROI for the two subjects,
respectively. Although the location and extent of the functionally defined
LOCROI varied across subjects, in each case, it was situated caudal to the
OTC ROI Additionally, the center of mass of the LOC tended to be
slightly ventral and lateral to the OTC ROI.

Results

Overview of experimental design

Before the MRI scan session, each subject was trained to become
an expert with one of two categories of novel visual objects over
seven 90 min training sessions (see Materials and Methods for
details on training procedures). On the day of the scan session,
subjects performed a task to familiarize themselves with six ex-
emplar objects from the untrained object category. Next, they
were scanned while performing a WM task that required main-
tenance of a complex object across a delay (Fig. 1). On each trial,
the cue and probe stimuli were either novel trial-unique objects
from the expert category, novel trial-unique objects from the
untrained category, or familiar objects from the untrained cate-
gory (i.e., taken from the set of six objects that were viewed during
the prescan task).

The reasoning for including trials with novel and familiar ob-
jects from the untrained category was as follows: contrasting ac-
tivity elicited by novel objects from the expert and untrained
categories should reveal differences in brain activity related to
expertise while holding constant the cognitive processes related
to maintenance of novel, complex visual stimuli (Ranganath and
D’Esposito, 2001). However, in the event that novel objects from
the expert category might have seemed familiar, because of their
similarity to the objects shown in the training phase, comparison
of activation between expert and familiar untrained objects could
control for such effects. With these three conditions, we were able
to distinguish neural and behavioral effects specifically related to
visual expertise from effects related to repetition of stimulus fea-
tures, perceived novelty, or familiarity (Henson and Rugg, 2003;
Ranganath and Rainer, 2003; Grill-Spector et al., 2006).

Behavioral results

Prescan training phase

To assess the effectiveness of the training procedure, we compared
subjects’ performance on the final training session with that of 11
control subjects who received no training. Accuracy on the individ-
ual delayed recognition task was significantly higher in the trained
experts relative to novice controls (F(, ,o, = 19.64; p < 0.0005),
confirming the effectiveness of the expertise training procedure.

MRI scan session: WM task

Discriminability (d’) on the WM task was high for both expert
(M = 2.43; SD = 0.13) and untrained (M = 2.08; SD = 0.21)
trials. Discriminability values were significantly higher for expert
than for untrained trials (F, ;) = 8.2; p = 0.017) (Fig. 2A).

Expertise evaluation experiment
To further compare perceptual processing of objects from the
expert and novice categories, we conducted a follow-up behav-
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ioral experiment. In this experiment, we

used a simultaneous matching-to-sample Cue
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A. WM Task (fMRI experiment)
1.25s

Delay 6.75-12.75s Probe 1.25s

paradigm to test the effects of stimulus in-
version on visual recognition performance
for expert and untrained category objects
(Fig. 1 B). Stimulus inversion is thought to
disrupt the ability to exploit expert knowl-
edge of feature-configurations that distin-
guish exemplars from one another (Dia-
mond and Carey, 1986). Previous studies
of visual expertise [e.g., dogs (Diamond
and Carey, 1986) or “Greebles” (Gauthier

and Tarr, 1997)] have shown that inver-
sion eliminates reaction time (RT) advan-
tages in recognition of stimuli from the ex-
pert category. Accordingly, we predicted that
performance on the matching task would be
enhanced for upright expert objects relative
to untrained objects, but that performance
would not differ between inverted expert
and untrained objects. As shown in Figure
2 B, this prediction was confirmed.

K
A

A repeated-measures factorial ANOVA
revealed significant differences in d’ be-

tween inverted and upright stimuli (F, o) = Cue 2s

B. Expertise Evaluation Task (Behavioral experiment)

Response + ITl 3s

7.7;p = 0.021) and an interaction between
inversion and expertise (F(, o) = 8.564; p =
0.017). Follow-up analyses revealed that d’
was significantly higher for upright objects
than for inverted expert stimuli () =
3.793; p = 0.005), upright untrained stim-
uli (4, = 2.773; p = 0.03), and inverted
untrained stimuli (¢) = 2.562; p < 0.04).
There were no significant differences be-
tween upright and inverted objects from

the untrained category (to) = 1.02; p >
0.3).

