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Temporal Structure in Zebra Finch Song: Implications for
Motor Coding
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Adult zebra finch songs consist of stereotyped sequences of syllables. Although some behavioral and physiological data suggest that songs
are structured hierarchically, there is also evidence that they are driven by nonhierarchical, clock-like bursting in the premotor nucleus
HVC (used as a proper name). In this study, we developed a semiautomated template-matching algorithm to identify repeated sequences
of syllables and a modified dynamic time-warping algorithm to make fine-grained measurements of the temporal structure of song. We
find that changes in song length are expressed across the song as a whole rather than resulting from an accumulation of independent
variance during singing. Song length changes systematically over the course of a day and is related to the general level of bird activity as
well as the presence of a female. The data also show patterns of variability that suggest distinct mechanisms underlying syllable and gap
lengths: as tempo varies, syllables stretch and compress proportionally less than gaps, whereas syllable-syllable and gap- gap correla-
tions are significantly stronger than syllable- gap correlations. There is also increased temporal variability at motif boundaries and
especially strong positive correlations between the same syllables sung in different motifs. Finally, we find evidence that syllable onsets
may have a special role in aligning syllables with global song structure. Generally, the timing data support a hierarchical view in which
song is composed of smaller syllable-based units and provide a rich set of constraints for interpreting the results of physiological

recordings.
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Introduction

Most natural behaviors are arranged hierarchically, with complex
actions composed of a serial combination of more basic motor
gestures (Lashley, 1951; Miller etal., 1960). The learning of court-
ship song in birds presents an ideal model system for understand-
ing the neural mechanisms underlying complex behavior. Bird-
songs have a hierarchical structure spanning timescales from
several milliseconds to several seconds, and are executed by well
delineated circuitry known as the song system (Fig. 1).

Zebra finch songs are highly stereotyped, making them espe-
cially well suited for in-depth analysis. The acoustic structure of
song is arranged in a hierarchy, with vocal units known as sylla-
bles strung together in sequences called motifs (see Fig. 2). Sev-
eral lines of evidence suggest that this acoustic hierarchy is em-
bedded within the underlying representation for song. Flashes of
light cause birds to interrupt their song at syllable boundaries
(Cynx, 1990; Franz and Goller, 2002), and the patterns of inspi-
ration/expiration segment the song into syllables and acoustic
gaps (Wild et al., 1998; Suthers and Margoliash, 2002; Goller and
Cooper, 2004). Early electrophysiological experiments suggest
that this structure is reflected in the anatomical hierarchy in the
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forebrain, with nucleus HVC (used as a proper name) being re-
sponsible for syllable sequence and nucleus robust nucleus of the
arcopallium (RA) representing individual syllables (Vu et al.,
1994; Yu and Margoliash, 1996).

This hierarchical view has been challenged by recent record-
ings of the HVC neurons projecting to RA [HVC y,, neurons]
(Hahnloser et al., 2002). During each motif, individual HVC 4,
neurons produce a burst of spikes aligned to the acoustic output
on the millisecond timescale. Although the number of recorded
neurons was limited, the bursts did not appear to respect syllable
versus gap distinctions. These results have led Fee et al. (2004) to
propose what we term the “music box” model for song produc-
tion: HVC activity serves as the clock-like drum of the music box,
and the HVC-RA synaptic connections trigger bursts in RA,
which get readout by brainstem motor nuclei. Under this pro-
posal, there is no hierarchical division of motifs into syllables and
gaps. With its uniform representation, the music box model pre-
dicts that changes in song tempo should be accompanied by pro-
portional scaling of all parts of the song, with no correlation
structure that would delineate articulatory units (for discussions
of proportional scaling in humans, see Gentner, 1987; Heuer,
1988; de Jong, 2001; Rhodes et al., 2004).

We addressed these issues by making fine-grained measure-
ments of syllable timing within zebra finch songs and analyzing
subtle patterns of variation within and across motifs. We find that
song length changes systematically over the course of a day, and
these changes are expressed across the song as a whole rather than
resulting from an accumulation of independent variance during
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Figure1.  Thesong system. The premotor pathway consists of HVC to RA to brainstem nuclei
RAm (retroambigualis), PAm (parambigualis), and RVL (ventrolateral nucleus of the rostral
medulla), which project to respiratory motor neurons, and nXllts (nervi hypoglossi, pars tra-
cheosyringealis), which projects to the syrinx. RA can influence respiratory brainstem nuclei via
alternative circuitry passing through the midbrain nucleus DM (dorsomedial intercollicular). DM
is also involved in an ascending pathway that extends to Uva (nucleus uvaeformis), NIf (inter-
facial nucleus of the nidopallium), and back to HVC. HVC—RA activity is modulated by two
pathways: (1) the descending anterior forebrain pathway (AFP), which consists of area X, DLM
(dorsolateral nucleus of the medial thalamus), and LMAN, and (2) an ascending pathway from
DMP (dorsomedialis posterior thalami) to MMAN (medial magnocellular nucleus of the anterior
nidopallium).

singing. Our data also show patterns of variability that distin-
guish syllables and intersyllable gaps and thus provide strong
evidence for hierarchical structure in the song output. As tempo
changes, syllables stretch and compress proportionally less than
gaps, a violation of the proportional scaling implied by the sim-
plest form the music box model. [Note that our data do not bear
on the sparseness of the underlying representation (Hahnloser et
al. (2002).] We also find increased temporal variability at motif
boundaries and especially strong positive correlations between
the same syllables sung in different motifs.

Materials and Methods

Terms

Zebra finch song consists of several introductory notes followed by a
series of discrete vocalizations that is repeated several times (Fig. 2). We
will refer to syllables as any vocalization delineated by silence on either
side, motifs as stereotyped series of syllables, and songs as an uninter-
rupted series of motifs produced back-to-back and separated by silence
on either side. Because we truncate songs to analyze identical sequences
of syllables with a fixed number of motifs, we will generally use the term
“sequence” rather than song.

Bird housing and recording
Recordings
All care and housing of birds conformed to the procedures approved by
the institutional animal care and use committee at the University of
Maryland, College Park. Birds were maintained on a 14/10 h light/dark
cycle and given food ad libitum.

This paper focuses on the analysis of temporal variability in songs
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Figure 2.
songs in the sequences recorded from bird 10. Arrowheads indicate the onset and offset of each
syllable measured by an automated algorithm. The algorithm marks syllable boundaries ac-
cording to reliable peaks in the amplitude derivative, so that less reliable, small amplitude parts
of some syllables fall outside these boundaries (see Materials and Methods).

Zebra finch song. Spectrograms from the shortest (top) and longest (bottom)

produced by zebra finches in the presence of other male birds (“undi-
rected song”) (Sossinka and Bohner, 1980). The majority of these record-
ings (86%) were obtained from adult birds that were acting as tutors for
other developmental studies. Other recordings were made in the pres-
ence of another adult male or when the bird was alone. To minimize the
effect of subtle changes in song that can occur in young adulthood, the
data analyzed came from birds that were at least 400 d after hatch. We
also examined temporal structure within a smaller dataset of songs re-
corded in the presence of a female (“directed song”). Unless explicitly
specified, all statements pertain to the larger sample of undirected song.

For all recordings, birds were housed in ~18 X 36 X 31 cm cages
within small sound-isolation chambers (Industrial Acoustics, Bronx,
NY). Cages were separated by ~18 cm, and two directional microphones
(Pro 45; Audio-Technica, Stow, OH) were placed in this space. Between
recording sessions, birds were returned to the colony room, where they
were housed in larger cages with several (at least six) adult males or were
paired with a female for breeding.

