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Dynamic Spatial Processing Originates in Early
Visual Pathways
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A variety of studies in the visual system demonstrate that coarse spatial features are processed before those of fine detail. This aspect of
visual processing is assumed to originate in striate cortex, where single cells exhibit a refinement of spatial frequency tuning over the
duration of their response. However, in early visual pathways, well known temporal differences are present between center and surround
components of receptive fields. Specifically, response latency of the receptive field center is relatively shorter than that of the surround.
This spatiotemporal inseparability could provide the basis of coarse-to-fine dynamics in early and subsequent visual areas. We have
investigated this possibility with three separate approaches. First, we predict spatial-frequency tuning dynamics from the spatiotemporal
receptive fields of 118 cells in the lateral geniculate nucleus (LGN). Second, we compare these linear predictions to measurements of
tuning dynamics obtained with a subspace reverse correlation technique. We find that tuning evolves dramatically in thalamic cells, and
that tuning changes are generally consistent with the temporal differences between spatiotemporal receptive field components. Third, we
use a model to examine how different sources of dynamic input from early visual pathways can affect tuning in cortical cells. We identify
two mechanisms capable of producing substantial dynamics at the cortical level: (1) the center-surround delay in individual LGN
neurons, and (2) convergent input from multiple cells with different receptive field sizes and response latencies. Overall, our simulations
suggest that coarse-to-fine tuning in the visual cortex can be generated completely by a feedforward process.
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Introduction
The manner by which sensory information is encoded and trans-
mitted is a central concern in neurobiology. In the visual system,
a number of theoretical (Marr and Poggio, 1979; Watt, 1987),
behavioral (Breitmeyer, 1975; Harwerth and Levi, 1978; McSor-
ley and Findlay, 1999; Morrison and Schyns, 2001), and physio-
logical (Ringach et al., 1997; Pack and Born, 2001; Bredfeldt and
Ringach, 2002; Mazer et al., 2002; Menz and Freeman, 2003;
Frazor et al., 2004; Nishimoto et al., 2005) studies have presented
evidence suggesting a sequential analysis of information. Specif-
ically, coarse features of a stimulus are processed before those of
fine detail, producing a refinement in resolution as response la-
tency increases. This coarse-to-fine process has been docu-
mented for spatial frequency (SF) tuning (Bredfeldt and Ringach,
2002; Mazer et al., 2002; Frazor et al., 2004; Nishimoto et al.,
2005), orientation selectivity (Ringach et al., 1997; Chen et al.,
2005) (but see Gillespie et al., 2001; Mazer et al., 2002), direction
preference (Pack and Born, 2001), and disparity tuning (Menz
and Freeman, 2003).

Although the presence of coarse-to-fine processing is well es-
tablished, the details of where and how this sequential analysis
develops are not clear. Physiological studies of the dynamics of SF

tuning, perhaps the most fundamental feature of spatial vision,
have all been conducted in the primary visual cortex, where it is
tacitly assumed the effects originate. Intracortical mechanisms
(Bredfeldt and Ringach, 2002) and convergent magnocellular-
parvocellular input (Mazer et al., 2002; Frazor et al., 2004) have
been proposed as the basis of the effect. However, it is plausible
that a coarse-to-fine mechanism originates in subcortical path-
ways. A well known temporal response difference between center
and surround receptive field (RF) components of neurons in the
retina (Enroth-Cugell et al., 1983) and lateral geniculate nucleus
(LGN) (Dawis et al., 1984; Cai et al., 1997) could form the basis of
coarse-to-fine processing which propagates to higher visual
areas.

We have undertaken a comprehensive set of studies to eluci-
date the characteristics of SF tuning dynamics in early and late
visual pathways. First, we analyzed the linear spatiotemporal re-
sponse properties of single-cell recordings from a large popula-
tion of neurons in LGN. Second, we recorded from LGN cells to
measure changes in SF tuning directly. Third, we used a feedfor-
ward model to analyze how several sources of dynamic input
affect processing sequences in the visual cortex. Our experimen-
tal results show conclusively that the coarse-to-fine process be-
gins in early visual pathways, and our model simulations suggest
that tuning changes in the visual cortex can be entirely accounted
for by feedforward processes. Considered together with other
studies, these results point to a generalized scheme of neural pro-
cessing in the visual pathway that appears to be applicable to
other sensory systems.
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Materials and Methods
Recording procedures. Extracellular recordings are made from cells in the
LGN of anesthetized and paralyzed mature cats in conformance with
guidelines adopted by the Society for Neuroscience. Single-unit record-
ings are obtained using multiple tungsten microelectrodes from vertical
electrode penetrations at Horsley–Clarke coordinates A6 L9 (Horsley
and Clarke, 1908). After a unit is identified by its response waveform, RF
parameters are measured using drifting sinusoidal gratings and random-
noise stimuli presented on a cathode-ray tube (CRT) monitor (75 Hz
refresh rate; 50 cd/m 2 mean luminance). Because X and Y cells of the
LGN exhibit similar linear RF organization (Cai et al., 1997), we have not
differentiated them in this study. All cells described in this study had RFs
located within 20° of area centralis. Details of recording procedures have
been provided previously (DeAngelis et al., 1993; Cai et al., 1997; Anzai et
al., 1999).

Database analysis. SF dynamics of LGN cells are first examined by
analyzing spatiotemporal RFs from our large electrophysiology database.
Spatiotemporal RFs selected for this analysis were mapped using a one-
dimensional sparse noise reverse-correlation technique (DeBoer and
Kuyper, 1968) (for details, see Cai et al., 1997). For this version of reverse
correlation, the visual stimulus is a random sequence of elongated bright
and dark bars displayed at 20 or 30 positions along a stimulus patch (see
Fig. 1 A). The stimulus patch width is adjusted to cover the entire RF, as
estimated with preliminary search programs. Typically, this width is be-
tween 3 and 6°. The patch length is set to 15°; thus, each bar is �0.3 � 15°
in size. Bars are displayed for 13 or 26 ms (one or two frames of the CRT
monitor). Because some cells in the LGN are known to have an orienta-
tion bias (Vidyasagar and Urbas, 1982) the stimulus bars are adjusted to
match the cell’s preferred orientation.

We used Fourier analysis to convert response functions from the spa-
tial domain to the SF domain. For each time point of the spatiotemporal
map, the spatial waveform is zero padded to fill a 1 � 32 vector. We then
applied the fast Fourier transform to the data and analyze the resulting
amplitude spectrum. This procedure assumes linear spatial summation
of the RF, which is approximately true for the majority of LGN cells (Cai
et al., 1997) (but see Bonin et al., 2005). This procedure is also highly
dependent on the quality of the mapped RF. Because low signal in the
spatial domain can bias responses toward lower frequencies, we limited
our analysis to RFs, which are adequately mapped. This is determined
objectively by setting a threshold for the signal-to-noise ratio (SNR) of
the RF. The SNR is estimated as the SD of the spatial response at the peak
correlation delay divided by the SD of the response occurring at negative
time delays.

