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Decoding Stimulus Variance from a Distributional Neural
Code of Interspike Intervals

Brian Nils Lundstrom and Adrienne L. Fairhall
Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195

The spiking output of an individual neuron can represent information about the stimulus via mean rate, absolute spike time, and the time
intervals between spikes. Here we discuss a distinct form of information representation, the local distribution of spike intervals, and show
that the time-varying distribution of interspike intervals (ISIs) can represent parameters of the statistical context of stimuli. For many
sensory neural systems the mapping between the stimulus input and spiking output is not fixed but, rather, depends on the statistical
properties of the stimulus, potentially leading to ambiguity. We have shown previously that for the adaptive neural code of the fly H1, a
motion-sensitive neuron in the fly visual system, information about the overall variance of the signal is obtainable from the ISI distribu-
tion. We now demonstrate the decoding of information about variance and show that a distributional code of ISIs can resolve ambiguities
introduced by slow spike frequency adaptation. We examine the precision of this distributional code for the representation of stimulus
variance in the H1 neuron as well as in the Hodgkin–Huxley model neuron. We find that the accuracy of the decoding depends on the
shapes of the ISI distributions and the speed with which they adapt to new stimulus variances.
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Introduction
What constitutes “the neural code”? Spike trains from single neu-
rons may transmit information via the number of spikes in some
time window, the absolute timing of spikes, and spike patterns.
Spike rate and spike timing can be thought of as a continuum,
with information represented by spike count at different time
scales in different organisms and brain areas (Bialek et al., 1991;
Mainen and Sejnowski, 1995; Reinagel and Reid, 2002). Informa-
tion encoding via spike patterns and interspike intervals (ISIs),
however, relies on relationships between spikes. In the identified
neuron H1 of the fly visual system the meaning of particular
sequences of spike intervals has been determined by using reverse
correlation (de Ruyter van Steveninck and Bialek, 1988; Brenner
et al., 2000). These multiple spike symbols permit stimulus re-
constructions that increase in fidelity with the increasing number
of spikes per symbol (Rieke et al., 1997). The meaning of spike
patterns such as bursts has been examined in the retina (Meister
and Berry, 1999), primate visual cortex (Reich et al., 2000), the
lateral geniculate nucleus (Lesica and Stanley, 2004), and
conductance-based models (Kepecs and Lisman, 2003). In the
early auditory system (Cariani, 1999) single spikes are phase-
locked to oscillations of the incoming sound wave. Although spe-

cific cycles of the wave may fail to evoke a spike, the distribution
of intervals across the cell population shows clear peaks at the
fundamental wave length and its harmonics and thus represents
pitch. In this paper we take a different approach: we consider the
distribution of intervals generated in time by a single neuron.

Stimulus decoding has been analyzed extensively in the neural
code, usually when the stimulus distribution does not change
with time (Bialek et al., 1991; Haag and Borst, 1997; Warland et
al., 1997; Strong et al., 1998; Egelhaaf and Warzecha, 1999; Stan-
ley et al., 1999; Brenner et al., 2000; Keat et al., 2001). Typically,
however, statistics of the sensory environment change in time,
and for many sensory systems the coding strategy of the system
also changes. In the retina (Shapley and Victor, 1979; Kim and
Rieke, 2001; Baccus and Meister, 2002), visual cortex (Carandini
and Ferster, 1997), the auditory system (Kvale and Schreiner,
2004; Dean et al., 2005), and somatosensory cortex (M. Maravall,
R. S. Petersen, A. L. Fairhall, E. Arabzadeh, and M. E. Diamond,
unpublished observations) a changing stimulus variance results
in contrast adaptation. During contrast adaptation the relation-
ship between the input stimulus and the output firing probability
may change to match the new dynamic range of the stimulus. In
the case of H1 this takes a particularly elegant form: the input/
output functions have the same shape, but the stimulus is scaled by
its SD (Brenner et al., 2000; Fairhall et al., 2001). This rescaling po-
tentially renders the code ambiguous with respect to stimulus vari-
ance. Although this ambiguity may be resolved by the spike rate,
which depends on the variance envelope, spike rate also adapts, with
spike frequency adaptation occurring over many seconds.

We claim that it is possible to decode stimulus statistics rap-
idly by monitoring the local statistics of spike intervals (Fairhall et
al., 2001). Our goal here is to examine the speed, accuracy, and
precision with which this decoding strategy can represent a time-
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varying variance. We consider distributional coding of visual
stimulus motion in the fly-identified neuron H1 and, to
demonstrate its generality, in a Hodgkin–Huxley (HH) model
neuron.