Real-time signal processors (Tucker Davis, Alachua, FL) digitized the
signal at 24,414.1 Hz. Data were selected using a circular buffer and a
sliding window amplitude algorithm (~10 ms of below threshold sound
needed to stop data recording). “Sound clips” selected by this algorithm
that were separated by <200 ms were considered part of the same “re-
cording” (candidate song) and were “glued” back together with the cor-
rect temporal alignment by filling periods between clips with zeros. Ex-
tensive examination of song recordings indicated that relative power in
the two microphones averaged over the entire song is sufficient to unam-
biguously determine which bird is singing in the vast majority of cases.
All signal analysis was performed in Matlab (MathWorks, Natick, MA).

Sample

To minimize the effects of extraneous behavioral variables, recordings of
undirected song spanned at least 100 d and included data from at least
two recording sessions with different juveniles. This left us with a uni-
verse of 20 birds. Of these, one bird was omitted because the song was
deemed excessively variable and noisy, and five were omitted because, as
juveniles, they had learned most of their song from another adult in the
sample. For each bird, we gathered an initial pseudorandom sample of
1000 candidate songs that were at least 1200 ms long and had maximum
power from the side on which the target adult was stationed. We omitted
two additional birds because the template-matching algorithm (de-
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scribed below) failed to detect >100 sequences from those samples. This
left us with a sample of 12 birds.

Sequence identification

All analysis described here concerns the main sample of undirected
songs. Directed analysis is detailed below. In the first stage of analysis,
repeated sequences of syllables were identified within the recording sam-
ples. A syllable was defined as any regular and continuous vocalization
delimited by at least 5.243 ms of silence on either side. In a few cases,
syllables occasionally split into parts separated by periods of silence
longer than this criterion. In these cases, the entire period was analyzed as
a single syllable. Mean syllable length was 110 = 56 ms, with a range of
37-294 ms. Recordings were analyzed using the complex amplitudes
obtained from a fast-Fourier transform (FFT) using a 256-sample
(10.486 ms) window advanced in 128-point steps.

Sequences were identified using a semiautomated procedure consist-
ing of several steps: (1) a hand screening of song was done to determine
the most common sequence of syllables produced by each bird; (2) a
spectrotemporal template was developed for each syllable using an aver-
age of two to three syllable exemplars; (3) a modified sliding cross-
correlation method was used to determine candidate matches of individ-
ual syllable templates to recorded data; (4) these candidate matches were
used to select entire sequences using timing and syllable order informa-
tion; and (5) selected sequences were hand screened to ensure that they
matched the template sequence. The goal of the template-matching pro-
cess was to obtain clean recordings from which accurate temporal mea-
surements could be made using more sophisticated techniques. Candi-
date songs that did not have a good match to the template were not
considered. This may have introduced an unknown amount of selection
bias, although visual inspection revealed nothing obvious.

Template sequences. For 10 birds, the most common sequence had two
to four motifs produced back-to-back, or ~1300-2000 ms of continuous
song; a greater number of motifs per sequence were chosen if that bird’s
motif was relatively brief. In two birds, sequences were more variable,
and the most common sequence was determined using syllable transition
probabilities that had been calculated for other research. Sequencing in
these birds was more variable overall, so a higher percentage of those
songs were excluded from the analysis. The average motif had five unique
syllables (this factors out repeats; range of three to eight) for a total of 60
unique syllables in the sample. Across motifs, each bird’s sequence com-
prised a mean of 12 syllables (range of 9-18; repeats counted multiple
times) for a total of 146 syllables across birds.

Syllable templates. Syllable template spectrograms were based on two
to three exemplars taken from a single song. The first exemplar syllable
was arbitrarily used as a “proto-template,” and other exemplar spectro-
grams were aligned to this proto-template using the syllable template-
matching algorithm described below. The template spectrogram was ob-
tained by averaging across exemplars the amplitudes for each time—
frequency bin.

Matching syllable templates and song data. For each syllable template,
candidate matches were determined using a sliding window the same
length as the template syllable. The spectrograms of the syllable template
and each window of the song were normalized separately by first sub-
tracting the mean from each time—frequency bin and then dividing out
the root mean squared deviation. The distance between the normalized
values was defined as the absolute value of the difference in each time—
frequency bin, summed over all bins. The final match value was calcu-
lated as the reciprocal of this distance. This match value was observed to
be significantly more accurate than a similar one using Euclidean
(squared) distance, which gives more weight to larger differences. For
each syllable, match values were computed across the bird’s entire sam-
ple. The threshold for candidate matches was set at the 90th percentile of
the distribution of match values. This criterion resulted in a higher
threshold for syllables that had stronger matches to extraneous sound or
other syllables. An initial set of candidate matches was then determined
as above-threshold peaks in the match. Given similarities in acoustic
structure between syllables, this process produces a number of false
positives.

Sequence selection. The next step in the analysis was to prune candidate
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matches using motif and timing information. For the purposes of the
timing analysis detailed below, the only sequences we considered were
stereotyped renditions. The selection algorithm starts with the candidate
syllable match that is most likely to belong to a target sequence and
searches forward and backward to find syllable matches that are in the
expected order and at approximately the expected time. The details of
this algorithm are in Appendix A.

Across birds, the algorithm obtained a match to at least one motif in
56 * 25% (SD) of sampled recordings (range of 17-95%). Most of the
recordings without a match consisted of back-and-forth calling and wing
flaps. The remainder of omissions was attributable to sequences of sylla-
bles that did not match the most common motif structure or failures of
the template-matching process, mostly attributable to acoustic interfer-
ence from other birds in the recording chamber. Within a random sam-
ple of 140 sequences, visual inspection revealed that an estimated 16% of
the recordings in which the algorithm failed to find a match actually
contained a target sequence that was missed. Of the four birds with the
fewest matches (<<30% of recordings matched), two had songs with vari-
able sequencing, and the proportion of rejections attributable to non-
standard sequences was much higher than the rest of the sample (esti-
mated 40 and 80% compared with 2% for the rest of the sample). In the
other two birds, the template-matching process was unreliable, leading
to above-average proportions of target sequences that were incorrectly
rejected (estimated 50 and 70%). These two birds were excluded from
our sample because the template matching yielded <100 sequences each.
Finally, of the recordings that contained a match to at least one motif, a
mean of 40% was omitted because they contained fewer motifs than in
the target sequence for that bird.

Hand screening. All target sequences satisfying the initial template-
matching procedure were screened by visual inspection of log-
transformed spectrograms to determine whether they were suitable for
high precision temporal analysis. Across birds, an average of 40% were
omitted, the majority as a result of mild acoustic interference from the
other bird in the recording chamber.

Temporal analysis

In the second stage of analysis, the timing of each syllable onset and offset
was determined by a modified dynamic time-warping (DTW) algorithm
applied to templates consisting of the derivative of the smoothed ampli-
tude envelope of each syllable. Steps of this analysis were as follows: (1)
segment and select a portion of the original signal surrounding each
syllable match obtained from the sequence-matching procedure above;
(2) calculate the smoothed amplitude envelope and take its derivative;
(3) for each syllable, make a template using the averaged waveform from
all examples of that syllable in the sample; (4) set onset and offset times by
choosing peaks and troughs in the template waveform; (5) use DTW to
identify onsets and offsets in the recorded data.