Subspace reverse correlation. The procedures used for subspace reverse
correlation are similar to those used in previous studies of SF dynamics
(Bredfeldt and Ringach, 2002; Mazer et al., 2002; Nishimoto et al., 2005).
Iso-oriented sinusoidal gratings at 50% contrast, with one of 15 SFs and
eight spatial phases, are flashed for 26 ms in a randomized sequence over
the RF of the cell. Blanks are not inserted in the stimulus sequence.
Gratings are positioned and sized to completely cover the cell’s RF, as
determined with a preliminary coarse mapping procedure. Most gratings
are between 3 and 6° in diameter. The appropriate range of logarithmi-
cally spaced SFs and the preferred orientation are determined before-
hand with standard grating tests. Reverse correlation stimulus sequences
are presented 150 –300 times, after which they are cross-correlated with
evoked responses to obtain a map of SF and spatial phase selectivity.
Maps are calculated in 6 ms bins, the highest temporal resolution we can
achieve while maintaining sufficient SNR for all cells. Because response maps
are highly linear over phase, we combine phase information by taking the
modulation across phases at each SF and correlation delay. This procedure
captures all major features of the SF response maps. Three of 35 cells show
slight suppression below baseline at very high frequencies over all phases.
Although this feature is not captured in the modulating component, tempo-
ral dynamics of the tuning peak or width are not affected.

To compare direct measurements of SF temporal dynamics with pre-
dictions, we also map spatiotemporal RFs of the same cells with a two-
dimensional (2D) dense noise version of reverse correlation (see Fig.
6 A). In this paradigm, RFs are mapped with white noise stimuli gener-

ated according to binary m-sequences (for details, see Anzai et al., 1999).
The stimulus grid, composed of 16 � 16 or 32 � 32 square elements, is
updated with each display frame (13 ms). All other properties of the
stimulus grid (position, width, and orientation) are identical to those in
the subspace reverse correlation procedure, producing stimulus ele-
ments which are �0.25 � 0.25° in size. The resulting spatiotemporal RF
has two spatial dimensions: Y, which is parallel to the preferred orienta-
tion of the cell, and X, which is orthogonal to Y. Because we measure SF
tuning over the X dimension in our direct measurements (see Fig. 4 A),
we integrate the RF over Y before taking the Fourier transform and
examining SF tuning.

We use dense noise rather than sparse noise to map the RFs for this
analysis because it better matches the stimulus energy of the subspace
reverse correlation sequence. Because stimulus energy can affect the la-
tency, duration, and magnitude of responses, sequences should be com-
parable if meaningful comparisons are to be made (Albrecht, 1995). For
both the sequence of sinusoidal gratings and the 2D m-sequence, stimuli
cover the entire RF at all times, and the luminance across the grid always
sums to the mean luminance (neither of which applies in the case of
sparse noise).

SF tuning analysis. SF tuning and dynamics are characterized identi-
cally for measured and predicted spectrotemporal RFs. In cases where
multiple assessments of SF are made (see Fig. 7), analyses on each set of
data are performed independently. For each spectrotemporal RF, we first
determine the appropriate time points over which to perform a tuning
analysis. The first time point (tinitial) is defined as the slice at which
response variance exceeds that of the baseline by �5 SDs (Mazer et al.,
2002). Baseline variance is calculated from noncausal delays. Determin-
ing the final time point at which to perform analysis is slightly more
difficult because temporal response profiles of LGN cells are highly di-
verse. The majority of thalamic cells exhibit two response phases, al-
though monophasic and triphasic profiles are also observed (Cai et al.,
1997). In addition, the relative strengths between phases are heteroge-
neous: second (and third) phases are often a fraction of initial response,
but many cells show additional phases of equal or (in a minority or cells)
greater strength (Cai et al., 1997). For these reasons, we limit our analysis
of SF tuning to the first phase of the response. The initial phase is also the
most likely input to the “initial transient” response in cortical cells
(Frazor et al., 2004; Nishimoto et al., 2005) and, therefore, is the most
relevant response period to use when comparing geniculate SF tuning
dynamics to those in visual cortex. Qualitatively, for cells with a strong
biphasic response, the tilt of the second phase in the SF–time plane is
similar to the tilt of the first phase. For many cells, second-phase response
contours do not extend to SFs as high as during the first phase, although
this could be caused by reduced SNR. A quantitative analysis comparing
response dynamics between phases has not been performed. The end of
the first phase, tfinal, is defined as the time point at which response vari-
ance falls to a local minimum after the first peak. If no local minima are
present, (i.e., monophasic response profiles), tfinal is defined as the time
point at which variance decreases to the baseline level. Using these crite-
ria, the mean duration of the analysis window (tinitial to tfinal) is 30.6 ms,
with an SD of 7.9 ms.

To characterize SF tuning dynamics, we examine the tuning peak and
width at each time point in our analysis window. Before measuring these
parameters, we fit the data with a difference of Gaussians (DOG) func-
tion to reduce susceptibility to noise. We find that the least-squares best
fit (Levenberg–Marquardt algorithm) accounts for a large degree of the
variance in the data (r 2 � 0.90 for 95% of curves). From the DOG fit, a
cell’s optimal SF at time t is defined as the SF at the peak of the tuning
curve. Bandwidth is defined as log ratio of the high cutoff SF to the SFpeak:

bw�t� � log2�SFhigh�t�

SFpeak�t�
�,

where SFhigh is the SF at which amplitude falls to half of the peak value. To
estimate tuning changes over time, we compare parameters at initial and
final time points. The change in peak is the log ratio:

�SFpeak � log2� SFpeak�tfinal�

SFpeak�tinitial�
�,
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and the change in bandwidth is the difference, �bw � bw(tfinal) �
bw(tinitial).

Model structure. To investigate the contribution of feedforward mech-
anisms to SF tuning dynamics in cortical cells, we model LGN– cortical
connections with “push–pull” circuitry (Hubel and Wiesel, 1962; Jones
and Palmer, 1987; Ferster, 1988; Reid and Alonso, 1995; Hirsch et al.,
1998; Troyer et al., 1998). Other push-only models such as the structural
model described in Frazor et al. (2004) could have been used, but this
construction does not account for the sharpening in the low-frequency
limb of the SF tuning curve, nor is it consistent with pharmacological
experiments showing this sharpening involves inhibitory circuitry (Bau-
man and Bonds, 1991; Vidyasagar and Mueller, 1994; Pernberg et al.,
1998). Our model accounts for general aspects of cortical SF tuning,
although its scope is limited. We consider only responses of layer IV
simple cells, receiving excitatory input from nonlagged LGN cells with
central RFs and biphasic temporal structure. Simple cells are modeled as
having two dominant RF subregions that do not vary systematically in
position over time (i.e., nondirection selective). In addition, our model
does not include known structural and biophysical mechanisms, such as
expansive output nonlinearities, spike thresholds, or intracortical
correlation-based excitation. We exclude these factors to reduce the
number of free parameters and to keep the model as simple and inter-
pretable as possible. Previous work (Troyer et al., 1998) has demon-
strated that full incorporation of these mechanisms in a computational
model produces similar behavior to a more conceptual version. This
suggests that a more complex construction might alter the exact numer-
ical results in our simulations, but would not change the general
outcome.