Another repeated-measures factorial
ANOVA was performed to test for differ-
ences in RT. This ANOVA, including the
same two factors as above, revealed a mar-
ginal effect of orientation (F(, o) = 4.39;
p < 0.07) but not expertise (F(, ¢y < 1), as
well as a significant interaction between
orientation and expertise (F, o) = 12.915;

df
B
L

p < 0.01). Follow-up tests revealed that
RT's were faster on trials with upright expert
stimuli than for trials with inverted expert
(toy = 3.01; p = 0.015), upright untrained
(tgy = 2.77; p = .022) and inverted un-
trained trials (£, = 2.562; p = 0.031). No
other differences were significant (all others, p > 0.3).

Because the time between the scanning session and the exper-
tise evaluation session varied across subjects, we ran additional
analyses to determine whether the delay between testing sessions
was correlated with performance. Results revealed no correlation
between the number of days between testing sessions and the
behavioral expertise effect (expert upright — novice upright dis-
criminability) on the postscan test (r = —0.02). The top five
performers averaged 13 d between sessions, whereas the bottom
five performers averaged 10 d. Thus, behavioral performance was
not affected by time between the two sessions, indicating that the
effects of expertise training remained robust across time.

Figure 1.

Schematic depiction of stimuli and event timing on trials of the WM and expertise evaluation tasks. A, Depiction of
trials from the WM experiment performed during the MRI scan session. Example stimuli are shown for each of the two stimulus
classes. B, Depiction of trials from the simultaneous matching to sample task conducted in the postscan behavioral experiment to
evaluate expert visual processing. Example stimulus arrays are shown for upright and inverted objects from a single stimulus class.

Overall, results from this behavioral experiment demon-
strated that participants were better at recognizing objects from
the expert category, and that stimulus inversion eliminated the
expert advantage in both discriminability and RT. These results
confirm that our training procedure induced changes in process-
ing specific to the trained category.

fMRI results

Map-wise analyses

We predicted that expertise should enhance the efficiency of WM
encoding and maintenance processes. Accordingly, in our analy-
ses of fMRI expertise effects, activation during the cue and delay
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Behavioral Performance
B.
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3.0
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20

15
10

Discriminability (D')
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Expert  Novice
Upright Stimuli

Expert  Novice o
In Scanner

Expert  Novice
Inverted Stimuli

Figure 2.  Expertise improves visual WM performance and object recognition. Bar graphs
depict discriminability (d') values on the in-scanner WM task (4) and the simultaneous-match-
to-sample task (B) in the postscan behavioral experiment. Error bars depict SEM across subjects.

Figure 3.
from the contrast of cue and delay period activity between expert and untrained trials are
superimposed on a surface rendering of a template brain. L, Left; R, right.

Neural expertise effects during WM encoding and maintenance. Statistical results

periods was contrasted between trials with objects from the ex-
pert category and trials with objects from the untrained category.
Our preliminary analyses revealed no significant activation dif-
ferences between familiar and novel objects from the untrained
category, and we therefore collapsed across these trial types in our
contrasts between expert and untrained trials.

Map-wise contrasts of activity during the cue and delay peri-
ods of expert trials compared with untrained trials revealed sig-
nificantly increased activation in bilateral dorsolateral prefrontal
regions lying along the middle frontal gyrus (BA 9 and 46), in
bilateral occipitotemporal regions in the middle occipital gyrus
(BA19/37), and in bilateral intraparietal sulcus (BA 7). These and
other regions that showed differential activation are shown in
Figure 3 and Table 1. No regions showed significantly increased
activation for untrained stimuli, relative to expert stimuli. As
noted in the supplemental material (available at www.jneuro-
sci.org), the finding of increased (as opposed to decreased) acti-
vation related to expertise is consistent with results from other
imaging studies of expertise and is not inconsistent with research
on perceptual learning or repetition priming.