Segmentation of the original signal. The sequence-matching procedure
provided the best alignment of syllable template spectrograms with the
song, defined using 128-point (~5 ms) time bins. Songs with matched
sequences were spectrally reanalyzed using an FFT with a 128-sample
window slid forward in four-point steps (yielding ~0.16 ms time bins).
For each template match, we partitioned the song by selecting the portion
of the original signal corresponding to the time period of the template,
plus a buffer on either end. The preceding buffer extended from the onset
of the current template to a point 30 sample points (~5 ms) beyond the
end of the previous template match. Similarly, the subsequent buffer
extended from the offset of the current template to a point 30 sample
points (~5 ms) beyond the beginning of the subsequent template match.
Information within these buffers was gradually discounted at a later stage
of the analysis but was included to allow the identification of syllable
boundaries that fell outside the coarser template match.

Amplitude waveform definition. For each syllable partition, corre-
sponding spectrograms were log transformed and summed across the
1.5-7.1 kHz range to yield an amplitude waveform for each selected
portion. The frequency range was chosen to encompass the regions of
highest power and exclude higher frequencies at which spectral features
are less reliable (Chi and Margoliash, 2001). Amplitude waveforms were
smoothed with a 64-point Gaussian window with a 25.6-point SD
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(equivalent to ~4 ms); this reduced the length of each buffer by 64/2 =
32 points. The amplitude derivative was calculated as the difference in
adjacent amplitude values divided by the four-sample time bin. Peaks
and troughs of this derivative were used to define onsets and offsets.
These correspond to inflection points in the amplitude and proved to be
more reliable than either zero crossings in the derivative or heuristically
defined threshold crossings in the original amplitude waveforms. Infor-
mation in the buffers was discounted in a gradual manner by multiplying
the amplitude derivative by a value that was equal to one at the edge of the
original syllable template match and ramped linearly down to zero at the
edge of each buffer.

Waveform templates. Amplitude derivative templates were constructed
from windowed waveforms as follows: (1) an initial mean waveform
across songs was computed based on the initial spectrogram template
alignment, (2) waveforms were aligned to the mean using the raw cross-
correlation and a max lag of half the mean length, (3) the mean was
recomputed across aligned waveforms, and (4) steps 2 and 3 were re-
peated for the aligned waveforms. This process amounted to a rudimen-
tary bootstrapping method for computing the mean waveform without
having to manually select an exemplar as a template. Step 4 proved to
make a significant difference in the resolution of syllables with fast am-
plitude modulations. Syllables repeated in the same sequence but in dif-
ferent motifs were treated independently in this part of the analysis.

Defining onset and offset times. Template onsets were manually selected
among positive peaks toward the beginning of the waveform template,
whereas offsets were selected among negative troughs toward the end of
the syllable. Selections were based on a combination of how close peaks
were to the beginnings/ends of syllables plus height and regularity across
songs defined by visual inspection. Frequently, the most reliable onsets/
offsets occurred after/before brief periods of low-amplitude noise in the
syllable so templates were slightly shorter than the actual periods of
vocalization.

Onset and offset identification. Syllable onsets and offsets were identi-
fied by mapping individual syllable waveforms to amplitude derivative
templates using a modified dynamic time-warping algorithm (Rabiner
and Juang, 1993; Anderson et al., 1996). Our implementation was devel-
oped to match waveform peaks to corresponding templates by finding a
warping of time that maximizes the average product of the template and
candidate waveforms. Because the multiplication of large values domi-
nates the matching, the algorithm is directed toward the alignment of
peaks and results in a significant improvement in temporal alignment
over the traditional DTW based on minimizing Euclidean distance. In-
dividual waveforms were noisier than templates and often had multiple
candidate peaks for matching. Visual inspection of several examples con-
firmed that the times of “double peaks” in syllable waveforms were “av-
eraged” in the alignment with the corresponding peak in the template.
Details of the DTW algorithm are presented in Appendix B. We estimate
that this algorithm introduced an upwards of ~0.7 ms measurement
error to syllable onsets and 1 ms to offsets (for our derivation of this
estimate, see supplemental data, available at www.jneurosci.org as sup-
plemental material).

Outliers and final sample

The template matching and DTW yielded a total of 3175 sequences.
Those with at least one interval outside 5 SDs from its mean length were
omitted. Across birds, 137 intervals were outliers and 103 sequences were
omitted for this reason, ranging from 1-5% of each bird’s sample. Con-
versely, ~5% of all intervals in omitted sequences were outliers, suggest-
ing a weak tendency for outlying intervals to come from the same songs.
Thus, the final sample for analysis consisted of 3072 sequences (106—515
per bird) and 72,192 intervals.

Directed song analysis

Female-directed songs were gathered from a subsample of 4 of the 12
birds. Recordings spanned 2 d in which males spent the night alone. At
11:30 A.M. each day, a female was introduced into the same small cage
within each recording chamber and remained there until 4:30 P.M. The
male was observed periodically over the afternoon to ensure that songs
were in fact directed toward the female, i.e., the male was in close prox-
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imity and facing the female while singing. Every detected song that we
analyzed was at least 1200 ms long.

We analyzed these songs using a slightly abbreviated template-
matching procedure. Syllable templates were defined as described above,
and an initial syllable identification was assigned based on the syllable
template with the highest matching score. To maximize the number of
sequences that could be analyzed, a spectrogram for each recording was
visually inspected, and target syllables that were incorrectly matched
were manually corrected using custom software. Matched sequences
were excluded if it was thought that background noise or recording qual-
ity would yield erroneous temporal analysis.

Between 79 and 161 (mean of 108) recordings per bird were gathered;
of these, ~50-70% (mean of 64%) had a target sequence that was
matched. Very few songs in this sample had fewer motifs than were
defined in the target sequence, and an estimated 5% of target sequences
were excluded because of acoustic interference such as wing flaps. Note
that a greater proportion of directed songs were retained for temporal
analysis than in the sample of undirected song, most likely attributable to
greater acoustic interference from juveniles than from females. A total of
266 sequences from directed songs were gathered and analyzed. Tempo-
ral analysis followed the procedure described above. As in the undirected
sample, songs outside 5 SDs were omitted, yielding 259 sequences
(38—87 per bird) and 5915 intervals.

Timing data analyses

Tempo change versus accumulation of variance

One question we addressed was whether variations in sequence length
represent tempo changes versus simply an accumulation of variance. To
quantify these possibilities, we expressed sequence length as

m
z= Z Xi
i=1

where x; is the length of interval 7, and m is the number of intervals in the
sequence. We expressed variance in sequence length as

m

var(z) = E var(x;) + 2 Z cov(x;, x;),

i=1 i#j

where var and cov denote variance and covariance. Dividing both sides
by the sum of the individual variances, we derive a normalized quantity
equal to the ratio of the variance in sequence length to the sum of the
individual variances. We call this ratio the “gross covariance” and denote
it as g. The gross covariance is equal to 1 plus a value that depends on the
summed covariance of all intervals. Values >1 indicate a net positive
covariance among intervals, which is what one would expect from a
change in overall tempo. Significant differences between sequence length
variance and the sum of interval variances were tested using the 95%
confidence interval for sequence length variance, which can be obtained
from a 2 distribution.