For each simulation, we construct one excitatory and one inhibitory
cortical cell whose RFs are 180° out of phase. LGN inputs are combined to
form cortical cells using rules of connectivity between thalamic and cor-
tical simple cells (Alonso et al., 2001). For simplicity, cortical RFs are
modeled as having two primary subregions, although weaker flanking
subregions are also present because of LGN RF structure (see Fig. 9,
cortical RFs). Primary subregions are separated by 1°, the average dis-
tance between subregions from our own database of cortical RFs (data
not shown). Each subregion receives input from 15 LGN cells whose
positions are drawn from a normal distribution with mean equal to the
center of the subregion and an SD of 0.15° (Alonso et al., 2001). The sizes
of LGN RF centers are distributed around the widths of the subregions
(Alonso et al., 2001), described in greater detail below. In preliminary
simulations, we covaried input efficacy with the overlap of geniculate and
cortical RFs and also used a “same sign” rule with a probability of 70% in
accordance with Reid and Alonso (1995) (Alonso et al., 2001). However,
the small number of LGN inputs led to highly variable cortical RFs with
occasional atypical organization. Therefore, in the final version of the
model, all LGN cells contributing to a single subregion share the same
sign and have equal efficacy. Intracortical connections between cells with
similar RF structure, which are not included in this model, could func-
tion to increase stability and robustness of cortical cells, as has been
proposed previously (Troyer et al., 1998).

LGN RF parameters. Spatiotemporal LGN RFs are modeled as in Cai et
al. (1997). Spatial profiles are described with a DOG, and temporal pro-
files are described as a difference of gamma functions, with distinct center
and surround components. The full expression is RF(x,t) � Fc(x)Gc(t) �
Fs(x)Gs(t), where

Fc�x� � Ace
�x2/ 2�c

2

,

and Fs(x) is defined analogously. The temporal filter for the center is as
follows:

Gc�t� � K1

�c1�t � t1��
n1e�c1�t�t1�

n1
n1e�n1

� K2

�c2�t � t2��
n2e�c2�t�t2�

n2
n2e�n2

,

and Gs�t� � Gc�t � td�.

Most parameters are fixed to the geometric means of their distributions
as reported in Cai et al. (1997): As/Ac � 0.3; K1 � 1.05; c1 � 0.14; n1 � 7;
K2 � 0.7; c2 � 0.12; n2 � 8. During simulations which do not include

space–time correlations (see Fig. 9 A, C), t1 and t2 are held constant at �6
ms. This set of parameters produces a biphasic temporal profile with a
fast, initial phase which peaks at 38 ms and a slower, weaker second phase
which peaks at 85 ms and decays fully by 150 ms. Because it is unlikely
that all geniculate inputs which converge onto a single simple cell have
identical temporal profiles (Alonso et al., 2001), we performed additional
simulations in which response latency was permitted to vary. As ex-
pected, this addition increases the variability in cortical output, but oth-
erwise yields results identical to those produced with a fixed t1 and t2.

The distribution of LGN RF sizes contributing to a single cortical cell is
based on previous reports (Alonso et al., 2001). These data show that
LGN RF centers are typically equal to or slightly greater than the subre-
gion width of the cortical cell, although geniculate cells with RF centers
larger than two times the subregion width also contribute input, al-
though with reduced frequency. To approximate this distribution for a
subregion separation of 1°, the RF center diameter is drawn from
N(0.8,0.36) � 0.7° (i.e., a modified Gaussian distribution with mean 0.8°
and SD 0.6°, rectified 	0.7°). The median of this distribution is 1.15°,
and �15% of inputs have a RF center that is more than two times the
cortical subregion width.

From the LGN RF center, we derive the size of the RF surround and the
temporal response function. The size of the surround is related to the size
of the center by �s � 1.5 � �c 
 0.4, a linear relationship found in
previous model fits of LGN spatiotemporal RFs (Cai et al., 1997) (r 2 �
0.41; p 	 10 �6, linear regression). To incorporate correlations between
thalamic RF size and response latency (Weng et al., 2005), we can delay or
advance the temporal profile by adjusting parameters t1 and t2. Note that
changing t1 and t2 corresponds to a simple shift along the time axis, not a
stretching or contracting of the curve. For each cell, the time shift is
computed by first finding the difference in RF center area (assuming
circularly symmetric RFs):

D � ��dc

2 �
2

� ��dm

2 �
2

where dc is the center diameter of each LGN cell, and dm is the median
center diameter from the distribution, 1.15°. We multiply the difference
in area, D, by a space–time slope [in milliseconds per degree squared
(ms/deg 2)] to obtain the temporal shift, which is added to t1 and t2.
Space–time slopes are all negative, such that cells with larger RF centers
have shorter latencies. For reference, a space–time slope of �3.5 ms/deg 2

produces a population of LGN RFs with optimal latencies separated by
�10 ms. This separation is similar to the measured difference in peak
latencies between connected geniculate and simple cells, �5–15 ms
(Alonso et al., 2001).

Model simulations. To measure the SF tuning of our model cortical
cells, we calculate LGN responses to static sinusoidal gratings at different
SFs, ranging from 0.01 to 1.5 cycles (c)/deg, and four different phases.
Thalamic input to cortical cells is calculated as the sum of the rectified
firing rates of each LGN cell, with a geniculate spontaneous firing rate of
10 spikes/s. In addition to excitatory thalamic input, the cortical cell
receives input from the inhibitory cortical cell, which is antiphase inhi-
bition parameterized by a weight, W, and a time delay, �. The total input
to the excitatory cortical cell can be expressed as follows:

I( f,�,t) � LGNe( f,�,t) � W � LGNi( f,�,t � �),

where

LGN� f,�,t� � �
cell�1

30

�RFcell�x,t� � S� f,�� 	 10�


is the combined output from all the LGN cells connecting to a cortical cell
in response to a sinusoidal grating, S, at SF, f, and phase �. LGNe repre-
sents the response from cells connecting directly to the excitatory cell (see
Fig. 8 A), whereas LGNi refers to responses from cells connected to the
inhibitory cell (see Fig. 8 B). For simplicity, we have treated the inhibitory
response as linear: the effective inhibitory current in the excitatory cell is
simply a weighted version of the output from LGN cells (LGNi), with an
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additional temporal shift to account for the disynaptic pathway. To ob-
tain output from the excitatory cell, the input is integrated with a time
constant of 10 ms and rectified.

