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Approximately a decade has passed since
midbrain dopamine neurons emerged as a
bridge between research in traditional
machine learning, particularly reinforce-
ment learning (RL), and behavioral neu-
roscience (Schultz et al., 1997). In RL, the
difference between the actual reward and
the expected reward is called the “predic-
tion error,” which is used in learning
models to optimize the future reward.
Dopamine neurons in the ventral tegmen-
tal area and substantia nigra are involved
in the error prediction. Multiple reward
signals are sent to brain regions involved
in sophisticated decision-making pro-
cesses, such as basal ganglia, the anterior
cingulate cortex (ACC), and the prefron-
tal cortex (PFC). However, simple RL
models do not encompass all aspects of
elaborate human decision-making pro-
cesses. For example, the interdependen-
cies in states, actions, and ensued rewards
are not characterized in simple RL models
because they only update the selected op-
tion. This disadvantage can be overcome
by model-based RL in which the dynamics
of the given conditions are learned indi-
rectly by the construction of an abstract
model that includes the structure of par-
ticular tasks.

In their recent Journal of Neuroscience

article, Hampton et al. (2006) aimed to
determine whether human subjects en-
gage in a simple decision-making prob-
lem by using state-based inferential
knowledge of the task structure or by a
simple RL model based on the individual
reward history. Sixteen subjects were
scanned with functional magnetic reso-
nance imaging while performing a proba-
bilistic reversal learning task that incorpo-
rated anticorrelation between the reward
distributions associated with two choices
and the knowledge that the contingencies
will reverse [Hampton et al. (2006), their
Fig. 1C (http://www.jneurosci.org/cgi/
content/full/26/32/8360/F1)]. Specifi-
cally, on each trial, subjects were pre-
sented with two stimuli designated as the
correct and incorrect choice. After sub-
jects selected a stimulus, a monetary gain
or loss indicative of a reward or punish-
ment, respectively, appeared on the screen
in a stochastic manner. The contingencies
also reversed randomly after four consec-
utive correct choices. When the reversal
occurred, subjects needed to select a new
correct stimulus before another reversal
took place.

Hampton et al. (2006) implemented a
Bayesian hidden Markov model for their
task. The model statistically inferred the
probability of being in the correct-choice
state from the choice action (stay or
switch), the observed reward, and the
probability of previous choice states.
Their model was compared with simple
RL models, such as Q-learning, actor-
critic methods, and advantage-learning

models. At the behavioral level, the state-
based model produced more accurate fit-
ting with choices of subjects compared
with all simple RL models. Thus, subjects
managed the probabilistic reversal learn-
ing with implicit integration of task struc-
ture. To identify the neural substrates un-
derlying the task, the random-effects
regression analysis of fMRI data were per-
formed with the estimated state-based
model and best-fitting RL model. The pri-
or– correct probability of the state-based
model, which is the expected value in the
simple RL models, was represented in the
medial PFC, orbitofrontal cortex, and
amygdala. In addition, the ventral stria-
tum, dorsomedial PFC, and ventromedial
PFC (vmPFC) encoded a posterior–prior
correct update signal analogous to the
prediction error in the simple RL models
[Hampton et al. (2006), their Fig. 2 D
(http://www.jneurosci.org/cgi/content/
full/26/32/8360/F2)]. The ingenuity of the
experimental design revealed both the
similarity and the difference in the mod-
els. Surprisingly, the neural activity pat-
terns of the vmPFC followed the predic-
tion of the state-based model that is
specifically distinct from that of the simple
RL after subjects switched their choice in the
punished trial [Hampton et al. (2006), their
Fig. 3A (http://www.jneurosci.org/cgi/
content/full/26/32/8360/F3)]. In simple
RL, the value of the chosen option is up-
dated, but the other option will not be up-
dated until it is chosen. Thus, the decision
to switch to the new option will result in a
less expected value. However, the decision
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to switch in the state-based model has
shown that the expected value is high, as
reflected in neural activities in the
vmPFC.

In our everyday lives, the very same
notion prevails. After “plan A” fails, we
switch to “plan B,” hoping for a more pos-
itive outcome with the renewal of prior
probability for plan B. The greater proba-
bility of success resides even before we ex-
ecute plan B and validate the successful-
ness of it. Hampton et al. (2006) designed
a model-based RL model that can effec-
tively depict the human goal-directed be-
havior in such situations. Furthermore,
they identified the vmPFC, ACC, and an-
terior insular as the neural underpinnings
of stated-based decision making. Com-
bined with a recent study that the vmPFC
is involved in avoidance learning (Kim et
al., 2006), these results indicate that the
vmPFC has a variety of roles in decision-
making situations, along with other brain
regions.

This study provides a step in the right
direction, but it reflects only the tip of the
iceberg. First, the number of states and
corresponding actions is likely to be more
than two, and the degree of interdepen-

dency might be varied. Even for infinite
possible actions (e.g. continuous-valued
actions), simple RL models, such as actor-
critic methods, might be superior to the
state-based model because of computa-
tional load (Sutton and Barto, 1998). Sec-
ond, heterogeneous stimuli that are in ap-
petitive, monetary, and social rewards are
thought to be differentially processed in
our brain. Third, our decision-making
processes have dynamic flexibilities that
are neglected in the state-based model.
The stationary model possesses constant
parameters and the Markov property. In
reality, decision models are dynamic in a
way that the sequence of the previous out-
comes influences the calculation of the
probability of being correct or incorrect.

There are multiple neural systems that
govern human decision making (Daw et
al., 2005). Hampton et al. (2006) show
that simple RL and abstract state-based
models make qualitatively different pre-
dictions in different neural systems and
that simple RL models are not always ap-
propriate for human decision making.
Without a doubt, the RL with midbrain
dopamine neurons is at the core of multi-
ple learning models and goal-directed be-

havior. The convergent and divergent in-
teractions between neural systems seem to
result in complex decision making. Future
longitudinal investigations should con-
centrate on experimental and theoretical
work to unravel the intricate human
decision-making processes that may in-
volve different learning models in vari-
ous neural systems concurrently and
sequentially.
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