Elasticity calculations

To quantify how tempo changes are related to changes in the length of
individual intervals, we performed linear regressions of individual inter-
val lengths x; with overall sequence length z, i.e., we write the following:

x;=a;+ bz + e,

where b; is the regression coefficient, and ¢; the residual. One of our
primary interests was whether zebra finch song displays proportional
scaling in which changes in song length are accomplished by a propor-
tional scaling in the lengths of each of its intervals. If proportional scaling
holds, the regression coefficient b; should be equal to the ratio of the
mean interval length to mean sequence length. We tested whether inter-
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vals violated proportional scaling by first calculating the SE of a regres-
sion coefficient, which is given by

mse
SEy = (n — 2)var(z)’

where 7 is the number of sequences, and mse is the mean squared error
from the regression ([1 — n] 3 €). We then used a two-tailed ¢ test with
a null hypothesis of proportional scaling in which the regression coeffi-
cient should be equal to the ratio of the mean interval length to mean
sequence length, b; = X//z.

Note that, in the DTW algorithm used to measure syllable onsets and
offsets, local path constraints were slightly biased away from a slope of 1
(see Appendix B). Thus, if there were any possible bias introduced into
coefficients by our DTW, it would be in favor of syllables having larger
regression coefficients.

Conceptually, b; represents the ability of an interval to stretch and
compress with sequence length. Because we were most interested in
whether an interval stretched proportionally more or less than the entire
song, we normalized b; by dividing out the value expected for b, under the
condition of proportional scaling such that

We term this normalized version of the regression coefficient 3; the
“elasticity” of an interval. Proportional scaling implies uniform elasticity
across intervals such that the normalized coefficient equals 1 for all in-
tervals. For ease of comparison across intervals, throughout the paper, we
report normalized elasticity coefficients only.

For some analyses, we were interested in whether intervals had corre-
lations that were independent of song tempo. For these analyses, we
calculated the correlation coefficients among the residual values ;.

Elasticity for pairs of intervals

For the purpose of determining whether syllable onsets have a special role
in timing, we examined how the elasticity of each interval in a pairing of
one syllable and one gap contributes to the elasticity in the sum of the two
interval lengths. For two intervals x; and x;, we write the sum of the
regression equation as follows:

X; J_C]
X+ x = Big"‘ng z+a;+ta +e€+e¢.

Dividing the coefficient of z by (x; + X;)/z, we find that the elasticity
coefficient for the pair of intervals, B, ; = ¢;8; + ¢;8;, where ¢; = X/ (x; +
ch) and G =x/ (x; + 5cj). That is, the elasticity of the joint interval is the
average of the component intervals, weighted by their contribution to
overall length. If onsets are especially tied to global tempo, one would
expect the elasticity coefficient for a pair of intervals consisting of a
syllable and the subsequent gap to be tightly clustered around 1.

Statistical analysis

Interval and song length data contained >100 sequences per bird. Be-
cause visual inspection indicated normality, Pearson’s correlation coef-
ficient was used to test the relationships among lengths. However, most
of our inferential statistics compared distributions of variables that vio-
late the independence assumption in ¢ tests, so we used more conservative
nonparametric tests. Unless indicated otherwise, differences between two
distributions were assessed using the two-tailed Wilcoxon’s rank sum test,
and determinations of whether a given distribution differed from a specific
value relied on the Wilcoxon’s ranked sign test. The Wilcoxon’s sign test was
also used when comparing pairwise differences between two dependent
samples. All mean quantities are reported with SEs.

Results

The temporal structure of zebra finch song was examined by
analyzing the temporal variability in the songs of 12 adult zebra
finches. In the main sample, we report throughout this section
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Table 1. Summary statistics regarding the length of song components

Mean SD n
Mean (ms)
Syllables 94.51 51.18 146
Gaps 49.87 16.10 134
Inter-onset 14239 55.93 134
Motifs 627.68 195.21 10
Sequences 1706.80 263.15 12
SD (ms)
Syllables 2.54 0.92 146
Gaps 2.39 0.98 134
Inter-onset 3.18 1.12 134
Motifs 10.30 2.78 10
Sequences 24.28 478 12
V(%)
Syllables 3.28 2.05 146
Gaps 491 1.79 134
Inter-onset 234 0.87 134
Motifs 1.67 0.16 10
Sequences 1.42 0.17 12

that the majority of recordings (86%) were made as part of other
developmental studies in which an adult male tutor and a juvenile
finch were housed in two small cages within a single recording
chamber. Females were not present during any of these
recordings.

Zebra finch song generally consists of several short introduc-
tory notes, followed by a series of two to seven motifs, each con-
sisting of a stereotyped sequence of syllables (periods of vocal
output separated by silence) (Fig. 2). The present study focused
on the temporal variability of syllable lengths and the lengths of
the gaps between syllables; spectral structure was not analyzed
(but see supplemental data, available at www.jneurosci.org as
supplemental material). Recordings containing the most com-
mon sequence produced by each bird were identified using an
automated template-matching algorithm and manually screened
(see Materials and Methods). Introductory notes were not con-
sidered, and longer songs were truncated so that the data ana-
lyzed contained repeated renditions of an identical series of syl-
lables. Because we did not analyze entire songs, we refer to each
series of syllables as a sequence.

Syllable onsets and offsets were recalculated at a finer tempo-
ral resolution with a modified dynamic time-warping algorithm
(see Materials and Methods). Generally, we will use the term
“interval” to denote the time between adjacent syllable bound-
aries. We divided this into two interval types: syllables and the
gaps between syllables. Hence, a sequence with » syllables had
n — 1 gaps and 2n — 1 intervals. Our sample had 280 distinct
intervals (146 syllables and 134 gaps); in the main undirected
sample, we analyzed a total of 3072 sequences containing 72,192
intervals across birds. We also considered the intervals between
the onsets of consecutive syllables; we denote these special inter-
vals “inter-onset intervals.” Syllables having the same spectro-
temporal structure (e.g., syllable “A” in the first and second mo-
tifs) are said to have the “same identity” and constitute one
“unique syllable” (total of 60 unique syllables across birds). In 2
of the 12 birds analyzed, the sequence of syllables in the first and
second motifs were not identical.

Descriptive statistics

Table 1 summarizes the descriptive statistics across syllables,
gaps, inter-onset intervals, motifs, and sequences. Overall timing
was very tight with the coefficient of variation (CV = SD/mean)
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for sequence length ranging from 1.1 to 1.7%. Half of all syllables
and gaps deviated from their respective means by <1.5 ms, or
~1.5-2.5% of mean length. Syllable lengths were slightly more
variable than gaps, but this is attributable to the fact that syllables
were significantly longer than gaps and that variability was positively
correlated with interval length (r = 0.376; p < 0.0001). However,
gap CV was generally ~1.5 times greater than syllable CV.

Changes in song length reflect tempo changes

Changes in song length can be attributed to two basic sources.
First, these deviations could result from small independent per-
turbations that accumulate during the production of an individ-
ual song. Alternatively, changes in song length may reflect song-
to-song variations in a global tempo mechanism that exerts its
effects throughout the song. In the music box analogy, changes in
tempo would correspond to variations in the overall speed of
rotation in the music box drum.

