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Neurobiology of Disease

Mutant huntingtin Impairs the Post-Golgi Trafficking
of Brain-Derived Neurotrophic Factor But Not Its
Val66Met Polymorphism
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Brain-derived neurotrophic factor (BDNF) polymorphism is associated with the pathophysiology of several neurodegenerative disor-
ders, including Huntington’s disease. In view of these data and the involvement of huntingtin in intracellular trafficking, we examined the
intracellular transport and release of Val66Val BDNF (Val-BDNF) and Val66Met BDNF (Met-BDNF) in transfected striatal knock-in cells
expressing wild-type or mutant full-length huntingtin. Colocalization studies with specific markers for endoplasmic reticulum showed no
differences between the Val-BDNF and Met-BDNF and were not modified by mutant huntingtin. However, post-Golgi trafficking was
altered by mutant huntingtin dependent on the BDNF form. Thus, fluorescence recovery after photobleaching (FRAP) and inverse FRAP
analysis showed retention of Met-BDNF in the Golgi apparatus with respect to Val-BDNF in wild-type cells. Strikingly, mutant huntingtin
diminished post-Golgi trafficking of Val-BDNF, whereas Met-BDNF was not modified. Accordingly, a reduction in the number of trans-
port vesicles was only observed in mutant huntingtin cells transfected with Val-BDNF but not Met-BDNF. Moreover, mutant huntingtin
severely affected the KCl-evoked release of Val-BDNF, although it had little effect on Met-BDNF regulated release. The constitutive release
of Val-BDNF or Met-BDNF in mutant cells was only slightly reduced. Interestingly, mutant huntingtin only perturbed post-Golgi traf-
ficking of proteins that follow the regulated secretory pathway (epidermal growth factor receptor or atrial natriuretic factor), whereas it
did not change those that follow the constitutive pathway (p75™™").

We conclude that mutant huntingtin differently affects intracellular transport and release of Val-BDNF and Met-BDNF. In addition,

our findings reveal a new role for huntingtin in the regulation of the post-Golgi trafficking of the regulated secretory pathway.
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Introduction

Brain-derived neurotrophic factor (BDNF) plays a critical role in
the pathophysiology of different neurodegenerative diseases,
such as Huntington’s disease (HD) (Zuccato et al., 2001; Canals
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et al., 2004). HD is a neurodegenerative disorder caused by a
multiple CAG expansion in exonl of huntingtin (htt) gene (Kre-
mer et al., 1994), producing a significant dysfunction and neural
death, especially in the medium spiny neurons of the striatum.
Htt is a ubiquitously expressed large protein that participates in a
plethora of functions, including clathrin-mediated endocytosis,
vesicle transport, transcriptional regulation, and cell survival (for
review, see Harjes and Wanker, 2003; Cattaneo et al., 2005). In
relation to BDNF, htt enhances the transcription of BDNF by the
inhibition of the neuron restrictive silencer element (Zuccato et
al., 2003) and promotes the transport of BDNF-containing vesi-
cles along microtubules (Gauthier et al., 2004). Thus, the muta-
tion of htt produces a reduction in BDNF expression (Ferrer et
al., 2000; Zuccato et al., 2001) and release (Gauthier et al., 2004),
which in turn affect the survival action of BDNF on striatal neu-
rons (Canals et al., 2004).

As in all neurotrophins, BDNF is synthesized as a protein
precursor composed by two domains, the prodomain and the
BDNF domain (Seidah et al., 1996). The BDNF prodomain has
an important role in the intracellular traffic of BDNF, promoting
the sorting of proBDNF to the regulated secretory pathway be-
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cause of its interaction with sortilin at the trans-Golgi network
(TGN) (Chen et al., 2005). The sorting of BDNF to the regulated
secretory pathway is impaired by a BDNF polymorphism consist-
ing in a valine to methionine substitution at codon 66 in the
prodomain (Val66Met BDNF) (Chen et al., 2004), reducing the
amount of secreted BDNF after neural cell depolarization (Egan
et al., 2003; Chen et al., 2004).

The characterization of this BDNF polymorphism has also
highlighted the importance of this neurotrophin in different neu-
ropsychiatric disorders. In fact, several studies have associated
this polymorphism with increased susceptibility to anorexia ner-
vosa (Ribases et al., 2003), obsessive-compulsive disorders (Hall
et al., 2003), eating disorders (Friedel et al., 2005), depression
(Sen et al., 2003), schizophrenia (Skibinska et al., 2004), Alzhei-
mer’s disease (Ventriglia et al., 2002), and Parkinson’s disease
(Momose et al., 2002).

We reported recently that heterozygous patients with HD car-
rying Val66Met BDNF (Met-BDNF) allele have a later age of
onset compared with homozygous Val66Val BDNF (Val-BDNF)
patients (Alberch etal., 2005). These data and the emerging prop-
erties of htt in intracellular trafficking prompted us to study the
role of mutant htt (mhtt) in the intracellular transport of Val-
BDNF and Met-BDNF in striatal knock-in cells that express wild-
type (wt) full-length htt (with 7Q, wt cells) or full-length mhtt
(with 111Q, mhitt cells). Here, we also report that mhtt impairs
post-Golgi trafficking of Val-BDNF but not of Met-BDNF, which
in turn produces an impairment of Val-BDNF-containing vesi-
cles and a reduction of the KCl-evoked release of Val-BDNF. In
addition, the results show that htt participates in the post-Golgi
transport of proteins that follow the regulated secretory pathway.