The results described above suggest that expertise is associated
with enhanced recruitment of DLPFC, posterior OTC, and IPS
during WM encoding and maintenance. We ran additional anal-
yses to compare the relative magnitudes of neural expertise effects
between these regions. In these analyses, clusters of suprathresh-
old voxels identified in the expert versus untrained contrast were
used to define bilateral ROIs in DLPFC (BAs 9 and 46) and OTC
(BA 19/37). Trial-averaged time courses and parameter estimates
indexing activation during the cue and delay phases are shown for
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Table 1. Regions showing increased cue and delay period activation during expert
trials compared with untrained trials

Brain region Brodmann'sarea  tvalue X y z

Right inferior frontal gyrus 44 8.78 56 N 25
Right inferior frontal gyrus 47 1.52 42 18 —4
Right inferior frontal gyrus 45 723 35 21 4
Left middle frontal gyrus 46 8.42 =53 28 28
Left middle frontal gyrus 9 6.83 —56 7 39
Left precentral gyrus 6 6.76 —46 0 35
Right middle frontal gyrus 46 838 46 32 25
Left intraparietal sulcus 7 8.10 =25 =70 39
Middle occipital gyrus 19/37 8.02 —35 —67 —4
Left intraparietal sulcus 7 125 —35 —63 49
Right intraparietal sulcus 7 1.7 35 —60 49
Right intraparietal sulcus 7 7.43 28 =70 39
Right intraparietal sulcus 7 7.09 21 —63 46
Left inferior frontal gyrus 47 721 —42 21 -7
Left inferior frontal gyrus 47 5.67 —46 14 0
Left middle frontal gyrus 10 6.70 —42 63 4
Left precentral gyrus 6 6.66 =25 —14 60
Left precentral gyrus 6 5.16 —32 -1 49
Right precentral gyrus 6 6.39 39 -1 49
Right precentral gyrus 6 5.80 25 -7 49
Right precentral gyrus 6 5.79 32 -7 63
Posterior cingulate gyrus 31 6.31 -1 —4 28
Right middle frontal gyrus 9 6.23 42 49 35
Right middle frontal gyrus 9 441 35 39 v}
Anterior cingulate gyrus 32 553 7 21 4
Anterior cingulate gyrus 32 4.47 4 7 53
Right thalamus 5.00 21 —18 n
Middle occipital gyrus 19/37 453 49 —60 —14

each ROl in Figure 4. The parameter estimates were entered into
a repeated-measures ANOVA with three factors: ROI (DLPFC,
OTC, or IPS), expertise (expert, familiar untrained, or novel un-
trained), and time-period (cue or delay). Critically, in addition to
the anticipated significant main effect of expertise (the contrast
by which the ROIs were defined) and the main effect of time
period (F; 19y = 44.79; p < 0.0001), the ANOVA revealed a sig-
nificant interaction between ROI'and expertise (F(, 55y = 6.5; p <
0.001). As shown in Figure 5, the expertise effect was larger in
DLPFC than in OTC during the cue (t,5, = 2.58; p < 0.05) and
delay (t(,, = 3.25; p < 0.01) periods and larger in DLPFC than in
IPS during the delay (f,4) = 2.344; p < .05) but not cue (t;5) < 1)
period. Finally, the expertise effect was larger in IPS than OTC
during the cue (¢, = 3.78; p < 0.005) and delay (¢(,,, = 2.346;
p < 0.05) periods. These analyses suggest that, during WM en-
coding and maintenance, the relative magnitudes of neural ex-
pertise effects were largest in DLPFC and weakest in OTC. It is
unlikely that differences in dynamic range (i.e., ceiling effects)
can completely account for the differences between the three re-
gions during the delay period, because the magnitude of expert-
related activation in OTC during the delay was well below the
magnitude of activation during the cue period.