To gain an understanding of how these scenarios would affect
the accumulation of timing deviance, we constructed a simple
model that can generate random interval lengths. By changing a
single parameter, the model generates sequences based on these
two scenarios, leaving other factors constant (see Appendix C).
Sequences of interval lengths were generated such that the num-
ber of sequences, the variance of overall sequence length, and the
mean length of each interval were matched to experimental data
from given bird. In the “independent intervals” version of the
model, the length of each interval was chosen independently,
whereas in the “tempo change” version, interval lengths were
dominated by a global tempo factor shared by all intervals. Figure
3 shows a graphical comparison between the models and the data
from bird 10. Each line depicts the accumulation of deviation
from this average sequence for a given sequence. These plots
indicate that global tempo has a strong influence on interval
length.

To quantify the strength of global tempo, we used a normal-
ized measure termed gross covariance, denoted g (see Materials
and Methods). The measure g is equal to the sequence length
variance divided by the sum of individual interval variances. If
variations in song length are determined by an accumulation of
independent interval deviations, then sequence length variance is
equal to the sum of interval variances, and g is equal to 1. If,
however, song length is determined by some global tempo mech-
anism, then the positive covariance among intervals will increase
the variance of the entire song, causing g to be >1. In the 12 birds
in our sample, we found gross covariance ranging from 1.16 to
6.55. These values were significantly >1in 11 of these birds ( p <
0.05, x” test) and approached significance in the 12th. Note that
measurement error in determining syllable onsets and offsets will
suppress gross covariance by artificially increasing interval vari-
ances but have a minor effect on sequence variance. Overall, our
data indicate that changes in sequence length are dominated by
global tempo rather than an accumulation oflocal effects (cf. Chi
and Margoliash, 2001).

Repeated motifs slow down

Our data are consistent with previous work demonstrating that
motifs tend to slow down over the course of a song (Chi and
Margoliash, 2001). In 9 of the 10 birds having consistent motifs,
the second motif was longer by 5.9 + 4.4 ms (range of 0.04-12.7
ms) or 0.82 = 0.49% (range 0f 0.00—1.49%). In the one bird (bird
8) with a shorter second motif, the difference of —13 ms was
entirely attributable to variation in the amplitude structure of the
first syllable, leading to a different choice for the onset peak of
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Figure 3.  Qualitative analysis of interval length deviations. Each line indicates cumulative
deviations from the mean for a single sequence. Markers indicate syllable onsets and offsets.
The x-axis indicates the mean time from the beginning of the sequence for each onset and
offset. The y-axis represents cumulative deviation from mean timing up to that point in the
sequence. Sequences shown are at the fifth, 15, . . ., 85, and 95 percentiles of the distributions
of sequence length (thus, individual interval deviations do not necessarily reflect percentiles
because they do not perfectly correlate with sequence length). A, Simulated sequences in which
interval deviations are independent. B, Simulation sequences in which deviations are positively
correlated. €, Experimentally measured sequences from bird 10.

this syllable in the first versus subsequent motifs. In the five
birds with at least three motifs (excluding bird 8), the third
motif was longer than the second (range of 1.2-3.7 ms). In
four of these five birds, the difference between motifs two and
three was smaller than between motifs one and two (range of
35-67% of the difference between the first two motifs); in the
fifth bird, the difference between motifs two and three was
actually 2.3 times greater. In all five of these birds, the gap
between motifs two and three was longer than the gap between
motifs one and two.

Tempo change correlates with behavioral factors

A number of studies suggest that singing behavior and song
tempo may be affected by factors such as the presence of a female,
hormone levels, and circadian rhythm (Ollason and Slater, 1973;
Sossinka and Bohner, 1980; Zann, 1996; Deregnaucourt et al.,
2005; Jansen et al., 2005). To explore these factors, we examined
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(Fig. 4). As suggested by these results,
songs tended to be faster when activity
rates were higher, a relationship that was
statistically significant for 8 of the 12 birds
* (p <0.05). Thus, it is possible that at least
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some of the tempo changes were attribut-
able to general arousal state that in turn
varied over the course of the day.

Scaling of syllable and gap length
with tempo
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In the music box model, tempo changes
are most easily accomplished by simply
changing the speed of the underlying
clock-like mechanism. Such a model pre-
dicts that song intervals should exhibit
proportional scaling, i.e., they should
stretch and compress the same amount
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of the day and may be influenced by factors correlated with overall arousal.
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Figure5. Elasticity by interval type. The elasticity coefficient measures the fractional change

in interval length relative to the changes in sequence length. Syllables (black) are significantly
less elastic than gaps (white). This violates the proportional scaling predicted by a simple music
box model of song production.

the relationship between sequence length, acoustic activity, and
time of day. Acoustic activity was assessed as the average number
of recordings per minute on that bird’s side of the cage in a 30 min
window centered on each sampled song. This measure is domi-
nated by song production, but an undetermined number
(~30%) of these recordings consisted of non-song sounds such
as wing flaps and repeated calls. We report time of day as hours
from light onset (birds were housed on a 14/10 light/dark cycle).

Average song length was shortest at hour 4 (late morning) and
gradually increased until hour 11 (late afternoon); decreases in
length until hour 4 were significant for seven birds, whereas in-
creases between hours 4 and 11 were significant for 10 birds
(Pearson’s correlation, p < 0.05) (Fig. 4). Acoustic activity
tended to decline steadily over the day beginning at hour 5 (ap-
proximately noon) (Ollason and Slater, 1973). The decline was
significant for 8 of the 12 birds (Pearson’s correlation, p < 0.05)

2 4 8 10 1214 16 18 20 32 38 58

bird

Behavioral factors and song tempo. 4, €, E, Means and SEs across birds. B, D, F, Pearson’s coefficients by bird for each
relationship indicated directly to the left. Pearson’s marked * are significant with p << 0.05. 4, Song tempo by time of day in hourly
bins. B, Strength of tendency for songs to speed up in the first 4 h after lights on (white bars) and slow down between hours 5 and
11 (black bars). €, Acoustic activity by hour of day. D, Tendency for activity to decrease over the afternoon beginning at hour 6.
Acousticactivity was defined as the number of recordings per min in a 30 min window centered on each song. E, F, The relationship
between sequence length deviation and acoustic activity binned in integers. Song tempo changes systematically during the course

per unit time as the entire sequence (Gen-
tner, 1987; Rhodes et al., 2004). We exam-
ined whether zebra finch songs showed
proportional scaling by performing a lin-
ear regression of each interval with overall
sequence length (the slope of the regres-
sion line is known as the 8 coefficient). We
normalized the coefficients so they reflect
how much interval length stretched rela-
tive to the length of the entire sequence
(see Materials and Methods). From this
perspective, we will refer to the normal-
ized coefficient as the elasticity of an interval. If § > 1, then the
interval stretches and compresses relatively more than the overall
sequence, if B < 1, it is relatively inelastic, and if 8 = 0, then the
interval length is unrelated to the tempo. If song length is domi-
nated by variability in the length of a few very elastic intervals,
these intervals will have 8 values >1, whereas all the other song
segments will tend to have coefficients <1. In the two birds in
which the first and second motifs had different syllable sequences
(4 and 32), the intermotif gap was very elastic. This suggests that
other measurements based on a presumptive global tempo may
be misleading in these birds, so we restricted the rest of the elas-
ticity analysis to the 10 remaining birds. Examination of the ex-
cluded data did not indicate significant differences from most of
the other patterns presented.

Proportional scaling does not hold

Proportional scaling would imply that all intervals have the same
elasticity and all B coefficients are equal to 1. Of all intervals
analyzed, 60% of the corresponding coefficients differed signifi-
cantly from the hypothesis of proportional scaling (two-tailed ¢
test, p < 0.05; see Materials and Methods). Therefore, our data
strongly indicate that variability in song length is expressed un-
evenly across the course of the song, with some intervals being
more elastic than others. This contradicts the simplest versions of
the music box model in which song length is governed by the
speed of a single underlying clock.