Materials and Methods

Reagents and antibodies. Anti-giantin antibody was kindly supplied by
H. P. Hauri (Basel, Switzerland), anti-calnexin peptide 4 (residues 555—
573) was from the Bergeron Laboratory (Montreal, Quebec, Canada)
(Wada et al., 1991), and anti-secretogranin II was from Biodesign (Saco,
ME). Anti-BDNF antibody was from Alomone Labs (Jerusalem, Israel),
anti-epidermal growth factor receptor (EGFR) was from Santa Cruz Bio-
technology (Santa Cruz, CA), and anti-htt MAB 2166 was from Chemi-
con (Temecula, CA). Fluorescent cyanine 3 (Cy3) (anti-rabbit) and Al-
exa 647 (anti-mouse and anti-rabbit) secondary antibodies were from
Invitrogen (Carlsbad, CA) and rhodamine-conjugated anti-mouse anti-
body was from Jackson ImmunoResearch (West Grove, PA). Lipo-
fectamine 2000 was from Invitrogen.

DNA constructs. The human BDNF and its Val66Met polymorphism
subcloned into pCDNA3.1hygro expression vector (Invitrogen) with
hemagglutinin epitope tag at 3" and FLAG epitope tag at 5" was kindly
supplied by Dr. Francis S. Lee (Weill Medical College of Cornell Univer-
sity, New York, NY) (Chen et al., 2004). BDNF and its variant Val66Met
polymorphism subcloned into enhanced green fluorescent protein
(eGFP)-N1 plasmid (Clontech, Palo Alto, CA) was described by Egan et
al. (2003). The p75™"® receptor fused to GFP was kindly supplied by Dr.
Roman Polishchuck (Consorzio Mario Negri Sud, Santa Maria Imbaro,
Italy). EGFR fused to GFP was generously supplied by Dr. Francesc Tebar
(Universitat de Barcelona, Barcelona, Spain) (Carter and Sorkin, 1998),
atrial natriuretic factor (ANF) fused to GFP was a gift from Dr. Edwin S.
Levitan (University of Pittsburgh, Pittsburgh, PA) (Burke et al., 1997),
and galactosyltransferase fused to yellow fluorescent protein (GT-YFP)
was kindly supplied by Dr. Jennifer Lippincott-Schwartz (National Insti-
tutes of Health, Bethesda, MD). Full-length 17Q htt (FL-17Q-htt) and
full-length 75Q htt (FL-75Q-htt) was a gift from Drs. Fréderic Saudou
and Sandrine Humbert (Institut Curie, Orsay, France) (Gauthier et al.,
2004). Htt exonl with 25Q (exon1-25Q-htt) and 103Q (exon1-103Q-
htt) was generously provided by Dr. George M. Lawless (Cure HD Ini-
tiative, Reagent Resource Bank of the Hereditary Disease Foundation,
New York, NY).
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Figure 1. Full-length, but not exon1, mhtt increases BONF accumulation in Golgi. Wt cells

and M213 and (17.2 cells were transfected with GFP, exon1-25Q-htt of exon1-103Q-htt fused
to GFP (Exon1 section), or with GT-YFP or GT-YFP plus FL-17Q-htt or FL-75Q-htt (Full-length
htt overexpression section). Colocalization studies of endogenous BDNF with giantin showed no
difference between GFP-expressing cells and exon1-Q25-htt or exon1-103Q-htt. In contrast,
colocalization of endogenous BONF with GT-YFP showed an increased accumulation of BDNF in
the Golgi apparatus in cells transfected with FL-75Q-htt with respect to FL-17Q-htt- or GT—YFP-
transfected cells. mhtt cells showed an increased BDNF accumulation in the Golgi apparatus
compared with wt cells (Full-length htt endogenous section). *p << 0.05; **p << 0.01.

Striatal knock-in wt and mhtt cells and M213 and C17.2 cell culture and
transfection. To study the effect of htt in the intracellular transport of
BDNF, we used the following cell lines: striatal knock-in cells stably
expressing full-length htt (7Q/7Q) or full-length mhtt (111Q/111Q) es-
tablished from HdhQ111 knock-in mice (Trettel et al., 2000); the M213
cells, conditionally immortalized striatal derived neural stem cells (Gior-
dano etal., 1993); and the C17.2 cells, a multipotent neural stem cell line
generated by retrovirus-mediated v-myc transfer into murine cerebellar
progenitor cells (Ryder et al., 1990). All cell lines were transfected using
Lipofectamine 2000 as instructed by the manufacturer.