The above analyses demonstrated that activity in DLPFC,
OTC, and IPS was substantially increased during maintenance of
objects from the expert category compared with the untrained
category, but there was some intersubject variability in these neu-
ral expertise effects. As noted previously, there was also substan-
tial intersubject variability in the degree to which participants
developed expertise as a result of training. Consequently, we pre-
dicted that intersubject variability in WM activation in these re-
gions might reflect meaningful individual differences in exper-
tise. To test this prediction, we calculated the difference in
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discriminability between upright expert A.DLPFC
and untrained objects on the expertise
evaluation test for each subject and corre-
lated this measure with parameter esti-
mates for the expert (untrained contrast in
each ROI). Behavioral expertise effects in
the postscan behavioral experiment were
significantly correlated with neural exper-
tise effects during the delay period in OTC
(r = 0.84; p < .005), DLPFC (r = 0.63; p <
0.05), and IPS (r = 0.64; p < 0.05). As
shown in Figure 6, these correlations indi-
cate that subjects who achieved a greater
degree of expertise exhibited larger differ-
ences in delay period activity between ex-
pert and untrained stimuli. The differ-
ences between these correlations were not
significant. There was also a significant
negative correlation between the behav-
ioral expertise effect and the neural exper-
tise effect during the cue period in DLPFC
(r = —0.82; p < 0.005) (see supplemental
material for discussion of this finding,
available at www.jneurosci.org). This re-
sult remained significant even when a pos-
sible outlier participant (Fig. 6) was ex-
cluded from the analysis (r = —0.67; p <
0.05). Trial-averaged time courses of acti-
vation were separately averaged for the top
five and bottom five performers on the
postscan discriminability task and are pre-
sented in Figure 7. Consistent with the cor-
relational analyses, these data show that
experts tended to have reduced DLPFC ac-
tivation during the cue period of the WM
task but enhanced activation during the
delay period of the task.

B. OTC

<10+

Figure 4.

Native-space ROI analyses

Many previous studies of expertise and perceptual learning have
examined activation in functionally defined ROIs identified on
native-space data. If posterior cortical regions involved in exper-
tise are relatively small and inconsistently localized, this approach
might yield increased sensitivity to detect expertise effects in ex-
trastriate cortex. We therefore analyzed native-space data and
examined activity in two functionally defined ROIs (see Materials
and Methods) that might be involved in mediating expertise-
related WM enhancements: the FFA (Gauthier et al., 1999) and
LOC (Grill-Spector et al., 2000). Trial-averaged time courses and
neural expertise effects during WM trials are presented in Figure
8. Analysis of parameter estimates revealed increased activation
in response to expert than untrained trials during the cue period
in the LOC (t(9) = 4.29; p < 0.005). A similar trend was apparent
in the FFA (t4) = 2.23; p < 0.06). Neither region showed an
expertise effect during the delay period (both ¢ values <1; NS).
We additionally tested whether neural expertise effects in these
regions were correlated with behavioral indices of expertise.
These tests revealed no significant correlations between behav-
ioral and neural expertise effects in the FFA or LOC.

Discussion
In the present study, we found that visual expertise training in-
duced improved WM performance and processing changes (e.g.,
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inversion effects) specific to objects from the trained category.
These behavioral changes were accompanied by increased re-
cruitment of DLPFC, IPS, and OTC during WM encoding and
maintenance. Across subjects, behavioral measures of expertise
reliably predicted neural expertise effects during the delay period
in all three regions. These neural expertise effects could not be
attributed to differences in low-level stimulus characteristics (be-
cause different subjects trained in different categories) nor to
familiarity with features of expert-domain objects (because en-
coding and maintenance-related activation was not increased
during maintenance of familiar novice-domain objects). Our re-
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sults are consistent with the idea that expertise training resulted
in the development of domain-specific memory skills that facili-
tated WM encoding and maintenance processes.