Breaking down the data by interval type, we found that elas-
ticity coefficients for syllables was significantly smaller than for
gaps (p < 0.0001) (Fig. 5). (Significance tests regarding distribu-
tions of elasticity coefficients used nonparametric Wilcoxon’s
tests; see Materials and Methods.) Seventy percent of syllables
had coefficients <1 (mean 0of 0.921 = .031), whereas 75% of gaps
had coefficients >1 (mean of 1.169 * .041) (Fig. 5). B coefficients
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Bird 16: g=6.6, n=363, 1563 ms

Bird 12: g=6.4, n=258, 1628 ms
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Elasticity by bird. Titles indicate bird, gross covariance (g), sample size, and mean sequence length. Plots are sorted by g. Error bars show 95% confidence intervals for the sequence

length regression. Coefficients are spaced along the x-axis according to mean interval lengths and onset times (syllables are demarcated with black bars).
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significance in six of these birds (p < @ i m— T
0.025). One bird (58) actually showed syl- S
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Figure 6 shows the sequences of 3 co-
efficients for all birds in the sample, shown 0
in order of decreasing gross covariance.
Birds with greater gross covariance tended
to show a stronger alternating pattern of
coefficients, with greater elasticity among
gaps than syllables. Moreover, the data in
many birds appeared to show an identifi-
able pattern that was preserved across
motifs.

Figure7.

Motif boundaries are more elastic and more variable

We also noticed that intermotif gaps and the beginning syllables
of motifs (we will call them “syllable A”) tend to have especially
high elasticity (Fig. 7). The coefficients for syllable A were signif-
icantly greater than those for other syllables (means are 1.122 *
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Elasticity for intervals at motif boundaries. 4, Distributions of elasticity coefficients for syllables that start a song motif
(syllable A; white) and other syllables (black). B, Distributions for gaps falling between motifs (white) and other gaps (black).
Intervals at motif boundaries are more elastic.

0.098 and 0.854 = 0.020; p < 0.01), whereas the difference be-
tween intermotif gaps and other gaps was nearly significant
(means are 1.381 £ 0.094 and 1.129 = 0.045; p = 0.064). The
elasticity of syllable A was not significantly different from within-
motif gaps (p = 0.511).

In addition to being more elastic, intermotif gaps and syllable
A tended to be more variable than other respective intervals of the
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Figure8. Pairwise correlations among and between syllables and gaps. Distributions of the

correlation coefficient for all pairs containing two syllables (4), two gaps (B), or a syllable and a
gap (€). Toremove the effects of song tempo, correlations were calculated between the residual
values of regression of interval length versus total sequence length. Directly adjacent syl gap
pairs were omitted because measurement jitter in the boundary between the pair will induce nega-
tive correlations. Stronger within-type versus between-type correlations suggest shared neural
mechanisms in addition to the differential dependence on song tempo shown in Figure 5.

same type. To reduce confounds based on overall interval length,
we only considered intervals between 50 and 80 ms long. This
range avoided consideration of very small intervals, which are
likely to be dominated by measurement noise, and longer inter-
vals that contained very few syllable As. The resulting sample
contained slightly more than one-third of all syllable As (n = 11)
and three-quarters of intermotif gaps (n = 13). Within this range,
the distribution of CVs for syllable A was greater than for other
syllables (means of 4.993 = 0.561%, n = 11 versus 2.950 =*
0.002%; p < 0.005) and similarly for intermotif gaps versus other
gaps (means of 4.947 * 0.468%, n = 13 versus 3.588 % 0.190%;
p < 0.025).

Other determinants of elasticity were not found
We searched for other factors that might explain the differing
degree of elasticity across intervals. These included interval
length, interval variability, and syllable acoustic structure. No
significant trends were found (supplementary data, available at
www.jneurosci.org as supplemental material).

Covariance structure follows syllable/gap distinction

The fact that elasticity coefficients separate out by interval type
suggests that intervals of the same type have some shared repre-
sentation. However, the data cannot distinguish between two
scenarios that we call the “independent” and “grouped” scenar-
ios. In the independent scenario, song tempo is the only factor
driving changes in interval lengths, whereas in the grouped sce-
nario, there are rich representations shared by intervals of the
same type. Under the grouped scenario, one expects syllable
lengths to covary independently of global tempo. To focus on this
independent component of variance, we examined the residual
values obtained from subtracting off the linear regression with
sequence length. We then computed all pairwise correlations
among these residual values and sorted these pairs into three
categories: gap—gap, syllable-syllable (syl-syl), and nonadjacent
syllables and gaps (syl-gap). Adjacent syl— gap pairs were omitted
because of possible confounds attributable to measurement er-
ror: any error in determining the boundary between adjacent
intervals makes the measured length of one interval shorter and
the other longer and contributes a negative correlation to adja-
cent intervals.

The three distributions of residual correlation coefficients are
shown in Figure 8. We found positive correlations among most
intervals of the same type: 75% of all syl-syl and 81% of gap—gap
correlations were positive (means are 0.093 = 0.005and 0.111 *
0.006). In contrast, 89% of nonadjacent syl-gap correlations
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Figure 9. Intervals of the same identity are linked. Distributions of pairwise differences
between elasticity coefficients (4, €) and pairwise Pearson’s coefficients (B, D) for syllables (4,
B) and gaps (C, D). Black, Pairs containing intervals of the same identity (i.d.) (e.g., syllable Din
motifs 1and 3, gap between B and Cin motifs 2 and 3). White, Pairs containing intervals of the
same type (syl-syl or gap— gap) but different identity.

were negative (mean of —0.123 * 0.003). Within-type correla-
tions were significantly larger than syl-gap correlations (p <
0.0001). This relationship was quite reliable, holding for all 10
birds on an individual level ( p < 0.005; significance tests regard-
ing distributions of correlation coefficients used nonparametric
Wilcoxon’s tests; see Materials and Methods). Thus, our data
strongly indicate that syllables and gaps are grouped by properties
affecting interval length in addition to the factors that determine
elasticity.

Local temporal structure

Our analysis thus far has focused on syllables and gaps as groups.
Although there may be mechanistic representations specific to
interval types as a whole, there might also be more specific tem-
poral structure within song. We looked for three basic kinds of
local structure: relationships between the syllables and gaps of the
same identity across motifs, which we call “identity dependence”;
between intervals as a function of separation in sequence posi-
tion, or “distance dependence”; and temporal structure delin-
eated across syllable onsets, i.e., inter-onset intervals.

Elasticity and correlation structure is identity dependent

If unique intervals have specific representations, then one might
expect a similar degree of elasticity in all intervals of that identity
produced across motifs (for physiological evidence that the same
activity patterns underlie the production of repeated motifs, see
Yu and Margoliash, 1996; Hahnloser et al., 2002; Leonardo and
Fee, 2005). Indeed, we found that 8 coefficients were significantly
closer between intervals of the same identity than between any
two coefficients of the same type but different identity (p <
0.0005 for both syllables and gaps) (Fig. 9). Mean absolute differ-
ences were 0.238 = 0.037 among same-identity syllable pairs and
0.330 = 0.014 for syllable pairs with different identities. The cor-
responding values among gaps were 0.262 = 0.025 and 0.415 =
0.017. These differences did not reach statistical significance in
any individual bird, however, probably attributable to the small
number of same-identity pairs.