Following protocols used in previous studies of cortical SF dynamics
(Bredfeldt and Ringach, 2002; Frazor et al., 2004; Nishimoto et al., 2005),
full spectrotemporal maps for each cortical cell are obtained by averaging
responses to stimulus gratings across all phases. Tuning shifts are then
calculated by comparing parameters from time points at which response

Figure 1. Prediction of SF tuning dynamics from spatiotemporal RFs. A, The stimulus se-
quence used to map spatiotemporal RFs was one-dimensional sparse noise. Elongated dark and
light bars, aligned to a cell’s preferred orientation, were randomly displayed at 20 or 30 posi-
tions over the RF. B, The spatiotemporal RF of an OFF-center cell. RFs are plotted as contour
maps, where blue and red contours enclose dark and bright excitatory regions, respectively. For
this and all other contour maps, each contour indicates a 10% decrement from the maximum
amplitude. C, Time slices from 20 to 50 ms show the evolution of the spatial response over time,
and in particular, the delayed development of the surround. D, Fourier analysis of the spatio-
temporal RF yields the linear prediction of the spectrotemporal RF. E, Rightward tilted contours
in the SF–time plane indicate coarse-to-fine dynamics, and time slices show a clear change
from low to bandpass SF tuning. Solid blue dots mark data points whereas black curves show the
DOG least-squares fit used to obtain tuning parameters for each time point. F, G, Graphs of
tuning parameters over time. The peak SF (F ) increases, and the half-width (G) decreases. Half-
width is defined as follows: bw � log2(SFhigh/SFpeak), where SFpeak is the optimal SF and SFhigh

is the SF to the right of SFpeak at which amplitude falls to half the maximum value.

Figure 2. Population distributions of predicted tuning parameters and parameter changes
over time. A, B, Histograms of the peak SF (A) and half-width (B) for our sample of LGN neurons
(n � 118). Average tuning parameters describe the tuning curve obtained by integrating the
spectrotemporal map from tinitial to tfinal (�30 ms). C, D, Distributions of changes in peak SF and
tuning width. Peak shift is defined as log2[SFpeak(tfinal)/SFpeak(tinitial)], and the shift in width is
bw(tfinal) � bw(tinitial). Both the mean of the peak shift (1.14 
 0.076 octaves, mean 
 SEM)
and the mean of the width shift (�0.95 
 0.072 octaves, mean 
 SEM) were significantly
different from zero ( p � 0 and p � 0, two-tailed t test).

Figure 3. Spatiotemporal RFs of a single neuron obtained with different stimulus grid sizes.
A, C, The mapped spatiotemporal RF (A) and predicted spectrotemporal RF (C) obtained with an
8 � 8 stimulus grid. B, D, The mapped spatiotemporal RF (B) and predicted spectrotemporal RF
(D) obtained with a 16 � 16 stimulus grid. Black boxes along the X dimension of the spatio-
temporal RFs show the positions and sizes of each stimulus pixel. The stimuli used in A are too
large to capture the full narrowing of the center component which is seen in B. This corresponds
to a reduction in the high SF cutoff in the SF domain (compare C, D). However, the large stimuli
are much more effective in eliciting a response from the surround.
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variance rises or falls to 20% of the maximum value. The duration of this
time period is �40 ms, facilitating comparisons to earlier reports (Frazor
et al., 2004; Nishimoto et al., 2005). Because our model permits the
precise position and size of LGN RFs to vary, we repeat simulations with
each set of parameters 15 times.

Results
Our results are organized into three sections. First, we describe
the SF dynamics observed in a large population of LGN cells as
predicted from spatiotemporal RFs. Second, we assess the validity
of these predictions using a subspace reverse correlation tech-
nique for a sample of cells. Third, we present a simple model,
based on push–pull circuitry, which examines the extent to which
cortical tuning changes can be explained by feedforward input.

Predicted SF dynamics
We analyzed responses of 118 LGN cells from our electrophysi-
ology database for which the spatiotemporal RF of each unit was
mapped using one-dimensional sparse noise reverse correlation
(Fig. 1A). The spatiotemporal RF for a typical LGN neuron in our
sample is shown in Figure 1B. RFs are plotted as contour maps,
which indicate dark (blue) and bright (red) excitatory regions. A
feature evident in the RF of this OFF-center cell is the delay of the

surround response with respect to the cen-
ter, a property common to most LGN neu-
rons (Cai et al., 1997). Slices through dif-
ferent time points in the RF (Fig. 1C) show
the temporal evolution of the spatial pro-
file more clearly. At t � 20 ms, the center
response is already present, but the sur-
round response does not fully develop un-
til t � 40 ms.

This characteristic temporal insepara-
bility in the spatial domain predicts corre-
sponding changes in the spectral domain.
The spectrotemporal RF, obtained by tak-
ing the Fourier transform of the spatio-
temporal RF, is shown in Figure 1D. This
cell is strongly biphasic, and exhibits two
distinct response regions, both of which
are slightly slanted in the SF–time plane.
This slanting indicates dynamic SF tuning.
Time slices through the spectrotemporal
RF (Fig. 1E) show that SF tuning is low-
pass and broad at time points during
which only the center is present (Fig. 1C).
The later development of the surround
suppresses responses to very low SFs, and
the tuning becomes bandpass.

To quantify tuning changes, we find the
optimal SF (Fig. 1F) and tuning width
(Fig. 1G) for each time point, and then cal-
culate the changes in these values over
time. We fit the data (Fig. 1E, blue dots)
with a DOG function (Fig. 1E, black lines)
to improve our estimation of tuning pa-
rameters. For cells with multiphasic tem-
poral profiles, we limit our analysis to
points spanning only the first phase of the
response (�30 ms), because some cells
have a substantially weaker second phase
which may not be captured well by the RF
mapping procedure.

The distributions of average tuning pa-
rameters (Fig. 2A,B) and the temporal shifts in these parameters
(Fig. 2C,D) are shown for our sample of LGN cells. Average tun-
ing curves are obtained by integrating the spectrotemporal re-
sponse from tinitial to tfinal, where tinitial is the first time point used
in our analysis [e.g., t � 20 (Fig. 1)], and tfinal is the last. The
distribution of optimal SF (Fig. 2A) is broad, ranging from 0.01
to 0.75 c/deg, with a mean of 0.26 c/deg. Figure 2B summarizes
the tuning bandwidths found in this population. The low selec-
tivity exhibited by most LGN cells (Lehmkuhle et al., 1980; Troy,
1983) is evident, as most half widths are �0.8 octaves. For com-
parison, cells in the primary visual cortex typically have tuning
half-widths between 0.3 and 0.8 octaves (Movshon et al., 1978;
Nishimoto et al., 2005).

We now examine SF tuning as a function of response latency.
If SF tuning is temporally static, the parameters describing tuning
curves at each time point will be similar, and the shifts in these
parameters should be distributed evenly around zero. However,
for our LGN sample, shifts in tuning peak (Fig. 2C) are distrib-
uted almost entirely above zero (i.e., preferred SF changes from
low to high values during the course of the cell’s response). On
average, the optimal SF changes by over an octave (1.14 
 0.076
octaves, mean 
 SEM). Similarly, the shifts in tuning bandwidth

Figure 4. SF tuning dynamics measured with subspace reverse correlation. A, The stimulus for reverse correlation in the SF
domain was a randomized sequence of iso-oriented sinusoidal gratings, each with one of 15 possible SFs and eight possible
phases. Gratings were presented consecutively every two video frames (26 ms). B, Spectrotemporal RFs computed at each phase
after 200 repetitions of the stimulus. Red and blue contours correspond to responses above and below the baseline level, respec-
tively. C, Because responses are strongly linear with respect to phase, we compute the modulation over phase at each SF and
correlation delay for further analysis. D, Time slices approximately spanning the first phase of the response reveal prominent
changes in SF tuning. DOG fits (black curves) to the raw data (solid blue dots) were used to estimate tuning parameters. E, Both the
peak SF (top) and the half-width (bottom) change over time in a coarse-to-fine manner.
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(Fig. 2D) are nearly all distributed over negative values, corre-
sponding to a narrowing of the curve, or a selectivity increase
with greater latency. The mean of this distribution is �0.95 

0.072 octaves.