Materials and Methods
Fly data. Spike times were recorded from the H1 neuron (Franceschini et
al., 1989) in the Calliphora vicina fly (Fairhall et al., 2001). Action poten-
tials were recorded extracellularly as the fly viewed a horizontally moving
vertical bar pattern. Bars moved across an oscilloscope screen at a stan-
dardized distance from the animal with random velocity, the velocities of
which were chosen from a uniform distribution with unit variance (� 2 �
� � 1) multiplied by some constant. Stimulus frames were drawn every 2
ms, with a new velocity chosen for each frame. In the three-state switch-
ing experiment the stimuli with three different SDs, �H � 3�M � 9�L,
were presented in the sequence as follows: �H3�M3�L3�M (see Fig.
1a). Each SD was presented for the same duration per cycle; the se-
quences with SDs �H and �L were each presented in 8 s blocks, whereas
the two presentations of �M were each 4 s. Data were recorded for 2 h or
300 consecutively presented 24 s trials. In steady-state experiments the con-
stant variance stimuli, with SDs spanning a 60-fold range, were presented in
random order to a single fly as described above for 15 min each over the
course of a day.

Simulated data. A standard HH space-clamped model neuron was
used to simulate changes in the neuronal membrane potential with re-
spect to time (Hodgkin and Huxley, 1952). The equations were solved
numerically by using fourth-order Runge–Kutta integration with a fixed
time step of 0.05 ms. Injected current was simulated by a series of zero-
mean normally distributed random numbers that were smoothed by a
Gaussian filter (full-width half-maximum, 0.6 ms). Spike times were
identified as the upward crossing of the voltage trace at 0 mV, with a
resting potential of �65 mV. For steady-state data 10 1 h data runs were
simulated, with normalized SDs spanning an eightfold range.

Estimating probability distributions. Normalized base 10 logarithmic
distributions of ISIs were created for spike train data. Because spike
intervals span a wide range, using a logarithmic instead of a linear scale
allows for differences in short intervals to be noticeable; bin widths were
0.05 log10 s, with range [�2.7 to 0.2] for the fly and [�2.1 to 1.7] for the

model neuron. One was added systematically to
all bins before the normalization of distribu-
tions that would be in the denominator of a
ratio to avoid division by zero; when sample
number n �� 1, this is analogous to assuming a
uniform previous distribution and then find-
ing the mean of the posterior probability dis-
tribution by using Bayes’ rule (cf. Gelman,
1995; Johnson et al., 2001). According to
Bayes’ rule, the previous distribution is mul-
tiplied by a likelihood and divided by the
probability of all data to give the posterior
distribution. If the previous distribution is a
uniform distribution, the posterior distribu-
tion is then the two-parameter Beta distribu-
tion Beta(�,�), which in this case is Beta(1 �
x, 1 � n � x), where x is observed successes
and n is the number of samples. The mean of any
Beta distribution is �/(� � �), thus yielding a
mean of (1 � x)/n when n �� 1. Avoiding zero
bins allows all log ratios of these distributions to be
computed; in practice, the treatment of these val-
ues noticeably affects results when either the dis-
tributions are undersampled or the supports of
the probability distributions are markedly differ-
ent, such as is the case between the extreme curves
of Figure 4b.

Discriminating between two distributions. Be-
cause our goal is to evaluate the information
contained in the spike interval distributions, we
use the Kullback–Leibler divergence, a statisti-

cal measure that is related to mutual information, to quantify the differ-
ence between two probability distributions as follows:

DKL�P, Q� � �
x

P� x�log
P�x�

Q�x�
. (1)

This measure is zero if and only if P � Q and is otherwise � 0. Unlike a
true distance measure, the Kullback–Leibler divergence is not symmetric,
DKL( P, Q) � DKL(Q,P), and does not obey the triangle inequality. For
our purposes this is advantageous because it allows us to quantify the poten-
tial asymmetry in observing changes in different directions, i.e., comparing
low-to-high variance changes with high-to-low variance changes.

DKL quantifies the intrinsic classification difficulty (Johnson et al.,
2001). Although DKL does not give the absolute probability of error for a
specific decoder, it does limit the ultimate performance of any classifier;
a one-bit increase in DKL corresponds to a twofold decrease in error
probability. Given a decoding model with some set of parameters, for
small parameter changes the smallest achievable mean-squared estima-
tion error is inversely proportional to DKL; this is the Cramer–Rao bound
(Johnson et al., 2001).