Immunocytochemical  staining and confocal microscopy analysis.
Twenty-four hours after transfection, cells were fixed in 4% paraformal-
dehyde for 10 min and 0.2 M glycine for 20 min and permeabilized in
0.1% saponin for 10 min. Blocking was done in 1% BSA in PBS for 1 h.
Specimens were incubated with primary antibodies: anti-BDNF (1:50),
anti-giantin (1:500), anti-calnexin (1:100), anti-secretogranin II (1:100),
anti-EGFR (1:100), and anti-htt (1:100). Afterward, specimens were in-
cubated with subtype-specific fluorescent secondary antibodies: Cy3 and
rhodamine-conjugated anti-mouse (1:300) and Alexa 647 (1:100).
Double-stained cells were examined by confocal microscopy using Leica
(Mannheim, Germany) TCS SL laser scanning confocal spectral micro-
scope with argon and helium—neon lasers attached to a Leica DMIRE2
inverted microscope. Images were taken using 63X numerical aperture
(NA) objective with 4X digital zoom and standard (one Airy disc) pin-
hole. For each cell, the entire three-dimensional stack of images was
obtained by the use of the Z drive present in the Leica TCS-SL micro-
scope, and the size of the optical image was 0.5 um. The colocalization
was measured using the freeware NIH ImageJ version 1.33 by Wayne
Rasband (National Institutes of Health, Bethesda, MD). Briefly, for each
cell stack, the cell area was delineated, and the total number of double-
positive pixels for BDNF/EGFR and a specific subcellular region staining
for each slice were summed. This value was divided by the number of
total positive pixels for BDNF/EGEFR in the stack and multiplied by 100.
For BDNF-eGFP colocalization studies, 70—80 cells were randomly se-
lected, whereas for endogenous BDNF and EGER colocalization, 20-25
cells were randomly selected.

Fluorescence recovery after photobleaching and inverse fluorescence re-
covery after photobleaching experiments. Fluorescence recovery after pho-
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Inmhtt cells, Val-BDNF but not Met-BDNF is retained at the Golgi apparatus. 4, B, Colocalization of Val-BDNF or Met-BDNF with calnexin in wt and mhtt cells did not show any difference

between all conditions. €, D, Colocalization of Val-BDNF or Met-BDNF with giantin, a Golgi marker, revealed a higher colocalization of Val-BDNF in mhtt cells compared with wt cells, although these
effects were not observed in mhtt cells expressing Met-BDNF compared with wt cells. Results are represented as a mean == SEM determined from analysis of three independent experiments [not

significant (n.s.), p > 0.05; ***p < 0.001 vs Val-BDNF in wt cells]. Scale bar, 8 um.

tobleaching (FRAP) and inverse FRAP (iFRAP) experiments were per-
formed using the Leica confocal microscope mentioned above equipped
with an incubation system with temperature and CO, control. Cells, 4 X
107, were seeded to 35 mm plate (Nunc, Roskilde, Denmark) containing
a glass coverslip of 22 mm (Micro cover glass; Electron Microscopy Sci-
ences, Fort Washington, PA). After 24 h, cells were transfected with 4 ug
of either Val-BDNF-eGFP or Met-BDNF-eGFP constructs. For FRAP
experiments 24 h after transfection, the glass coverslip was mounted in
the video confocal chamber, keeping the cells at 33°C, whereas for iFRAP
experiments, cells were before incubated for 2 h in media at 20°C (last
hour in the presence of 0.1 mg/ml cycloheximide).

For visualization of eGFP, images were acquired using 63 X oil immer-
sion objective lens (numerical aperture, 1.32), 488 nm laser line, excita-
tion beam splitter RSP 500, 500—600 nm emission range detection, and
the confocal pinhole set at 2-3 Airy units to minimize changes in fluo-
rescence efficiency attributable to eGFP proteins moving away from the
plane of focus.

For FRAP experiments, the whole Golgi area was photobleached using
40 scans with the 488 nm laser line at full power. To correctly detect the
fast component of the recovery, the first 30 images were taken during
each half of a second, and the rest were taken each 2 s during 10 min. For
iFRAP experiments, the whole cytoplasm area of the transfected cell was
photobleached using 80 scans with the 488 nm laser line at full power.
Afterward, images were collected in stream mode each 5 s during 20 min.

All FRAP and iFRAP experiments were corrected and normalized us-
ing the equation described by Phair and Misteli (2000) and Dundr et al.
(2002), respectively (supplemental data, available at www.jneurosci.org
as supplemental material). FRAP curves were fitted assuming one-phase
exponential association equation, whereas iFRAP curves were modeled
equally well with a two-phase exponential decay equation (supplemental
Fig. 1, available at www.jneurosci.org as supplemental material). Fifteen
cells per condition were randomly selected for FRAP experiments,
whereas six to nine cells per condition were randomly selected for iFRAP
experiments.