Direct measurements of SF dynamics
Accurate predictions of SF tuning from spatiotemporal RFs re-
quire that (1) the spatiotemporal RF of the cell is completely
captured with the mapping procedure, and (2) the cell’s response
is linear. Requirement 1 is highly dependent on the properties of
the stimulus used to map the RF. In the spatial domain, large
stimuli will blur fine features, biasing results toward lower SFs.
Small stimuli, however, may not excite the cell sufficiently to
reach threshold. These effects are illustrated in Figure 3, which
shows the spatiotemporal and spectrotemporal RFs of a single cell
mapped with two different stimulus grid sizes. The RFs achieved
with large (Fig. 3A,C) and small (Fig. 3B,D) stimulus grids are
similar, but substantial differences are immediately obvious. The
spatiotemporal RF obtained with large stimuli (Fig. 3A) exhibits a
strong surround in both phases of the response. In comparison,
the surround response of the RF mapped with smaller stimuli
(Fig. 3B) is considerably weaker in the first phase, and almost
nonexistent in the second. As a consequence, the SF response of
the second phase (Fig. 3D) is predominately low-pass and shows
little of the dynamics clear in the spectrotemporal map ob-
tained with large stimuli (Fig. 3C). However, the large pixels
are incapable of capturing the full narrowing of the center
component over time. Compared with the fine stimuli spec-
trotemporal map (Fig. 3D), this leads to a noticeable decrease
in the high SF cutoff (Fig. 3C).

Requirement 2, LGN cell response linearity, has been ad-
dressed previously (Derrington and Lennie, 1984; Dan et al.,
1996; Cai et al., 1997). We note that nonlinear phenomena are
present in LGN responses, and that the nonlinear component can
be modeled with a suppressive field, preferentially tuned to low
SFs (Bonin et al., 2005). Although studies suggest that nonlinear
contributions to LGN responses are small, SF-specific suppres-
sion with a distinct time course might have large effects on the
temporal evolution of the response, and therefore must be con-
sidered in this study. To provide a more definitive analysis of
LGN SF dynamics, we have measured SF tuning directly as a
function of time.

These measurements are conducted using a subspace reverse
correlation procedure (Bredfeldt and Ringach, 2002; Mazer et al.,
2002; Nishimoto et al., 2005) (Fig. 4A). A randomized sequence
of sinusoidal gratings, flashed briefly over the cell’s RF, is cross-
correlated with the evoked spike train to obtain a 2D map of SF
and spatial phase selectivity (Fig. 4B). For the cell shown in Figure
4 and all others (n � 35), the response is sinusoidal as a function
of phase. Stimuli evoking responses at one phase (e.g., red con-
tours at 0°) reduce those at the antiphase below baseline level
(e.g., blue contours at 180°). This response property enables us to
construct a single spectrotemporal RF for each cell by calculating
the modulation amplitude across phase for each SF and correla-
tion delay (Fig. 4C). Note that this procedure is analogous to
taking the F1 component of a response to a drifting grating. From
the modulation spectrotemporal RF, tuning dynamics are as-
sessed using the same procedure that is applied to the predicted
spectrotemporal RFs from the database.

Tuning for the example cell is clearly dynamic. Response con-
tours in the SF–time plane tilt slightly to the right (Fig. 4C), and
slices at different time points show a gradual shift from low-pass
to bandpass tuning (Fig. 4D). The preferred SF (Fig. 4E, top)

shifts to higher values over time, and bandwidth narrows (Fig, 4E,
bottom). These tuning properties are representative of those ob-
served for our sample of cells, shown in Figure 5. Thirty-two of 35
neurons show a change in optimal SF from low to high values,
with an average shift of 1.8 
 0.2 octaves (mean 
 SEM) (Fig.
5C). Likewise, tuning selectivity increases with correlation delay
for 31 of 35 cells (Fig. 5D). On average, bandwidth narrows by
�0.84 
 0.17 octaves. From these data, we conclude that SF
tuning follows a coarse-to-fine processing sequence for nearly all
LGN neurons.

For 28 of the 35 neurons, we also mapped the spatiotemporal
RF to compare predicted and measured spectrotemporal tuning.
Because stimulus energy affects temporal response characteristics
(Albrecht, 1995), we used a 2D dense noise sequence (Fig. 6A) to
better match the energy of the stimulus used for subspace reverse
correlation (Fig. 4A). Results for three example cells are shown in
Figure 6. Data for each neuron are organized into columns, with
rows showing the spatiotemporal RF (Fig. 6B), the predicted
spectrotemporal RF obtained from Fourier analysis (Fig. 6C), the
measured spectrotemporal RF (Fig. 6D), the peak SF over time
(Fig. 6E), and the tuning width over time (Fig. 6F).

A qualitative comparison of measured and predicted spectro-
temporal tuning suggests that gross response characteristics are
well matched. The SF ranges over which each cell responds and
the temporal profiles (i.e., strongly biphasic for cell 1, monopha-
sic for cell 2) correspond well. In addition, the parameters de-
scribing measured and predicted tuning show similar changes
over time (Fig. 6E,F). However, a systematic deviation in tuning
is also evident: for all three neurons, the high SF cutoff is higher in
the measured case (Fig. 6, compare C, D).

A more quantitative comparison of high SF cutoffs between
measured and predicted tuning is presented in Figure 7A. A scat-
ter plot of the data reveals a strong correlation (r � 0.97), al-
though predictions consistently underestimate measured values,
particularly at higher SFs. Differences between predicted and

Figure 5. Population distributions of measured tuning parameters and parameter changes
over time. A, B, Histograms of the peak SF (A) and half-width (B) obtained with subspace
reverse correlation for a sample of 35 LGN neurons. C, D, The distributions of changes in peak SF
and tuning width. Both the mean of the peak shift (1.8 
 0.20 octaves, mean 
 SEM) and the
mean of the width shift (�0.84 
 0.17 octaves, mean 
 SEM) are significantly different from
zero ( p 	 10 �9 and p 	 0.0001, respectively, two-tailed t test).
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measured high cutoffs (projected in the histogram orthogonal to
the unity line) are all less than zero, with a mean difference of
�0.22 
 0.04 octaves.

A similar relationship exists between the predicted and mea-
sured average optimal SF (Fig. 7B), although differences are less
pronounced. Predicted and measured peaks are well correlated
(r � 0.90), but most points lie above the unity line, indicating that
predictions underestimate true values. Correspondingly, the dis-
tribution of differences in the peak (Fig. 5B, top right) is skewed
toward negative values, with a mean of �0.42 
 0.16 octaves.