Discrimination by using ISIs: binary choice. Given a sequence of ISIs
generated in response to a statistically steady-state stimulus, we would
like to quantify our ability to decode responses by classifying them ac-
cording to whether they were caused by a stimulus with SD �A or �B.

We wish to compute the Kullback–Leibler divergence between the
distributions of n-interval sequences �1, . . . ,�n generated by different
stimulus SDs, DKL

�n� � DKL�P��1, . . . , �n��B��P��1, . . . , �n��A��. Be-
cause in practice the multidimensional distributions P(�1, . . . ,�n��) are
very difficult to sample for n � 2, we will assume that successive intervals are
independent. In this case, DKL

(n) is given by the cumulative DKL as follows:

DcKL
�n� � �

i�1

n

DKL�P��i��B��P��i��A��

� �
i�1

n �
�i

P��i��B�log2

P��i��B�

P��i��A�
. (2)

Figure 1. Ambiguity in the rate with respect to the stimulus SD is reduced by considering spike intervals. a, A schematic of the
velocity stimulus to the fly. This three-state 24 s stimulus was repeated for 2 h. Stimulus SDs were �H � 3�M � 9�L. b, Mean
spike rate for the three-state switching experiment with bin size of 10 ms. c, Rate distributions P(r��i) from the last second of each
epoch. d, ISI distributions P(���i) from the last second of each epoch. Note that stimuli with �M lead to two distinct rate
distributions (c, triangles) but very similar ISI distributions (d, triangles).
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We estimated the distributions P(�i��A) and P(�i��B) from 10,000
unique random samples of interval sequences from the steady-state fly
and model neuron data. To de-bias and estimate the variance of DcKL, we
applied the Bootstrap method (Press, 1992; Johnson et al., 2001) by
drawing 10,000 sequences of n ISIs randomly with replacement from
the initial set of 10,000 sequences. After repeating this procedure
200 –300 times, we found the mean � and the SD �. Using the mean,
we de-biased DcKL

(n) by subtracting � � DcKL
(n) , and we took the SD as the

error. Note that, for steady-state data, the following applies:
DcKL

�n� � nDKL�P����B��P����A��. We note that, for well sampled steady-

state data, calculating DcKL
(n) is equivalent to calculating the expectation of

a decision variable Dn as follows:

Dn � �
i�1

n

log
P��i��B�

P��i��A�
. (3)

The DKL values of Figure 4 are related to both the DcKL
(n) values, which

assess the ability to decode from an n-interval sequence, as well as to a
possible log-likelihood decision variable (Fairhall et al., 2001), which
could be used in decoding. In Fairhall et al. (2001), the signal-to-noise
ratio (SNR) of Dn was used to determine the reliability of decoding,
where SNR is defined as the square of the mean over the variance of Dn.

Multiple choices: calculating the information that one interval gives about
the stimulus variance. When there are more than two choices, we com-
pute the mutual information between the set of intervals � and the stim-

ulus SDs �i. This quantifies the average reduction in uncertainty about
the stimulus source that is gained by observing a single interval. The
mutual information is defined as the difference between the total entropy
H[P(�)] and the noise entropy Hs. In this application the noise entropy is
the entropy of P(���), the distribution of � conditioned on the
SD �, averaged over the set of possible values of � as follows:
Hs � ��� P�����log2P����� (Cover and Thomas, 1991; Rieke et al.,
1997; Dayan and Abbott, 2001). The difference between the total entropy
and the noise entropy can be rewritten as the following:

I��; �� � �
�

�
�

P��� P�����log2

P�����

P���
. (4)

This information can be calculated either for the steady-state distribu-
tions or for subsets of intervals with a particular temporal relationship to
the stimulus envelope, such as for the nth interval after a change in
stimulus variance as in Figure 3. SDs for each data point are found by
using a Bootstrapping method as described above. All distributions are
well sampled because n �� m (n � [300 600 300], m � 59), where n is the
sample number and m is the number of bins. Additionally, bias is negli-
gible because V/B 2 	 [n(log m) 2]/m 2, where V and B are the variance
and bias of our estimator, respectively (Paninski, 2003). Therefore, we
evaluate Equation 4 directly.