Video microscopy experiments and analysis. Video microscopy experi-
ments were done 24 h after transfection. Cells were transfected with

either Val-BDNF-eGFP or Met-BDNF-eGFP as described for FRAP
experiments. One day after, the glass coverslip was mounted in the video
confocal chamber of the confocal microscope, keeping the cells at 33°C.
Images were collected in stream mode using the 63X oil immersion
objective with 4X of digital zoom, each second during 1 min. The pin-
hole was set to 350 wm, and the laser power was to 10%. All vesicles in
each cell were selected and tracked using the particle-tracking software
Diatrack version 3.0 (Semasopht, Chavannes, Switzerland) measuring
the mean velocity of each vesicle. The mean velocity of each vesicle was
calculated over the 1 min of acquisition time. In this way, the length of a
vesicle trajectory, computed as the sum of the lengths of displacement
vectors composing it, was divided by the lifetime of the vesicle. A dis-
placement vector is the distance covered by one vesicle between two
successive images of the sequence. The Cartesian coordinates of the cen-
ter of the vesicles were used to calculate dynamic parameters as described
by Gauthier et al. (2004). To calculate the diffusion pattern of Val-BDNF
and Met-BDNF vesicles in wt and mhtt cells, the squared distance of each
vesicle from its position at time 0—10 s was averaged and reported in a
graph as a function of time. Ten to 15 cells per condition were randomly
selected for video microscopy experiments.

ELISA assay. Fifty thousand cells per well were seeded to 24-well
plates. After 24 h, cells were transfected with 0.8 ug of dual-epitope-
tagged Val-BDNF and Met-BDNF to avoid GFP interference with the
ELISA method. At 24 h later, cells were washed with PBS, and 500
pul/well N2 medium was added. The conditioned media was collected
after 24 h of incubation with N2 medium and used as a measure of
constitutive secretion. To determine regulated secretion, cells were
washed twice with PBS, followed by 15 min incubation at 33°C with
modified Krebs—Ringer—Henseleit buffer with the following compo-
sition (in mMm): 75 NaCl, 56 KCl, 2.6 CaCl,, 25 HEPES, 1.2 MgSO,, 5.6
glucose, 1 sodium ascorbate, and 1.2 KH,PO,, pH 7.4, as described
previously (Chen et al., 2004). The BDNF protein concentrations in
the respective media samples were measured using the BDNF Emax
immunoassay system (Promega, Madison, WI). Standards and sam-
ples were performed in duplicates, and each group contained six
independent samples.
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Figure 3.  mhtt differentially impairs post-Golgi trafficking of Val-BDNF and Met-BDNF. 4,
FRAP recovery curves, in which the rectangle shows the rapid diffusion between ER-to-Golgi
(enhanced region shown in B) and the dotted rectangle shows the plateau reached in its con-
dition showing a reduced Golgi fluorescence recovery of Val-BDNF in mhtt and Met-BDNF in
either wt or mhtt cells compared with Val-BDNF in wt cells. B, Graph showing no differences in
the earlier transport from ER-to-Golgi between all conditions. C, iFRAP curves showing protein
exit as Golgi fluorescence decay. Val-BDNF expressed in mhtt cells as well as Met-BDNF ex-
pressed in both cells showed a reduced Golgi exit compared with wt cells expressing Val-BDNF.
Results are represented as a mean = SEM determined from analysis of three independent
experiments. ***p < 0.001.

Statistical analysis. For statistical analysis, Prism version 4.0 (Graph-
Pad Software, San Diego, CA) software was used, performing nonpara-
metric one-way ANOVA and Bonferroni’s post hoc test. For iFRAP ex-
periments, with two conditions, the nonparametric t test followed by the
Mann—-Whitney test was used.

Results

Full-length but not exon1 mhtt accumulates endogenous
BDNF in the Golgi apparatus

We first analyzed whether full-length or exonl mhtt affects
BDNF intracellular trafficking in different cell lines: striatal
knock-in wt cells and M213 and C17.2 cells. In all three lines,
colocalization studies revealed an increased colocalization of en-
dogenous BDNF with the Golgi apparatus in the presence of
FL-75Q-htt but not in the presence of exon1-103Q-htt (Fig. 1)
(supplemental Figs. 2—4, available at www.jneurosci.org as sup-
plemental material). For exon1 colocalization analysis, cells were
transfected with exon1-25Q-htt, exon1-103Q-htt fused to GFP,
or with GFP alone (control condition). After 24 h of transfection,
cells were fixed and immunostained against BDNF and giantin.
No differences in the colocalization of BDNF with giantin were
observed in all cell lines. In the case of full-length htt, because
there is not any tag in the vector, we cotransfected FL-17Q-htt
and FL-75Q-htt with GT-YFP (which selectively marks the Golgi
apparatus, ratio 8:1, respectively) or we transfected with GT-YFP
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Table 1. Kinetic values and mobility fractions calculated for FRAP and iFRAP
experiments