Predicted and measured rates of
change in SFpeak are plotted in Figure 7C.
Rates of change are more appropriate for
comparisons than absolute shifts because
analysis time points are determined inde-
pendently for the different data sets and
durations can differ by as much as 15 ms.
The rate of change of preferred SF (in cy-
cles per degree per millisecond) is the slope
of the best fit line to the time versus the
SFpeak curve (Fig. 6E). The scatter plot in
Figure 7C shows that measured and pre-
dicted tuning changes are correlated (r �
0.78), and that there are no systematic de-
viations in the predictions. Points lie about
evenly above and below the y � x line, and
the distribution of differences is centered
close to zero (3.6 � 10�4 
 8.5 � 10�4

c/deg/ms).
These data are summarized in Figure

7D, which provides comparisons of pre-
dicted and measured tuning curves, aver-
aged over all cells, for tinitial (left) and tfinal

(right). Predicted tuning curves (dotted
lines) peak at lower SFs than measured
curves (solid lines) and underestimate re-
sponses to higher SFs. These deviations
could result from nonlinear contributions
or from biases in the mapping procedure
(see Discussion). However, because the
differences in tuning are somewhat consis-
tent over time, predicted tuning changes
are close to the measured values. From
this, we conclude that linear predictions of
spectrotemporal RFs provide good esti-
mates of SF tuning dynamics for LGN
neurons.

Relating coarse-to-fine dynamics in
LGN and visual cortex
Previous studies have demonstrated
coarse-to-fine SF tuning in the visual cor-
tex (Bredfeldt and Ringach, 2002; Mazer et
al., 2002; Frazor et al., 2004; Nishimoto et
al., 2005). Our current results raise an ob-
vious question: how much of the cortical
effect can be accounted for by feedforward
processing from early visual pathways? To
address this, we used a model relating tha-
lamic input to the first stage of cortical
output (see Materials and Methods for full
model details).

Our model uses push–pull circuitry,
based on numerous studies of extracellular and intracellular re-
cordings from LGN and the primary visual cortex (Hubel and
Wiesel, 1962; Jones and Palmer, 1987; Ferster, 1988; Reid and
Alonso, 1995; Hirsch et al., 1998). It is similar in structure to a
model developed previously to explore contrast invariant orien-
tation tuning (Troyer et al., 1998). A schematic of the model is
presented in Figure 8. Spatially offset ON and OFF LGN cells
(represented by their RFs in Fig. 8A) provide excitatory input
(push) to distinct ON and OFF subregions of a cortical cell. LGN
cells with identical spatial configuration and opposite phase (Fig.

Figure 6. Predicted and measured SF tuning for three example cells. A, For comparing predicted and measured SF tuning, we
used a slightly different version of spatial reverse correlation. Here, the stimulus sequence was 2D dense noise, where each frame
displayed a 16 � 16 or 32 � 32 grid of black and white squares. B, Spatiotemporal RFs mapped with the sequence in A for three
representative LGN cells. C, Predicted spectrotemporal RFs for each cell, obtained by taking the Fourier transform of their spatial
maps. D, Measured spectrotemporal RFs, obtained with the stimulus depicted in Figure 3A. E, F, Temporal changes in the tuning
peak (E) and half-width (F ) are shown for both the predicted (open circles) and measured (filled circles) tuning curves.
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8B) provide inhibitory input (pull) to the
cortical cell, after routing through a corti-
cal inhibitory interneuron. Inhibition is
parameterized with a weight, W, relative to
the level of excitation, and a time, �, which
describes the delay of inhibition relative to
excitation.

As described previously (Ferster, 1988;
Troyer et al., 1998; Lauritzen and Miller,
2003), this arrangement of inputs can filter
spatial information. When inhibition has
an equal to or greater weight than excita-
tion (W � 1), only stimuli that preferen-
tially excite one phase of LGN cells (Fig.
8A,B) pass through the filter to produce a
response in the excitatory cortical cell.
These properties are instrumental in con-
structing cortical SF tuning. Stimuli at very
low SFs excite neighboring ON and OFF
LGN cells equally. Thus, downstream cor-
tical neurons are simultaneously excited
and inhibited and fail to fire. In contrast,
stimuli at higher SFs excite the phases of
LGN cells differently to produce a robust
response in the excitatory cortical cell. The
push–pull configuration thus sculpts the
typically low-pass SF tuning of thalamic
input into the more bandpass tuning char-
acteristic of cortical neurons.

Within the structure of the push–pull
model, we examine several sources of dy-
namic input which could lead to SF
changes in layer IV simple cells. These in-
clude (1) mechanisms within single cells
(the time delay between center and sur-
round responses in LGN RFs), (2) mecha-
nisms across a population of cells (the cor-
relation between response latency and
RF size reported previously) (Derrington
and Fuchs, 1979; So and Shapley, 1979;
Sestokas and Lehmkuhle, 1986; Weng et
al., 2005), and (3) mechanisms within a
network (the time delay between feedfor-
ward excitation and feedforward inhibi-
tion). For each of these mechanisms, we
incrementally vary model parameters and
measure SF tuning of the model cortical cells.

Shifts in cortical SF tuning originating from different types of
spatiotemporal dynamics are depicted in Figure 9. Increasing the
time delay (td) between the LGN RF center and surround pro-
duces noticeable changes in the geniculate and cortical RFs (Fig.
9A, top). The simple cell has two primary subregions (i.e., LGN
centers “map” to two regions), although flanking subregions also
develop because of the LGN surround responses. The timing of
the weaker flanking subregions is directly affected by the LGN
center-surround delay, and these subregions lag behind the dom-
inant subregions for td � 0. This aspect of the model simple cell
RF is in agreement with experimental results showing that the
weakest cortical RF subregions have the slowest time courses
(Alonso et al., 2001).

As the slower flanking subregions develop they narrow the
primary subregions, shifting the SF tuning curve to higher fre-
quencies (Fig. 9A, bottom). Changing td from 0 to 12 ms, the shift

in tuning peak rises significantly from 0 to 0.5 octaves ( p � 0,
one-way ANOVA). Varying the center-surround delay also af-
fects the average SF tuning peak, although only optimal SFs from
td � 0 ms (0.43 
 0.006 c/deg) and td � 12 ms (0.41 
 0.006
c/deg) are significantly different ( p 	 0.05, one-way ANOVA
with Tukey’s honest significant difference criterion). The average
time delay observed in LGN neurons, �6 ms (Fig. 9A, blue circle)
(Enroth-Cugell et al., 1983; Cai et al., 1997) produces a cortical SF
tuning shift of 0.35 octaves. This value is consistent with mea-
surements of SF shifts for simple cells in the visual cortex, which
range from 0.2 to 0.6 octaves and average to �0.5 octaves (Bred-
feldt and Ringach, 2002; Frazor et al., 2004; Nishimoto et al.,
2005).