Testing the assumption of independence. To test the assumption of in-
terval independence, we calculate the mutual information between an
interval �1 and �n, the nth interval after it in a data sequence, as follows:

I��n; �1� � �
�n

�
�1

P��n, �1�log2

P��n, �1�

P��n�P��1�
. (5)

Note that Equation 5 is symmetric with respect to the two intervals.
Because of the limited sampling of the joint distributions, our estimates
of these probability distributions will tend to lead to an overestimate of
information (Treves and Panzeri, 1995); however, because n �� m (n:
30,000, m � 59 2 � 3481), the bias-corrected estimators are effective
(Paninski, 2003). We correct for calculating the information for all of our
data, Ifull, and for two halves of our data, Ihalf 1 and Ihalf 2; the corrected
information is then Icorr � 2 Ifull � 0.5(Ihalf 1 � Ihalf 2). This method
derives from the fact that the first correction term in undersampled
biased information is C1 � (2nln2) �1(ms � 1)(mr � 1), where n is the
sample size and ms and mr are the sizes, or number of bins, of the stimulus
and response sets, respectively (Treves and Panzeri, 1995; Panzeri and
Treves, 1996), and allows us to calculate Icorr without explicitly finding
C1. We verified that C1 is indeed linear with regard to smaller subsets of

Figure 2. Kullback–Leibler divergence DKL between the time-dependent distributions and
the relevant reference distributions for rate DKL [Pt( r),P(r��i)] (a) and intervals DKL

[Pt(�),P(���i)] (b). Each distribution was created from 1 s (times 300 repeats) of this 24 s
stimulus pattern. Reference distributions are sampled from the final second of each of the
four epochs, hence DKL � 0 at 7, 11, 19, and 23 s. Although rate distributions change
continuously throughout the epoch (a), interval distributions quickly reach a steady state
(b). Error bars represent the SD.

Figure 3. The information I(�n;�) gained from successive spikes after a switch between SDs
as calculated by Equation 4. The probability P(�n��i) of a given interval value for the nth
interval after an SD switch is calculated for each of the three � values in Figure 1. After approx-
imately three intervals, the information per spike reaches steady state, suggesting that interval
coding quickly adapts to the new stimulus statistics. Error bars represent the SD.
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data as well; thus the first-order term is a good approximation of the
error.

Estimating a time-varying stimulus variance. We demonstrate an ex-
plicit decoding of this interval code to estimate the time-varying SD of
the stimulus by using the HH model. Probability distributions P(���) are
estimated in response to a range of steady-state stimulus SDs (see Fig.
4b). A time-varying stimulus variance then can be estimated from n
successive output intervals of the HH model, using a maximum likeli-
hood estimator as follows:

�ML � arg max
�

��
n

log P��n����, (6)

where the estimate is based on an implicit assumption of a locally un-
changing variance. Alternatively, stimulus variance can be estimated
from spike rate via a firing rate– current variance curve analogous to a
firing rate– current mean ( f–I ) curve. Because the HH model does not
display spike frequency adaptation, the responses of the model to statis-
tical changes in the stimulus are nearly instantaneous, and estimates from
intervals and spike rate should be similar.

Results
In the case of H1 it has been shown previously that the spike rate
varies adaptively with the stimulus variance envelope (Fairhall et
al., 2001). Here we present a case in which spike frequency adap-
tation leads to explicit ambiguity in the firing rate response to the
local value of stimulus variance. In this case we show that the
distribution of ISIs presents an alternative decoding variable to
spike rate. We examine the speed, accuracy, and precision with
which this distributional code conveys information about the
stimulus variance.

Resolving ambiguity
We construct a three-state experiment in which rate responses
show adaptation in different directions during presentation of

the same variance stimulus (Fig. 1). In this
experiment we switch the SD of the white
noise stimulus among three values, �H �
3�M � 9�L, presented in the sequence �H

3 �M 3 �L 3 �M (Fig. 1a). Thus the
system experiences a stimulus SD of �M

while adapting both to an upward transi-
tion �L3 �M and to a downward transi-
tion �H3 �M. Spike rates corresponding
to stimulus SD �M from the two transi-
tions differ noticeably (Fig. 1b). To esti-
mate the distribution of possible firing
rates, we collect the firing rates produced
in response to the random white noise
stimuli at a given time with respect to the
variance envelope. Figure 1c displays the
distributions of spike counts in 10 ms bins
obtained from the last second of each vari-
ance epoch. The rate distributions sharing
the stimulus SD �M overlap equally with
those resulting from �H and �L (Fig. 1c).
However, the steady-state spike interval
distributions for �M are nearly identical
and clearly differ from those resulting
from �H and �L (Fig. 1d).