ER — Golgi Golgi — Plasma membrane

Experimental T,,,(0.69/K)  Mobile fraction T, (0.69/K)
condition K constant (s) % K constant (s)
Val

wt 0.043 16.04 88.36 = 1.74  0.007 97.47

mhtt 0.049 14.08 68.05 = 3.48* 0.016 43.12
Met

wt 0.045 15 69.77 £ 6.32%  0.013 52.55

mhtt 0.048 14.37 7237 = 4.27% 0.011 60.26

Golgi — Plasma membrane

Experimental K; con-
condition Mobile fraction % stant K, constant T, (5)
Val

wt 64.74 £ 3.1 0.0016 0.0023 236.8

mhtt 42.65 = 6.83* 0.001 0.005 2459
Met

wt 42.83 + 4.59* 1.35e-5 0.0025 279.4

mhtt 39.63 = 4.09% 1.65e-5 0.0028 253.1
p75

wt 64.97 £ 575 0.0018 0.029 265.2

mhtt 63.16 = 4.65 0.0014 0.0011 200.1
EGFR

wt 63.82 £ 2.51 0.0013 0.0155 210.5

mhtt 35.02 = 575" 0.0014 0.0135 185.3
ANF

wt 54.46 * 6.65 0.0013 0.0026 398.8

mhtt 2246 + 8.7* 1.27¢-5 0.0042 1703

Top, FRAP studies showing no differences in the transport between the ER to the Golgi apparatus in all experimental
conditions (Fig. 3B), whereas total fluorescence values indicated a reduced mobile fraction of Val-BDNF in mhtt cells
and Met-BDNF in both wt and mhtt cells (*p << 0.05) (Fig. 34). Bottom, iFRAP studies showing a reduced mobile
fraction of Val-BDNF in mhtt cells and Met-BDNF in both cells compared with Val-BDNF in wt cells (*p << 0.05 vs
Val-BDNFin wt cells). In contrast to p75"™, EGFR and ANF expressed in mhtt cells showed a reduced mobile fraction
compared with wt cells (Fig. 4) (p << 0.05 vs EGFR in wt cells; *p << 0.05 vs ANFin wt cells).

alone as a control condition. After 24 h of transfection, cells were
fixed and immunostained against BDNF and htt. Cells trans-
fected with FL-17Q-htt or FL-75Q-htt were selected because of
an increased immunoreactivity for anti-htt antibody. An en-
hanced colocalization of BDNF with GT-YFP was observed in the
presence of FL-75Q-htt relative to FL-17Q-htt and the control
condition. Moreover, we also performed the same colocalization
studies in striatal knock-in wt or mhtt cells with 111Q (Trettel et
al., 2000). mhtt cells showed increased colocalization of BDNF
with giantin with respect to wt cells (Fig. 1) (supplemental Fig. 5,
available at www.jneurosci.org as supplemental material).

Val-BDNF but not Met-BDNF is retained at the Golgi
apparatus in mhtt cells

We next studied whether full-length htt differentially affects Val-
BDNF or Met-BDNF trafficking because expression of FL-75Q-
htt increased accumulation of endogenous BDNF in Golgi appa-
ratus. Thus, we performed several colocalization studies between
Val-BDNF or Met-BDNF fused to eGFP with a variety of endo-
membrane markers in striatal knock-in wt or mhtt cells. These
cell lines express full-length htt or full-length mhtt at endogenous
levels, reflecting the closest situation to HD patients. After 24 h of
transfection, cells were fixed and immunostained with calnexin
or giantin, which are well established markers of the endoplas-
matic reticulum (ER) and the Golgi apparatus, respectively. The
colocalization between Val-BDNF or Met-BDNF with calnexin
in either wt or mhtt cells showed no differences (Fig. 2A), giving
an averaged colocalization in all cases of ~25% (Fig. 2B). Con-
versely, when the colocalization of Val-BDNF or Met-BDNF with
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giantin was analyzed (Fig. 2C), we found
an increased colocalization of Val-BDNF
in mhtt cells compared with wt cells up to
15%. No significant differences in the
Golgi colocalization were found between
wt and mbhtt cells expressing Met-BDNF,
but both were significantly higher with re-
spect to Val-BDNF in wt cells
(Fig. 2D).

>

mbhtt differentially impairs post-Golgi
trafficking of Val-BDNF and Met-BDNF
To verify whether the different accumula-
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were different from those obtained for
Val-BDNF. Interestingly, no differences
were observed between wt or mhtt cells ex-
pressing Met-BDNF. Moreover, wt cells
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expressing Met-BDNF showed a reduced
Golgi fluorescence recovery compared
with wt cells expressing Val-BDNEF. Alto-
gether, these results are indicative of an
impaired post-Golgi trafficking of Met-
BDNF compared with Val-BDNF in wt
cells.

Next, we performed iFRAP studies to
verify the alteration of post-Golgi traffick-
ing of Val-BDNF in mhtt cells (supplemental Movie 1, available
at www.jneurosci.org as supplemental material). For iFRAP stud-
ies, Val-BDNF and Met-BDNF proteins were accumulated in the
Golgi apparatus as described in Materials and Methods. After-
ward, the entire cytoplasmic area, except the Golgi region, was
photobleached, making possible the determination of the protein
fraction leaving the Golgi region as the percentage of Golgi fluo-
rescence decay. Val-BDNF expressed in mhtt cells showed a 33%
reduction in the Golgi exit compared with wt cells (Fig. 3C). No
differences were observed between wt and mhtt cells expressing
Met-BDNEF, although both showed an altered post-Golgi traffick-
ing when compared with Val-BDNF-expressing wt cells (Fig. 3C,
Table 1 B). These results strongly suggest that mhtt impairs post-
Golgi trafficking of Val-BDNF.