A second source of spatiotemporal dynamics is the correlation
between RF size and response latency (Fig. 9B, top). For cells
responding to overlapping regions of visual space, this relation-
ship is strongly linear (Weng et al., 2005) and can be parameter-

Figure 7. Population comparison of predicted and measured SF tuning. A, Scatter plot of predicted and measured high cutoff
values for a sample of 28 neurons. There is a strong correlation (r � 0.97; p 	 10 �15, linear regression), although predictions
clearly deviate from measurements. The differences between these values, computed as the log ratio of predicted SFhigh to
measured SFhigh, are displayed in a histogram (top right). The mean difference is significantly different from zero (�0.22 
 0.04
octaves, mean 
 SEM; p 	 10 �5, two-tailed t test). B, Scatter plot of average predicted tuning peaks and measured tuning
peaks. The data are highly correlated (r � 0.90; p 	 10 �9, linear regression) and most points lie above the y � x line, indicating
a higher peak when SF tuning was measured directly. The mean difference, computed analogously to the difference in high cutoff,
is significantly different from zero (�0.42 
 0.16 octaves, mean 
 SEM; p 	 0.05, two-tailed t test). C, Scatter plot of the
predicted changes and measured changes in tuning peak. The data are well correlated (r � 0.78; p 	 10 �6, linear regression)
and points are roughly evenly distributed above and below the unity line. The differences between predicted and measured tuning
changes are symmetrically distributed around zero. The mean of this distribution (3.6 � 10 �4 
 8.5 � 10 �4 c/deg/ms,
mean 
 SEM) is not significantly different from zero ( p � 0.5, two-tailed t test). D, A summary of SF tuning dynamics over the
population of cells. Both predicted (dashed line) and measured (solid line) curves show a large shift from low-pass tuning at tinitial

(left) to more bandpass tuning at tfinal (right). However, for all time points, predicted tuning curves underestimate the true peak,
as shown in B. Because this difference is roughly fixed over time, the predicted rate of peak change is relatively unaffected and
correlates well to the measured value, as shown in C. Curves were generated by averaging the parameters of the best-fit DOG at the
initial and final time point for each cell.
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ized as a negative slope in the space–time plane with units of
ms/deg 2. Implementing this space–time slope into the model
produces a gradual narrowing of cortical RF subunits over time
because LGN cells with smaller RFs respond at longer latencies.
As the space–time slope increases in amplitude, the time between
responses from large and small LGN cells grows, and the shift in
cortical SF tuning peak increases significantly (Fig. 9B, bottom)
( p 	 10�14). Changes in preferred SF as a result of space–time
correlations are of a similar magnitude as those found with the
center-surround time delay, reaching �0.3 octaves at a slope of
�7 ms/deg 2. As expected, increasing the slope affects the dura-

tion of the cortical response, but does not alter the average tuning
peak (mean 
 SEM ranges from 0.43 
 0.006 c/deg at slope � 0
to 0.42 
 0.006 c/deg at slope � �7 ms/deg 2; p � 0.5). A typical
slope relating size and latency, estimated as �3.5 ms/deg 2 in a
study by Weng et al. (2005), produces a cortical SF tuning shift of
�0.15 octaves.

The final type of temporally dynamic input examined here is
the time delay (�) between excitatory and inhibitory input (Fig.
9C, top). Because the pathway for feedforward inhibition re-
quires two synapses (thalamocortical and corticocortical), the
onset of inhibition is delayed with respect to excitation. Intracel-
lular recordings from layer IV simple cells in the primary visual
cortex show this delay to be �5 ms (Ferster, 1988; Hirsch et al.,
1998) (Fig. 9C, bottom, blue circle). Our simulations indicate
that the inhibitory delay generates a significant coarse-to-fine SF
shift in cortical tuning ( p 	 10�11), although the magnitude of
this effect is quite small compared with other sources of dynamic
input. At � � 10 ms, the inhibitory time delay produces a shift of
only 0.06 
 0.005 octaves, suggesting that it is not the primary
mechanism underlying SF tuning dynamics in the visual cortex.

In the previous simulations, the weight of inhibition (W) is
fixed at a value of 1.25 (i.e., it slightly exceeds the level of excita-
tion). This value of W is used because it produces SF tuning
curves with realistic bandwidths (0.6 – 0.7 octaves), and is consis-
tent with experimental (Hirsch et al., 1998) and theoretical
(Troyer et al., 1998) studies demonstrating the presence and pos-
sible function of slightly dominant inhibition. However, because
inhibition plays a critical role in shaping cortical tuning, we must
also examine how the level of inhibition affects tuning dynamics.
In the following simulations, we parametrically vary W while
holding other variables fixed at the average values marked with
blue circles in Figure 9.

Results from these simulations show that increasing the

Figure 9. Effect of different model parameters on cortical tuning dynamics. A–C, Each diagram (top) illustrates the model parameter being explored and the effect on the cortical RF. Parameter
values increase from left to right. Graphs (bottom) show the mean 
 SEM shift in peak SF as a function of the model parameter, obtained after 15 simulations. Each set of simulations focused on a
single variable; the other two parameters were fixed at zero and the inhibitory weight ( W) was set to 1.25. Blue circles indicate average values found in previous studies (Ferster, 1988; Cai et al., 1997;
Hirsch et al., 1998; Weng et al., 2005), which are also used in inhibitory weight simulations (Fig. 8). A, Cortical shift in peak SF as a function of the time delay between the center and surround in LGN
RFs. B, Cortical shift in peak SF as a function of the slope relating response latency to RF size. A negative slope indicates that cells with larger RFs have shorter latencies than cells with smaller RFs. C,
Cortical shift in peak SF as a function of the time delay (�) between the arrival of excitation and inhibition in a cortical cell.

Figure 8. A feedforward model examining mechanisms of SF dynamics in cortex. A, B, Re-
sponses of simple cells are modeled with a push–pull circuit. Excitatory input (A) to a cortical cell
comes from spatially offset, although still overlapping, ON- and OFF-center LGN cells. The offset
is exaggerated in this illustration for clarity. Inhibition (B) is provided by LGN cells with identical
spatial position but opposite phase, after being routed through a cortical interneuron. The
inhibition is parameterized with a time delay (�) between excitation and inhibition, and a
weight ( W), which gives the relative level of inhibition compared with excitation.
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weight of feedforward inhibition (Fig. 10A) produces dramatic
changes in the average SF tuning peak (Fig. 10B) and the shift in
tuning peak over time (Fig. 10C). As W increases from 0 to 2, the
optimal SF changes significantly from �0.32 to 0.42 c/deg, and

the peak shift decreases from �1 to 0.4 octaves ( p � 0 for both).
Full spectrotemporal RFs from sample model cells (Fig. 10D)
provide an explanation of these effects. When inhibition is absent
(W � 0, left), SF dynamics are similar to those observed in LGN
cells (compare with Figs. 6D, 10D). The strongly low-pass re-
sponse at short latencies leads to a large shift in optimal SF (�1
octave), which is comparable with changes observed in the LGN,
but is considerably higher than average values observed in simple
cortical cells (Bredfeldt and Ringach, 2002; Frazor et al., 2004;
Nishimoto et al., 2005).

When the level of inhibition is increased (W � 1.25) (Fig.
10D, right), spectrotemporal dynamics are markedly different.
SF tuning is initially bandpass and exhibits a moderate refine-
ment and shift to higher frequencies with greater latencies. We
find that for inhibition equal to or greater than the level of exci-
tation, the average preferred SF (�0.42 c/deg) and shift in tuning
peak (�0.45 octaves) of our modeled cortical cells are in good
agreement with experimental results (Movshon et al., 1978; Bred-
feldt and Ringach, 2002; Frazor et al., 2004; Nishimoto et al.,
2005). This suggests that feedforward dynamic input can account
for the SF tuning changes observed in the primary visual cortex,
and that additional refinement from intracortical circuitry may
not be necessary.