Therefore, if one were to use the spike
rate to estimate the stimulus variance, one
might conclude erroneously that four dif-
ferent stimulus variances were used rather
than three, although the spike interval dis-
tributions would identify correctly the

three different stimuli variances. Because we are computing rate
by counting spikes in a given time window, small changes in the
tails of log–ISI distributions can lead to large changes in the spike
rate such that similar ISI distributions result in different rate
distributions, as demonstrated in Figure 1, c and d. For example,
adding a few long intervals has a negligible effect on the interval
distribution but a dramatic effect on the estimated rate, because
these few intervals span a long period of time.

To quantify how the locally sampled distributions of spike rate
(Fig. 2a) and spike intervals (Fig. 2b) evolve with time, we use the
Kullback–Leibler divergence DKL, defined in Equation 1. We
sample rate Pt(r) and interval Pt(�) distributions (300 repeats) in
a 1 s bin at each time point t. We then compare these with their
respective reference distributions P(r��i) and P(���i), which we
determine from the rates and intervals sampled in the last second
of each variance epoch. In Figure 2a we see that the rate distribu-
tions continue to evolve with time throughout the epoch until
they are, by construction, identical to the reference distribution
in the final second. The evolution of the rate is evident through
the continuous change in the DKL measure. However, in Figure
2b, DKL for the interval distributions approaches a steady state of
close to zero within approximately the first second. Furthermore,
when the stimulus has SD �M, the interval DKL values from the
two �M steady-state distributions are approximately equally close
to zero.

Figures 1d and 2b suggest that information about stimulus
variance can be obtained quickly from ISIs after a transition.
Therefore, we calculate the time-dependent mutual information
provided by each successive interval after a variance switch ac-
cording to Equation 4 in Materials and Methods. For the nth
interval after a switch, �n, we calculate I(�n;�) and find that the
amount of information provided by each interval increases rap-

Figure 4. Calculating the difference between different steady-state ISI distributions. Displayed are log–ISI distributions in
response to zero-mean random stimuli from fly H1 neuron (a) and HH model neuron (b) in which stimulus SDs (normalized to the
lowest SD) are shown in the figure key (right) and the mean firing rates (Hz) are shown in parentheses. Bin width is 0.05 log10

units; the sum of all bins equals one. Shown also are contours of the Kullback–Leibler divergence DKL between the log–ISI
distributions for the fly H1 neuron (c) and HH model neuron (d) as calculated from Equation 1. In the fly there is generally a larger
difference between the distributions for the transition from a low-variance to high-variance condition, i.e., for �A 
 �B, rather
than vice versa. The model neuron shows the opposite trend. The distributions corresponding to the three smallest stimulus SD
values for the HH model neuron shown in b are omitted from additional analyses.
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idly to a steady state (Fig. 3). Given a three-state discrimination,
there is a maximum of log2(3) � 1.585 bits of information to
obtain. If the assumption of independent intervals is valid, per-
fect discrimination then can be achieved with �8 –12 intervals.

Evaluating the accuracy and precision of the
distributional code
How accurately can such an interval code convey stimulus infor-
mation, and what are the speed/accuracy tradeoffs in estimating
the variance from a sequence of intervals? One expects that the
distributions are most discriminable in the steady state and that
adaptation will slow the acquisition of information about a vari-
ance change. Therefore, we examined steady-state data from the
C. vicina fly viewing uniformly distributed white noise motion
stimuli with a constant variance and data from a HH model neu-
ron (Hodgkin and Huxley, 1952) driven by a Gaussian-
distributed white noise current input with constant variance.

ISI distributions of the fly and simulated data demonstrate a
shift of the peak toward shorter intervals, with increasing stimu-
lus variance that is more marked in the fly ISI distributions than
in the simulated data (Fig. 4a,b). Although both distributions
display tails at long time scales, the tails of the fly ISI distributions
have a consistent slope, whereas the relative area under the HH
tails increases dramatically with decreasing variance. The pres-
ence of these long time scale tails allows for significant changes in
spike rate without a large change in the overall ISI distribution.
Contours of the Kullback–Leibler divergences between distribu-
tions generated from stimuli with SD �A and �B are plotted in
Figure 4, c and d, and the asymmetry in the DKL is readily appar-
ent because the greatest distance for the fly data is between re-
sponses resulting from low- to high-variance switches in contrast
to the model neuron in which the opposite is true.