0 200 400 600 800 1000 1200
Time (s)

Figure4. mhttimpairs the post-Golgi transport to the regulated pathway. A, No differences were observed in wtand mhtt cells
expressing p75 ™. EGFR (B) and ANF (C) showed an impaired post-Golgi transport in mhtt cells compared with wt cells. Repre-
sentative Golgi apparatus fluorescence for each condition is shown on the right side. Results are represented as a mean =+ SEM
determined from analysis of three independent experiments. p << 0.001 for ANF and EGFR in mhtt versus wt cells.

To find out whether mhtt-induced post-Golgi transport im-
pairment is restricted to Val-BDNF or whether it is also involved
in post-Golgi transport in general, we examined a variety of cargo
proteins exiting from the TGN in route to the plasma membrane.
Thus, p75™"® receptor, which exits TGN via constitutive path-
way (De Lisle and Bansal, 1996), showed the same post-Golgi
traffic kinetics in both wt and mhtt cells (Fig. 4A, Table 1B)
(supplemental Movie 2, available at www.jneurosci.org as sup-
plemental material). Conversely, the EGFR, which follows the
constitutive and clathrin-dependent post-Golgi pathways (Will-
ingham and Pastan, 1982; Sorkina et al., 1999), showed a 44%
reduction in its post-Golgi trafficking in mhtt cells (Fig. 4B)
(supplemental Movie 3, available at www.jneurosci.org as sup-
plemental material). Accordingly, colocalization data of endoge-
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determined from analysis of three independent experiments [not significant (n.s.), p > 0.05; **p << 0.01; ***p < 0.001 vs Val-BDNF in wt cells). Scale bar, 8 m.

nous EGFR and giantin showed an accumulation of EGFR in the
Golgi of mhtt cells (7.93 £ 0.9%) compared with wt cells (2.81 +
0.38%) (supplemental Fig. 6, available at www.jneurosci.org as
supplemental material). The ANF, which exits TGN by the regulated
pathway (Bloch et al., 1986; De Young et al., 1994), showed a higher
decrease (60%) in its post-Golgi trafficking in mhtt cells compared
with wt cells (Fig. 4C) (supplemental Movie 4, available at www.
jneurosci.org as supplemental material).

mhtt reduces the number of Val-BDNF- but not
Met-BDNF-containing vesicles

To analyze the impaired post-Golgi traffic of Val-BDNF in mhtt
cells, we next measured the total number of BDNF-containing
vesicles produced per cell 24 h after transfection. Because in our
images one pixel represents 54 nm, we considered a vesicle those
fluorescent spots comprising between 2 and 10 pixels (both in-
cluded, 108540 nm) (Fig. 5A). We found a 50% reduction in the
number of Val-BDNF-containing vesicles in mhtt cells. In con-
trast, no significant differences in the number of Met-BDNF-
containing vesicles were found between wt and mhtt cells. How-
ever, in both cells, the number of Met-BDNF vesicles was lower
than Val-BDNF in wt cells (Fig. 5B). In addition, the colocaliza-
tion of Val-BDNF with secretogranin II, which is a specific
marker of secretory vesicles, was higher in wt cells than in mhtt
cells (Fig. 5C), whereas no differences were observed between wt
and mhtt cells expressing Met-BDNF (Fig. 5D), although they
showed a reduced colocalization with secretogranin II compared
with wt cells expressing Val-BDNF.

Val-BDNF and Met-BDNF-containing vesicles show similar
transport dynamics in knock-in striatal cells

To determine a possible differential effect of mhtt in the transport
of Val-BDNF or Met-BDNF vesicles, we next examined the dy-

namics of BDNF-containing vesicles using confocal video mi-
croscopy. All Val-BDNF- or Met-BDNEF-containing transport
vesicles in either wt or mhitt cells were selected and tracked (Fig.
6A). We found an increase up to 16% for Val-BDNF and 24% for
Met-BDNF in the number of vesicles with velocities between 0
and 30 wm/min in mhtt cells compared with wt cells, followed by
a drastic decrease in the number of vesicles with velocities higher
than 30 um/min (Fig. 6 B). Consequently, the overall mean ve-
locity of Val-BDNF and Met-BDNF vesicles in mhtt cells was
significantly lower (18.1 = 2.54 and 20.4 £ 0.74 wm/min, respec-
tively) compared with wt cells (24.53 = 1.1 and 28.20 * 3.1
wm/min, respectively). Moreover, these overall mean velocities
are in agreement with previous studies (Kohara et al., 2001; Gau-
thier et al., 2004; Adachi et al., 2005). The fact that mhtt reduces the
velocity of each vesicle was also observed when the diffusion pattern
was calculated (Fig. 6C) (see Materials and Methods). Val-BDNF-
and Met-BDNF-containing vesicles showed the same pattern of dif-
fusion in wt cells, and the diffusion of both Val-BDNF and Met-
BDNF vesicles was similarly reduced in mhtt cells.

mhtt preferentially reduces regulated secretion of Val-BDNF
compared with Met-BDNF
Next, we assessed in striatal knock-in cells the constitutive and
regulated secretion of Val-BDNF and Met-BDNF. There were no
differences in the amount of BDNF released by constitutive se-
cretion between Val-BDNF or Met-BDNF in either wt and mhtt
cells. However, mhtt cells secreted ~10% less Val-BDNF and
Met-BDNF compared with wt cells (Fig. 7A).