Behavioral effects of expertise training

Although WM capacity may be limited to a relatively small num-
ber of “chunks” (Miller, 1956; Cowan, 2001), experts may be able
to apply domain-specific skills to increase the informational con-
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tent of each chunk (Ericsson and Kintsch, 1995; Gobet et al.,
2001; Gobet and Clarkson, 2004). We cannot directly comment
on whether this occurred in the present study, because we did not
manipulate memory load or explicitly measure WM capacity
changes with training. Nonetheless, several findings support the
idea that expertise training resulted in improved perceptual and
mnemonic processing of expert-domain objects. First, trained
subjects performed significantly better on the delayed recogni-
tion task than did control subjects who were not trained. Second,
on the WM task in the scanner, and on the postscan evaluation,
discriminability was higher for expert stimuli than for untrained
stimuli. Additionally, the expert advantage was eliminated by
stimulus inversion, indicating that experts developed skills that
exploit regularities in stimulus configuration (Diamond and
Carey, 1986). Third, IPS activation was increased during mainte-
nance of items from the expert category. Recent evidence suggests
that IPS activation is related to WM capacity (Todd and Marois,
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2004; Xu and Chun, 2006) and to the complexity of information
that is maintained (Xu and Chun, 2006). Accordingly, increased
IPS activation during expert WM maintenance might have re-
flected experts’ ability to encode more detailed information
about objects from the expert category (see supplemental mate-
rial for additional discussion, available at www.jneurosci.org).

Of course, it is likely that training also induced the develop-
ment of general task skills that help subjects discriminate com-
plex, multifeatural visual objects even outside the expert cate-
gory. Indeed, the performance difference between expert subjects
and control subjects who did not undergo expertise training was
larger than the difference in expert subjects between the expert
and untrained conditions. Such generalized effects related to task
learning are commonly reported in the perceptual expertise lit-
erature (e.g., Gauthier et al., 1997, 1999; Rossion et al., 2002).
Critically, in this study, generalized task-learning effects could
not account for activation differences between expert and un-
trained objects, because the two categories were contrasted
within the same testing session.

Expertise-related activation in FFA and LOC
Many previous neuroimaging studies have focused on how visual
expertise training influences activity in extrastriate areas (Gau-
thier et al., 1999, 2000; Gauthier, 2000; Grill-Spector et al., 2004;
Rhodes et al., 2004). Based on the idea that most people are
experts at subordinate-level face recognition, some have addi-
tionally suggested that face-selective responses in the FFA and the
LOC may reflect processing related to visual expertise (Gauthier
et al., 1999, 2000; Gauthier, 2000). Consistent with this view,
some studies have reported that FFA and LOC activity is in-
creased during processing of expert-domain objects (Gauthier et
al., 1999, 2000). We also found that the FFA and LOC showed
modest neural expertise effects during the cue period, although
increases were not evident during the memory delay (Fig. 8).
Interestingly, expertise effects in these regions were not signif-
icantly correlated with postscan measures of expertise during any
task period. Previous studies of bird and car experts have revealed
positive correlations between behavioral expertise and FFA acti-
vation during tasks that involved judging the location of objects
(Gauthier et al., 2000; Xu, 2005); however, no significant corre-
lations were reported during tasks that involved processing of
object identity (Gauthier et al., 2000; Grill-Spector et al., 2004).
In another study of Lepidoptera experts (Rhodes et al., 2004),
FFA activation was correlated with behavioral performance dur-
ing recognition of objects from novice as well as expert categories.
Collectively, these findings do not suggest a consistent relation-
ship between FFA activation and individual differences in
expertise.

Expertise-related activity in DLPFC, IPS, and OTC
In contrast to the relatively modest effects of expertise in individ-
ually defined FFA and LOC ROIs, we found robust expertise
effects in the DLPFC, IPS, and OTC (see Table 1 for a complete
list of regions). Activity in each of these regions during encoding
and maintenance was modulated by expertise, and maintenance-
related activation was also positively correlated with individual
differences in expertise (see supplemental material, available at
www.jneurosci.org, for discussion of correlations during the cue
period). Although these findings do not invalidate reports of
expertise-related activity in the FFA and LOC, they do suggest the
need to consider the effects of expertise on other cortical areas
that are usually not considered in imaging studies.