Asymmetry in the discrimination of variance transitions has
been noted previously in a fly experiment of time-varying vari-
ance, in which steady-state information transmission was
reached more quickly after an increase in stimulus variance than
after a decrease in variance (Fairhall et al., 2001). In the detection
of a variance change in a Gaussian distribution, this asymmetry
follows directly from signal detection theory: it is easier to spot an
unexpected large-variance outlier than to realize that too many
values are falling in the center of the distribution (DeWeese and
Zador, 1998; Fairhall et al., 2001; Snippe et al., 2004). Our results,
which examine steady-state data, suggest that in decoding the
change the opposite also can be true; the interval distributions are
highly non-Gaussian, and the direction of the asymmetry in DKL

will depend on the particular shape of the two distributions. For
decoding during adaptation at least two asymmetries may com-
pete: different rates of adaptation either can reinforce or can
counteract the asymmetry in reading out the non-Gaussian signal
from the interval data. Even in steady state there may be two
causes of asymmetry: again, the possible asymmetry of the DKL

divergence between distributions (Fig. 4c,d) and an asymmetry in
the variance of a discriminator variable, such as the SNR discrim-
inator based on Equation 3. Even when the DKL is higher for a
low-to-high variance transition, a very large variance can make
this transition less reliably detected from the resulting intervals
than a high-to-low transition (data not shown).

To quantify how well information about stimulus variance
can be decoded from sequences of n intervals, we assume succes-
sive intervals are independent and use the cumulative DcKL

(n) , Equa-
tion 2, to compare responses (see Materials and Methods). Figure
5 shows how the estimated DcKL

(n) varies as a function of stimulus
SD ratio for several values of n. It is evident that discrimination is

relatively easier for the model neuron than for the fly H1 neuron.
The asymmetries of Figure 4, c and d, also are reflected here such
that discrimination is easier for low-to-high variance changes in
the fly data, and high-to-low variance changes are discriminated
more easily from model neuron data.

As a measure of discrimination we use a difference of one bit,
which corresponds to a twofold reduction in the probability of
classification error by a decoder (Johnson et al., 2001). Discrim-
inating stimuli with SDs that differ by a factor of 10 in the fly (Fig.
6a,c) requires approximately three intervals and �100 ms. For
HH output the discrimination is relatively easier: discrimination
of variances differing by a factor of 3 requires approximately
three spikes and 
100 ms (Fig. 6b,d). Although the time to dis-
crimination typically increases with the number of spikes re-
quired, this is not always true and depends on the shape of the ISI
distributions. For example, when we compare distributions that
differ significantly in the long time scale tails, few spikes may be
needed to reach a given level of discrimination, but the average
required time may be long if the discriminating spike intervals lie
in the long time scale tails.

Because this measure of decoding ability assumes indepen-
dence of successive ISIs, we test this assumption in two ways.
First, we calculate DKL values for a two-interval discrimination,
using both the joint distribution of the two ISIs, which takes into
account interval correlations, and the independent approxima-
tion, Equation 3. For the fly data we find that, as expected, dis-
crimination with the joint distribution is slightly better but on the
whole very similar (Fig. 7a). Second, we calculate the mutual
information I(�1;�n) between the first and the nth interval in a
sequence, according to Equation 5, for each of the distributions in
Figure 4a and plot their mean values (Fig. 7b). This gives us a
measure of the correlations between intervals and is equivalent to
the DKL between the joint and independent distributions of �1

and �n. After a separation of more than one interval, the intervals,
although slightly correlated, have very small mutual information
and can be considered as approximately independent (Fig. 7b).
For the HH neuron there is approximately zero correlation after
a single interval.

Real-time decoding
Until now, we have assessed the ability with which one, in prin-
ciple, could decode information about stimulus variance. How-
ever, we also would like to decode stimulus variance explicitly.
Because we have unlimited data from the HH model, we use the
simulation to test the plausibility of one-trial real-time decoding

Figure 5. Cumulative Kullback–Leibler divergence (DcKL
( n)) between neural responses, as de-

fined in Equation 2, as a function of the log ratio of two stimulus SDs, �B and �A. This divergence
is related to the probability of misclassification in which a distance of one bit corresponds to a
twofold reduction in error and is a measure of the capacity to discriminate between two ISI
distributions resulting from two stimulus variances, as in Figure 4, a and b. DcKL