We also examined whether syllable and gap residuals of the
same identity were more correlated than they were with other
intervals of the same type (Fig. 9). In fact, lengths in same-identity
syllable pairs were more strongly correlated than in different-
identity syllable pairs, with 95% of same-identity syllable pairs
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having positive correlation (mean for same identity was 0.239 *
.013; mean for different identity, 0.056 = 0.005; p < 0.0001). The
same-identity gap correlations were 99% positive and signifi-
cantly stronger than different-identity gap pairs (same identity is
0.224 = 0.016; different identity is 0.089 = 0.006; p < 0.0001).
Because we found no difference in the strength of this effect for
syllable A and for intermotif gaps, these numbers include all in-
tervals. The same-identity correlations were stronger than other
within-type correlations in all 10 birds, but this difference did not
reach statistical significance ( p > 0.05) for syllables in one bird
(38) and for gaps in two birds (10 and 20).

Two birds (8 and 12) sang repeated syllables. Overall, correla-
tions between syllables of the same identity but in different motif
position were significantly stronger than correlations among syl-
lables of different identities ( p < 0.0001). Although this suggests
that the increased correlation between same-identity syllables
was not simply attributable to being in the same location within
each motif, the sample is too small to make strong conclusions
(cf. Leonardo and Fee, 2005).

Identity dependence among gaps is independent of syllables
Although identity dependence was shown for both syllables and
gaps, it is possible that the only direct linkage is between same-
identity syllables; gap correlations could follow as a consequence.
For example, a correlation between gap BC in motifs 1 and 2
could be attributable to correlated length changes in syllable B
and syllable C across the same motifs. To control for such possi-
bilities, we calculated pairwise correlations between gaps after
subtracting off the influence of syllable length as well as sequence
length. Specifically, we performed a multiple regression of each
gap with sequence length and the length of each individual sylla-
ble in the sequence, and we calculated the correlation coefficient
between the residual values for all pairs of gaps. Although one
would expect the adjacent syllables to create the largest confound,
all syllables were included in the regression to eliminate any con-
tribution from syllable length. Among gaps of the same identity,
70% of these correlations were positive (mean of 0.074 = 0.014).
In contrast, 80% of correlations among gaps of different identity
were negative (mean of —0.105 = 0.006), and the two distribu-
tions were significantly different ( p < 0.0001). Thus, the data do
indicate that gaps of the same identity are more correlated than
gaps of different identity, and this relationship is not simply a
byproduct of the relationships among syllables.

Distance-dependent correlations
We also considered positional distance in the sequence as a pos-
sible factor affecting the correlation between intervals. For birds
with short motifs, distance in the sequence can become con-
founded with syllable identity and motif position at relatively
short distances; for example, in the sequence ABCABC, syllable A
in motif 1 could be more correlated with syllable B in motif 2 than
C in motif 1 attributable to possible transitive correlations with
syllable A in motif 2. Therefore, we confined our analysis to the
six birds that sang at least four syllables per motif. For each sylla-
ble that did not begin or end the sequence, we computed pairwise
correlations with all other syllables in the motif that were not
repeated and compared the strength of correlations one position
away with two positions away. We considered shared dependence
on tempo to be a viable factor behind any such effect, so we
looked at both raw and residual Pearson’s coefficients.

Across birds, adjacent syllables had significantly stronger raw
correlations than syllables two positions away (mean difference
of 0.041 = 0.020; p < 0.05). However, there was significant in-
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terbird variability, with stronger correlations for adjacent sylla-
bles found in four of six birds, only two of which show signifi-
cance (2, 8, 12, and 14; 8 and 12 significant, p < 0.05). In two
birds (20 and 58), adjacent syllable correlations are actually
weaker on average than the more distant correlations. There was
also a trend in the correlations among residuals, but this did not
reach significance (mean difference of 0.022 = 0.019; p = 0.24).
Thus, if there is distance dependence in the correlation structure,
it may be related to systematic patterns of elasticity that span
several intervals.

Syllable onsets are especially aligned to global tempo

We also looked for structure that might indicate something about
how syllable onsets and offsets are coded. The simplest possibility
is that a central tempo mechanism “triggers” syllable readout at
times corresponding to syllable onsets. The syllable is then pro-
duced at a rate that is influenced by independent variability
within the syllable mechanism as well as song tempo. If the pro-
duction of a syllable does not influence the onset of the next
syllable, any fluctuations in syllable length will come at the ex-
pense of the gap following that syllable, making the correlation
between those two intervals more negative.

To look for these relationships, we started by making a direct
comparison of the strength of the negative correlation expected
between a syllable and gap making up an inter-onset interval and
a syllable and gap making up an inter-offset interval. We made
the comparison for pairs that shared the same gap, because all
gaps in a sequence have both a preceding and a subsequent inter-
val (which is not true for the first and last syllable in a sequence).
The mean difference between the correlations for the inter-onset
pairing and the inter-offset pairing was significantly different
from 0 ( p < 0.0005), with 73% of gaps showing a stronger anti-
correlation in the inter-onset pairing (mean difference in Pear-
son’s correlation, r = 0.145 * 0.025). However, recall that mea-
surement error is expected to make a significant negative
contribution to the correlation between adjacent intervals. Thus,
the above correlations may simply reflect a tendency for greater
measurement error at syllable offsets than at onsets.

To circumvent this problem, we returned our focus to the
elasticity calculations. Because overall sequence length is nearly
unaffected by measurement error (except for the first syllable
onset and last syllable offset), B coefficients should also be inde-
pendent of such measurement jitter. We again looked at the
tradeoff between the syllable length and gap length, but for length
differences attributable to differential elasticity. One can show
that the elasticity coefficient for any interval formed by combin-
ing a syllable and gap is given by B, = ¢,8; + ¢,B,, where the
subscripts s and g denote syllable and gap, and c is the ratio of the
mean length of each interval to the mean sum of both interval
lengths (see Materials and Methods). We looked at the tradeoff
between syllable and gap length by plotting ¢, versus cf3, for
three different pairings of syllables and gaps: syl—gap pairs mak-
ing up an inter-onset interval, syl-gap pairs making up an inter-
offset interval, and gaps paired with a random syllable in the
sequence (Fig. 10). If syllable and gap elasticity exactly trade off in
length, then the elasticity coefficient for the pair B, , = ¢,8, +
B, should be exactly equal to 1 (Fig. 10, dashed line).

To quantify how closely the data cluster around this predic-
tion, we computed the mean absolute deviation from g,,, = 1.
The mean deviation for inter-onset pairs was 0.108 = 0.012,
which was significantly smaller than the mean deviations for the
latter two groups ( p < 0.005). The mean deviations for inter-
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Figure 10. Tradeoffs in elasticity coefficients for different syllable—gap pairings. The
summed length of a syllable (s) and a gap (g) has elasticity given by B, = ¢B; + ¢,3,,
where ¢, and ¢, are relative lengths of each interval in the pair (see Materials and Methods).
Plots show gap (c,/3,) and syllable (c,3,) components along x- and y-axes, respectively. 4,
Inter-onset pairs (gap and preceding syllable). B, Inter-offset pair (gap and after syllable). C,
Gaps paired with random syllable. Tighter clustering around the B, , , = 1line (dashed) for the
inter-onset pairings suggests that elasticity in a syllable comes at the expense of the subsequent
gap, i.e., syllable onsets are more closely tied to tempo than syllable offsets. The negative slope
for random pairings is attributable to the fact that ¢, + ¢, = 1.

offset pairings were not significantly different than for random
pairings (p = 0.262; means for inter-offset pairs was 0.142 *
0.013 and was 0.167 * 0.015 for random pairings). Inter-onset
deviations from 1 were smaller than those for inter-offset inter-
vals in 9 of 10 birds (exception is bird 8) and smaller than those
for randomly paired gaps and syllables for 8 of 10 birds (excep-
tions are birds 8 and 10).