Nevertheless, during cell depolarization (56 mm KCI), we
found a drastic reduction of a 48% in the release of Val-BDNF
expressed in mhtt cells with respect to wt cells expressing Val-
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BDNF. In contrast, mhtt only reduced
20% of the evoked secretion of Met-BDNF
(Fig. 7B).

Discussion
Although htt has been related to diverse
processes, its biological function has not
been completely elucidated (Harjes and
Wanker, 2003). Here, we show that full-
length, but not exonl, mhtt increases the
accumulation of endogenous BDNF in the
Golgi apparatus. Moreover, we also dem-
onstrate that mhtt affects the trafficking to
the regulated secretory pathway of Val-
BDNF with low effect on Met-BDNF, sug- 80+
gesting that htt has an important role in I_T_‘
the post-Golgi transport of BDNF. These o
data provide new insights into the intracel-
lular transport defect of BDNF associated
with HD. 104

Our experiments showed that full-
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ficking. This effect could be explained by
several protein interactions that are lost in
the case of exonl htt. In fact, previous
studies have shown that exon1 htt does not
modify BDNF transport because it cannot
bind HAP1 (Gauthier et al., 2004).

Next we studied whether mhtt affects
differentially Val-BDNF or Met-BDNF
forms. It has been shown that Met-BDNF
has an impaired sorting to the regulated
secretory pathway with respect to Val-
BDNF because of a reduced interaction
with sortilin at the TGN (Egan et al., 2003;
Chen et al., 2004). Nonetheless, the re-
duced sorting of Met-BDNF to the regu-
lated secretory pathway was not accompa-
nied by an increase in the constitutive
secretion (Chen et al., 2004, 2005). Ac-
cording to these results, we show that Met-
BDNEF is retained in the Golgi apparatus
compared with Val-BDNF in wt cells.
However, we observed no differences in the trafficking from the
ER to the Golgi apparatus. Colocalization studies using calnexin
and FRAP experiments show that the presence of mhtt does not
impair the transport of either Val-BDNF or Met-BDNF from ER
to Golgi apparatus. This result is in agreement with a previous
report suggesting that the trafficking between the ER and the
Golgi in mhtt cells might not be affected compared with wt cells
(Trettel et al., 2000). In contrast, we found that the post-Golgi
trafficking of Val-BDNF was significantly blocked in mhtt cells,
whereas mhtt did not produce a major retention of Met-BDNF in
the Golgi apparatus. These findings, corroborated by colocaliza-
tion studies with giantin and FRAP/iFRAP analyses, suggest that
the effect of mhtt on the post-Golgi trafficking might be subse-
quent to the BDNF sorting. In addition, the results are indicative
that htt seems to be involved in the post-Golgi-regulated path-
way. To study this hypothesis, we analyzed the effect of mhtt on
the trafficking of P75™"%, a protein that exits the TGN via the
constitutive pathway (De Lisle and Bansal, 1996), EGFR, which
follows both constitutive and clathrin-dependent pathways
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Val-BDNF- and Met-BDNF-containing vesicles have similar transport dynamics. A, All vesicles in each cell were
selected and tracked during 60 s. B, The mean velocity of all tracked vesicles showed no differences between Val-BDNF and
Met-BDNF vesicles. €, Val-BDNF- and Met-BDNF-containing vesicles showed the same pattern of diffusion in wt cells, which was
similarly reduced in mhtt cells. Val-BDNF in wt cells, 4795 measures; Met-BDNF in wt cells, 3627 measures; Val-BDNF in mhtt cells,
3761 measures; Met-BDNF in mhtt cells, 5177 measures. Results are represented as a mean = SEM determined from analysis of
three independent experiments (*p << 0.05; **p << 0.01; ***p < 0.001).