( n) is for n � 1, 3,
or 5 ISIs from fly data for a given SD ratio (a) and from the HH model neuron (b). For example,
the circle represents the average discrimination for all 10-fold ratios of stimulus SD decrease,
e.g., 10 to 1, 30 to 3, and 60 to 6. Error bars represent the SD.
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of a continuously varying variance envelope. Therefore, we now
estimate stimulus variance using one example of a 60 s spike train
from the HH neuron (Fig. 8). We assume that we have access to a
library of reference distributions P(���) in which each distribu-
tion is gathered from a steady-state stimulus variance experiment
(Fig. 4b). From this we can use a maximum likelihood estimator
to estimate the value of the time-varying stimulus variance: the
estimate is the SD that yields the highest probability of n succes-
sive spike intervals, as in Equation 6. In principle, given a suitable
parametric family of distributions as a function of variance, one
might compute these results analytically. However, here we use

sampled data with 10 values of the variance
spaced such that successive variances are
�1.6 times the previous (given Fig. 5b, this
is a reasonable discretization scale for de-
coding with the use of more than one in-
terval). If we consider two successive inter-
vals, an estimate requires on average 22 ms
of spike train data (Fig. 8a), whereas an
estimate based on 15 intervals requires a
mean time of 314 ms (Fig. 8b). Using these
mean times as the window width, we also
estimate stimulus SD from the number of
spikes in this window. As the number of
intervals considered or the window width
increases, variance estimates better match
the true stimulus variance (Fig. 8c,d). Be-
cause the HH model does not display spike
frequency adaptation, we do not expect
any ambiguity, as exemplified in Figure 1,
and estimates from intervals and spike rate
should converge for long-enough win-
dows (Fig. 8e). However, calculating spike
rate in short windows severely discretizes
the possible estimates of variance (Fig. 8a,
red circles), and for short times the calcu-
lations based on intervals can give better
variance estimates even when adaptation
is not present (Fig. 8e).

Discussion
We have examined the ability of a code

based on the local distribution of ISIs to convey information
about stimulus variance in an identified fly visual neuron and in
a simulated HH neuron. We present a specific example in the fly
visual system in which adapting spike rates measured locally give
insufficient information to determine stimulus variance, whereas
an ISI distributional code allows this discrimination to be per-
formed with reasonable accuracy. We find that this code can be
decoded rapidly to convey accurate information about the local
stimulus variance, that the precision of this code depends on the
particular shape of the ISI distribution, and that this code is ef-
fective in the general and simple HH model neuron.

During adaptation in H1 the rate distributions do not provide
a unique mapping to stimulus variance, whereas ISI distributions
provide an approximately one-to-one mapping (Fig. 1). This re-
sults from the observation that rate distributions evolve slowly
with time (on the order of seconds), whereas ISI distributions
quickly (�200 ms) reach a steady state (Fig. 2). The ISI distribu-
tions permit variance discrimination as quantified by the Kull-
back–Leibler divergence, which depends on the shape of the ISI
distribution (Figs. 4 – 6). This can lead to asymmetries with re-
spect to variance increases or decreases in the time to decode the
variance change. Decoding with ISI distributions can be used to
estimate a time-varying stimulus variance (Fig. 8).

As demonstrated in Figures 1–3, this distributional code can
yield stimulus variance information quickly that is unavailable
from spike rate; qualitatively, this is based on the shapes of the ISI
distributions, which reach steady state after a sudden variance
change more quickly than does spike rate. That the ISI distribu-
tions may be very similar although the spike rate distributions are
different and evolving may seem paradoxical, because the firing
rate can be defined as the inverse of the mean ISI. However, here
we have considered rate computed from spike counts in a given

Figure 6. Number of spikes and corresponding mean time needed for discrimination, where discrimination is defined as a
distance of one bit. For each data series, the stimulus SD of the comparison distribution (�A) is held constant while the SD of the
source distribution varies (�B). a, Number of H1 spikes required to discriminate between two variances. b, HH spikes required to
discriminate between two variances. c, Mean time (seconds) in fly H1 neuron required to discriminate between two variances. d,
Mean time (seconds) in HH neuron required to discriminate between two variances. Discrimination requires considerably fewer
spikes and less time in the model neuron as compared with the fly neuron. The figure key values (right) for �A and �B are in
normalized units of SD, which correspond to those in Figure 4.