Discussion
Our experiments in the LGN demonstrate that coarse-to-fine
processing of spatial features originates in precortical structures.
This effect can be largely accounted for by the temporal delay
between center and surround components of the RF, although
significant differences exist between measurements and linear
predictions of SF tuning dynamics. In general, measured values
of peak and high cutoff SFs are higher than their predictions.
There are several potential factors that may account for this. First,
the sampling grid of the spatial reverse correlation stimuli may
bias the SF tuning toward lower values. If the sampling grid is not
fine enough, the RF mapping procedure cannot resolve potential
size changes of center/surround components. Smaller stimulus
impulses can combat this problem, although they may not pro-
vide enough energy to elicit spike discharge. This is particularly
true for the weaker surround (Fig. 3), which may be consistently
underrepresented. A second factor that may explain this discrep-
ancy is the contribution of SF-specific input that is activated dif-
ferently by the oriented stimuli in the subspace reverse correla-
tion procedure versus the individual pixels in spatial reverse
correlation. A likely source of nonlinear input is the perigenicu-
late nucleus, which responds preferentially to large, low-
frequency stimuli and provides inhibitory feedback to relay cells
in the LGN (So and Shapley, 1981; Price and Morgan, 1987; Xue
et al., 1988; Funke and Eysel, 1998).

Despite the differences between measured and predicted SF
tuning, the rates of tuning changes are closely matched (Fig. 7D).
This suggests that the SF tuning dynamics are largely a conse-
quence of the spatiotemporal inseparabilities in the LGN RF
structure. The center/surround temporal organization of LGN
neurons is inherited from retinal ganglion cells, although LGN
surrounds are typically more pronounced than those of their
retinal inputs (Bullier and Norton, 1979; Usrey et al., 1999; Ruk-
senas et al., 2000). Thus, it is probable that coarse-to-fine pro-
cessing begins at the first stage of the visual system, and is then
enhanced in the thalamus.

To examine how dynamic thalamic input might affect SF tun-
ing in the visual cortex, we incorporated spatiotemporal insepa-
rabilities into a feedforward model. We find that both the center-

Figure 10. Effect of inhibitory weight on cortical tuning dynamics. A–D, For simulations in
which we vary the weight of inhibition ( W), all other parameters are held fixed at the values
marked by blue circles in Figure 9 (LGN center-surround delay, 6 ms; size-latency slope, �3.5
ms/deg 2; inhibitory delay, 5 ms). The blue circles in B and C of this figure indicate the value of W
used for simulations in Figure 9. A, A diagram depicting an increase (from left to right) in the
weight of feedforward inhibition. B, The average peak SF increases as a function of W. C, The
shift in peak SF decreases as inhibition increases, and plateaus at 0.4 octaves. D, Spectrotem-
poral RFs from the model elucidate the trends in B and C. Without inhibition (W � 0, left),
cortical SF tuning mimics that of the LGN (compare with Fig. 4 D): the initial response is low-
pass, and over time the peak SF changes more than an octave. With relatively strong inhibition
(W � 1.25, right), only stimuli that preferentially excite LGN cells of a single phase (i.e., stimuli
with higher SFs) will produce a response in the cortical cell. Thus, the initial response is band-
pass, and more moderate peak changes (�0.4 octaves) occur as a result of input dynamics.
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surround delay in LGN RFs and the correlation between RF size
and response latency are capable of producing cortical SF tuning
changes similar in magnitude to those found experimentally
(Bredfeldt and Ringach, 2002; Frazor et al., 2004; Nishimoto et
al., 2005). Although our current study is the first to identify feed-
forward dynamics within LGN cells as a mechanism underlying
cortical SF tuning dynamics, the space–time relationship ob-
served across a population of cells has been proposed previously
(Mazer et al., 2002; Frazor et al., 2004). Using a structural model,
Frazor et al. (2004) found that the different response character-
istics of magnocellular and parvocellular cells in primate LGN
could account for a large portion of tuning dynamics measured in
the visual cortex.

Convergence of magnocellular and parvocellular inputs, or X
and Y inputs in the cat (So and Shapley, 1979; Sestokas and Leh-
mkuhle, 1986), can produce shifts in preferred SF as a function of
response latency. However, it cannot explain the SF-specific sup-
pression that was reported by Bredfeldt and Ringach (2002). In
this study of cortical SF dynamics, we found a delayed “suppres-
sive component” that was typically centered at low SFs. This find-
ing is supported by several previous reports demonstrating inhib-
itory refinement of cortical SF tuning, particularly at the low-
frequency limb of the curve (Bauman and Bonds, 1991;
Vidyasagar and Mueller, 1994; Pernberg et al., 1998). Suppres-
sion at low SFs has been previously attributed to an intracortical
network (Bredfeldt and Ringach, 2002). However, we find that
this suppression emerges as a property of the push-pull configu-
ration (i.e., feedforward inhibition) and, thus, it is not necessary
to invoke additional cortical circuitry.

It is interesting to note that the dynamic push–pull model that
we use has general applications and makes additional predictions
of temporal responses in the cortex. In the simulations presented
here, we consider only inputs to simple cells. However, there is
evidence that some layer IV complex cells achieve phase invari-
ance by receiving “push” from both phases of LGN cells (Hirsch
et al., 2003). In these complex cells, SF tuning would be broader
and more low-pass than tuning in simple cells, a difference that is
reported in several studies (Movshon et al., 1978; Bauman and
Bonds, 1991; Vidyasagar and Mueller, 1994). Because these cells
might receive primarily antiphase excitation (as opposed to inhi-
bition), they would undergo large SF tuning shifts over time,
similar to the W � 0 case in Figure 10D. Notably, observed tun-
ing shifts are approximately twice as large in complex cells (�1
octave) as in simple cells (�0.5 octaves) for both the cat and
primate visual cortex (Frazor et al., 2004).

In conclusion, our results support coarse-to-fine spatial pro-
cessing as a general property of information transmission in the
visual system, and help to clarify the physiological processes un-
derlying sequential analysis. Dynamic spatial processing begins
early in the visual pathway, presumably within the retina
(Enroth-Cugell et al., 1983), and propagates via several mecha-
nisms to higher visual areas with more specialized functions
(Ringach et al., 1997; Pack and Born, 2001; Bredfeldt and
Ringach, 2002; Mazer et al., 2002; Menz and Freeman, 2003;
Frazor et al., 2004; Nishimoto et al., 2005). Furthermore, recent
work suggests that coarse-to-fine processing is not limited to
visual processing. Spatiotemporal RFs of cells in peripheral and
central structures of the somatosensory pathway exhibit insepa-
rabilities that generate refined representation of tactile informa-
tion with increased latency (Sripati et al., 2006). In addition,
models of spectrotemporal RFs in the auditory cortex show that
discrimination of complex stimuli is enhanced by delayed inhi-
bition in a push–pull circuit (Narayan et al., 2005). Considered

together, these studies point to coarse-to-fine processing as a
fundamental coding strategy in the CNS.
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