(Willingham and Pastan, 1982; Sorkina et al., 1999), and ANF,
which is transported through regulated pathway (Bloch et al.,
1986; De Young et al., 1994). iFRAP studies showed that mhtt
does not affect the trafficking of P75N"®, but, in contrast, it im-
paired to a different extent the post-Golgi trafficking of EGFR
and ANF. All of these data support a new role for htt in modulat-
ing the sorting and/or post-Golgi trafficking of different proteins.
In accordance with this, mhtt only affects trafficking of proteins
by the regulated pathway (Fig. 8). Another possibility, which is
currently examined, is that mhtt may also disrupt the regulation
of routing the EGFR to the lysosomal degradation pathway.
According to the results obtained about changes in post-Golgi
trafficking, we observed that mhtt reduces the number of Val-
BDNEF but not of Met-BDNF transport vesicles. The fact that wt
cells expressing Met-BDNF produced less vesicles compared with
wt cells expressing Val-BDNF is in agreement with previous stud-
ies reporting an altered intracellular trafficking of Met-BDNF
producing less BDNF vesicles and therefore a reduced amount of
secreted BDNF after neural cell depolarization (Chen et al.,
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Figure7.  mhtt preferentially reduces regulated secretion of Val-BDNF compared with Met-
BDNF. Knock-in cells were transfected with dual-epitope-tagged BDNF constructs. After 24 h,
media was collected under constitutive () and depolarization (B) secretion conditions and
analyzed by ELISA. Results are presented as a mean == SEM determined from analysis of three
independent experiments (*p < 0.05; **p << 0.01; ***p < 0.001 vs Val-BDNF in wt cells).

2004). However, mhtt equally impairs the transport dynamic
properties of both Val-BDNF and Met-BDNF vesicles. These
findings are in agreement with the role of htt in vesicle transport
reported in previous studies by Gauthier et al. (2004). Thus, the
effect of mhtt on the post-Golgi trafficking has a different func-
tional repercussion on Val-BDNF or Met-BDNF release. mhtt
cells showed a dramatic decrease in the KCl-evoked release of
Val-BDNF, whereas the impairment of Met-BDNF release dur-
ing cell depolarization was very little. In contrast, the constitutive
release of Val-BDNF and Met-BDNF was similarly affected by
mhtt; this effect could be explained by a reduced transport of
BDNEF vesicles in their way to the plasma membrane, in accor-
dance with previous studies (Gauthier et al., 2004).

All of these results localize the effect of mhtt on BDNF poly-
morphism at the Golgi apparatus level. Previous studies already
linked htt with Golgi apparatus. Hence, the size of this perinu-
clear organelle is reduced by htt deficiency (Hilditch-Maguire et
al., 2000). Furthermore, some htt-interacting proteins, such as
HIP-14 (Singaraja et al., 2002) and HIP1R (Carreno et al., 2004),
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Figure 8.  Schematic diagram of the effects of mhtt in post-Golgi trafficking of proteins

depending on the secretory pathway. mhtt impairs trafficking of proteins secreted by the reg-
ulated clathrin-dependent pathway (Val-BDNF, EGFR, and ANF). In contrast, p75 and Met-BDNF
were not severely affected. PM, Plasma membrane.

are located in Golgi apparatus. Therefore, it is reasonable to pos-
tulate that mhtt could induce aberrant interactions with proteins
involved in post-Golgi sorting and trafficking (Egea et al., 2006).
Our results also suggest that an incorrect folding attributable to
the mutation of the prodomain of BDNF produces an accumu-
lation of Met-BDNF in the Golgi apparatus. In fact, modeling of
the prodomain on Val-BDNF and Met-BDNF shows that the
substitution of valine to methionine at codon 66 might increase
the prodomain stability, which leads to an altered interaction
with sortilin (supplemental data and supplemental Fig. 7, avail-
able at www.jneurosci.org as supplemental material). However,
additional experiments are required to confirm this hypothesis.

The findings of the present work and those reported previ-
ously (Chen et al., 2004, 2005) demonstrate that Val-BDNF and
Met-BDNEF differ in their post-Golgi trafficking in nonpathologi-
cal cells. It has been estimated that ~20-30% of the healthy
human population is heterozygous for Met-BDNF (Egan et al.,
2003; Sen et al., 2003; Alberch et al., 2005), and these people only
exhibit a relatively low diminished memory performance (Hariri
et al.,, 2003) and hippocampal volume (Szeszko et al., 2005),
probably attributable to a reduced regulated secretion of Met-
BDNE. Nevertheless, this mutation in the BDNF prodomain is
not associated with any neurological alteration per se.

A previous study showed that patients with HD carrying Met-
BDNF allele have a later age of onset compared with those carry-
ing Val-BDNF (Alberch et al., 2005). However, it has been re-
ported recently that there is no evidence of association between
Met-BDNF and the age at onset of HD (Di Maria et al., 2006;
Metzger et al., 2006), which could be related to the different
origin population and/or size sample. In fact, differences in the
influence of Met-BDNF has been described in different neurolog-
ical disorders depending on the population analyzed (Ribases et
al., 2004; Tochigi et al., 2006; Tsai et al., 2004; Green et al., 2006),
suggesting that other factors can be involved (Rubinsztein et al.,
1997; Wexler et al., 2004).



12756 - J. Neurosci., December 6, 2006 - 26(49):12748 —12757

In conclusion, our findings involve htt in post-Golgi transport
regulation and that mhtt differently affects the post-Golgi trans-
port of Val-BDNF and Met-BDNF, affecting more severely the
regulated release of Val-BDNF compared with Met-BDNF. Thus,
the Val66Met BDNF polymorphism supply different traffic sup-
port that could modulate the neurodegenerative process ob-
served in HD.
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