Figure 7. Testing the independence assumption. a, Kullback–Leibler divergences calcu-
lated by using independent distributions for P(�1��) and P(�2��) (triangles) and joint distri-
butions P(�1,�2��) (circles) as a function of the log ratio of two stimulus SDs, �B and �A, for
independent distributions; error bars represent the SD. b, Mutual information, Equation 5,
between the first spike interval and the nth interval of fly data for interval sequences that result
from steady-state zero-mean stimuli with varying SDs. The sharp decrease between n � 2 and
n � 3 suggests that dependence between intervals is confined mainly to the first and second
interval; other intervals effectively are drawn randomly from the probability distribution. This
information calculation was corrected for undersampling, as described in Materials and Meth-
ods. Gray lines represent the mutual information between intervals from different variance
distributions, whereas the black line represents the mean; error bars represent the SD across
different stimulus conditions.
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time window. Short intervals are charac-
teristic of a given variance, and variance
adaptation leads to a slow change in the
proportion of short and long intervals. In
the switch to a new variance there is very
rapid change in the typical pattern of short
intervals, although the relative probability
of long intervals adapts more slowly. These
small changes in the long interval tails of
the distributions lead to significant varia-
tions in the rate, as we have observed dur-
ing adaptation. These features typically
render the rate unsuitable to estimate ac-
curately over the short times relevant for
the encoding of natural stimuli (Gautrais
and Thorpe, 1998). Furthermore, different
parts of the interval distribution adapt at
different speeds, and we accentuate this
feature by plotting log–ISI distributions.

The robustness of this distributional
code is related to the shape of the steady-
state distributions. The ISI distributions of
both the fly H1 neuron and the HH model
vary systematically with the variance of the
driving stimulus. These variations can be
analyzed quantitatively by using the Kull-
back–Leibler divergences (Figs. 4c,d, 5, 6).
It has been noted previously that it is eas-
ier, both theoretically and experimentally,
to discriminate a variance increase than a
variance decrease (DeWeese and Zador,
1998; Fairhall et al., 2001; Snippe et al.,
2004). However, here we have considered
the speed and accuracy of decoding from a
non-Gaussian distribution, where this
may not hold. As has been pointed out (DeWeese and Zador,
1998), the speed of recognizing a change in distribution depends
on the occurrences of outliers after the change. In our results the
distributions corresponding to different stimulus variances have
distinct and non-Gaussian forms; Figure 4, a and b, includes cases
in which the occurrence of distinctive outliers happens more
frequently for the low-variance distribution than for the high-
variance distribution, thus resulting in easier identification of the
low-variance rather than the high-variance source.

In addition to coding via spike rate, spike timing, and specific
spike patterns, distributional coding may provide another means
for the neuron to transmit information. Although information in
spike rate typically is thought to be transmitted rapidly via aver-
aging across populations of neurons (Shadlen and Newsome,
1998), we have shown that this distributional code provides a
means of conveying ensemble information rapidly (�10 –100
ms) via the output of a single neuron. Other results also show a
strong dependence of the interval statistics on the variance of the
driving stimulus (Johannesma, 1969; Hunter et al., 1998; Wang
and Wang, 2000; Hunter and Milton, 2003). Furthermore, results
from the HH neuron demonstrate that this variance dependence
is present for a simple conductance-based model neuron and is
likely to be present for many neural types. The decoding scheme
that we propose shows that, in principle, this information is avail-
able. A biophysical implementation of such a decoding may in-
volve an array of tuned synapses showing short-term depression
and facilitation (Tsodyks and Markram, 1997; Varela et al., 1997)
to provide sensitivity to interval sequence. Thus a library of prob-

ability distributions P(���) (as in Fig. 4b) might be “stored” at
synapses in which a preferred ISI sequence leads to a maximal
postsynaptic response.

Adaptation is functionally very important for sensory systems,
allowing the system to tailor its responses to the local stimulus
and thereby increase information transmission. However, adap-
tation leads to ambiguity, whereby the relationship between stim-
ulus and response is no longer one-to-one but depends on the
statistical context of the stimulus. There are three possible solu-
tions to this problem. Information may be conveyed by other
neurons in the network, or it may be discarded entirely, as may be
the case for light/dark adaptation of photoreceptors. We suggest
a third possibility: contextual information may be conveyed by
the statistical properties of the spike train. Although the first two
of these possibilities also may be true for H1, we have demon-
strated that information about the statistical ensemble indeed
may be extracted. The dependence of the interval statistics on the
stimulus ensemble may be a generic property of neural response,
because it is observed in neurons as simple as the HH model
(Wang and Wang, 2000). It therefore is tempting to suggest that
using this dependence to convey ensemble information may be a
universal capability of neural computation.
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