Our results are generally consistent with models proposing
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that visual WM maintenance is accomplished through top-down
modulation of visual object representations in OTC by frontal
and parietal cortices (Desimone, 1996; Miyashita and Hayashi,
2000; Ranganath and D’Esposito, 2005; Ranganath, 2006). The
effects of expertise on these networks could be explained at least
three ways. One possibility is that expert WM advantages reflect
“bottom-up” influences. According to this idea, tuning of OTC
networks during expertise acquisition allows people to encode
more information about expert-category objects, giving rise to
greater recruitment of DLPFC and IPS during WM encoding and
maintenance. A second possibility is that expert WM advantages
are driven by “top-down” influences. For example, tuning of
networks in DLPFC during expertise acquisition may allow ex-
perts to seek out domain-relevant feature configurations, thereby
enhancing the ability to activate neural representations in OTC
(Bar, 2003, 2004). This idea fits well with previous research show-
ing that OTC activation is increased during the engagement of
object-based attention (Kanwisher and Wojciulik, 2000; Gazza-
ley et al, 2005) and WM maintenance (Ranganath et al,
2004a,b), even when perceptual stimulation is controlled. A third
possibility is that expert WM is supported by both top-down and
bottom-up influences. This view accords with psychological the-
ories suggesting that expertise results in acquisition of domain-
specific skills that direct WM encoding and maintenance (Erics-
son and Kintsch, 1995; Gobet, 1998), as well as pattern learning
that facilitates passive perceptual processing (Chase and Simon,
1973; Ericsson and Kintsch, 1995; Gobet, 1998).

Our study, like other fMRI studies of perceptual expertise,
cannot conclusively adjudicate between these accounts. Results
from other imaging studies, however, are more consistent with a
top-down or an interactive model, rather than a purely
bottom-up model. For example, Olesen et al. (2004) reported
improved spatial WM performance and increased DLPFC and
IPS activation after 5 weeks of training in verbal and visuospatial
WM tasks. These findings demonstrate that activation in DLPFC
and IPS can accompany the development of abstract mnemonic
skills even when there is no obvious perceptual learning. Addi-
tionally, Bor and colleagues have demonstrated that DLPFC and
IPS activation increases when participants use “chunking” strat-
egies to recode information during WM encoding (Bor et al.,
2003, 2004; Bor and Owen, 2006). These findings demonstrate a
role for the DLPFC and IPS in using previous knowledge (or
expertise) to facilitate efficient WM encoding and maintenance.

Results from single-unit recording studies are also consistent
with the idea that top-down and bottom-up influences play a role
in expert visual WM. These studies have shown that selectivity of
prefrontal and inferior temporal neurons is influenced by learn-
ing about objects (Rainer and Miller, 2000; Rainer et al., 2004)
and categories of objects (Sigala and Logothetis, 2002; Freedman
et al., 2003). For example, Freedman et al. (2003) showed that,
after categorization training, prefrontal and inferior temporal
neurons exhibited category-selective neural responses. However,
prefrontal neurons exhibited stronger category tuning, whereas
inferior temporal neurons were more sensitive to the visual fea-
tures of each exemplar within the category. Additionally, pre-
frontal neurons showed persistent activity during the delay be-
tween each stimulus and the upcoming decision probe, whereas
inferior temporal neurons tended to show phasic responses dur-
ing stimulus presentation.

The evidence summarized above suggests a cortical division of
labor with regard to visual expertise. Expertise acquisition may
result in tuning of stimulus-specific neurons in OTC that project
to prefrontal neurons. The convergence of these inputs in pre-
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frontal cortex may result in the formation of frontoparietal net-
works that represent category information in a manner that can
guide visual attention, WM encoding, and maintenance (Riesen-
huber and Poggio, 1999). Thus, cognitive control processes im-
plemented by the DLPFC and other regions may support the
application of expert memory skills, as described in psychological
theories of expert WM.
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