Effect sizes

We have presented several factors that influence the lengths of
intervals in zebra finches singing undirected song. To get a sense
for the size of these influences, we performed for each interval a
stepwise multiple regression with (1) sequence length alone, (2)
sequence length and the sum of all intervals of the same type but
different identity (“type sums”), (3) sequence length, type sums,
and the sum of all intervals of the same identity, and (4) all
previous factors and the sum of adjacent intervals. Intermotif
gaps were excluded because there were no other intervals of the
same identity in the sequences with only two motifs. Across in-
tervals, sequence length explained 24.4 = 1.2% of variance. Fac-
toring in the sum of all intervals of the same type but different
identity explains an additional 5.8 == 0.4%, the sum of all intervals
of the same identity explains an additional 3.5 % 0.2%, and adja-
cent intervals explains an additional 17.8 = 0.8%. This makes for
a total of 51.5 £ 1.1% of interval variances explained by the
factors analyzed here. (The relatively large amount of variance
explained by adjacent intervals is likely attributable to the fact
that the errors in measuring syllable boundaries result in corre-
lated length changes on either side of the boundary.)

Temporal structure of female-directed songs

It has been reported previously that directed song, in which a
male sings toward a female as a form of courtship, tends to be
faster and shows different physiology (Sossinka and Bohner,
1980; Hessler and Doupe, 1999). To determine whether singing
to a female altered the temporal structure of song, we examined
directed songs from a subsample of four males (see Materials and
Methods). Consistent with previous reports, we found that di-
rected songs tended to be faster than undirected songs. In the four
birds analyzed (birds 8, 10, 12, and 14), mean sequence length
was shorter than undirected song by 16, 71, 7, and 48 ms respec-
tively, or ~0.8, 3.8, 0.4, and 3.0%. Songs were produced between
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11:30 A.M. and 4:30 P.M,, so it is unlikely that time of day intro-
duced these differences (if anything, it may have muted them
because undirected songs slowed down over the afternoon).

To determine whether singing to a female had a substantial
effect on the fine-grained temporal structure of song, we com-
pared grouped statistics regarding the elasticity and correlation
structure of intervals broken down into syllable and gap catego-
ries. Overall, elasticity patterns were similar to what we found
with undirected songs. Of the 98 intervals analyzed, 65% had 8
coefficients significantly different from 1, and syllables were sig-
nificantly less elastic than gaps (means are 0.603 * 0.080 and
1.600 * 0.090; p < 0.0001). Given our small sample of birds, we
did not test the motif boundary effect. We also found the same
basic covariance structure among the directed songs. The corre-
lation coefficient between residuals remaining after subtracting
out the influence of tempo was positive within interval types and
negative between types (syl-syl mean, 0.073 = 0.012; gap—gap
mean, 0.093 *= 0.012; nonadjacent syl-gap mean, —0.102 =
0.009; p < 0.0001). Finally, all local structure reported for undi-
rected songs was also found among directed songs.

We attempted an interval-by-interval comparison to deter-
mine whether directed songs are simply sped up versions of un-
directed songs with the same individual temporal structure. Al-
though song spectrograms allowed for an easy identification of
the same syllable in directed and undirected songs, approxi-
mately half of the scatter plots of sequence length versus interval
length for directed songs fell substantially outside what would be
extrapolated from the undirected data (determined by visual in-
spection). Closer examination revealed that many syllables
showed differences in the shape of the amplitude envelope that
precluded an unambiguous matching of syllable onsets and oft-
sets in directed and undirected versions of the song. Because of
these complications, determining possible pairwise differences in
the fine-grained temporal structure of directed and undirected
songs of individual birds will require a more extensive analysis
that is beyond the scope of this study.

Discussion

We have exploited the remarkable stereotypy of zebra finch song
to analyze the temporal structure of repeated syllable sequences.
For practical reasons, we did not address subsyllabic temporal
structure and focused exclusively on the first several motifs sung
by birds housed alone or in the presence of other males. The
ability to collect hundreds of songs and analyze them with high
precision allows us to distinguish temporal variations on the mil-
lisecond timescale. Our results indicate that song length is highly
stable under these conditions, with a majority of deviations
<1.5%. Measurement of the gross covariance of song intervals
indicates that changes in song length are dominated by global
influences that differ from song to song rather than an accumu-
lation of local jitter during song production. This is consistent
with our demonstration that song length is correlated with the
time of day, as well as with previous data showing a continuous
“drift” in song production across repeated recordings (Chi and
Margoliash, 2001).

We also investigated how the lengths of individual intervals
correlate with these global tempo changes. We find that syllables
tend to stretch and compress with tempo changes less than gaps.
Additional song-to-song variability is shared by intervals of a
given type, so that syllable—syllable and gap—gap correlations are
stronger than syllable—gap correlations. Overall, these data sug-
gest that (1) interval length correlations are induced by mecha-
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Figure 11.  Functional elements possibly contributing to temporal structure. “Tempo” rep-
resents a pattern generator that drives song, either continuously across the entire song or at
particular points such as syllable onsets (thicker arrows). “Syllable” and “Gap” boxes represent
mechanisms that control the temporal structure of the corresponding units of song. Super-
scriptsindicate participation of these mechanisms in three basic models of song production. MB,
Music box model. A clock-like drum triggers the production of acoustic output on a fine time-
scale. The song is not decomposed into syllable or gap-based units. CH, Chaining model. Tem-
poralstructure results from a chaining of syllables and gaps. Song length is a consequence of the
combined action of the syllable and gap mechanisms. TS, Tempo and syllable model. A tempo
mechanism determines the overall rate of song production and triggers the action of a mecha-
nism that produces syllables as units of song. Gaps are simply the intervals left over between
syllables.

nisms that span the entire song, and (2) syllable and gap lengths
are driven by distinct components within the song circuit.

More detailed analysis reveals additional structure at the local
level. It appears that syllable length has a stronger tradeoff with
the length of the subsequent rather than preceding gap, suggest-
ing that onsets represent the preferred alignment of syllables with
overall song tempo. Also, syllables of the same identity sung in
different motifs show stronger correlations than other syllable
pairs, consistent with physiological data showing that they are
supported by similar patterns of neural activity (Yu and Margo-
liash, 1996; Leonardo and Fee, 2005).

Models of song production

We discuss our results in the context of three basic models for
song production (Fig. 11). Although elements of all three models
are likely to play a role, we discuss pure forms of each model for
conceptual clarity. The first is the music box model in which song
is driven by an underlying clock-like mechanism (Fee et al.,
2004). The second is a “chain model” in which syllables and gaps
are subserved by separate neural mechanisms and serially linked
together in a chain. Song tempo is the byproduct of temporal
fluctuations along the chain. Third is the “tempo and syllable
model” in which syllables are integrated within a global temporal
structure for song. In this scenario, gaps are simply the time left
over between syllables.

The main prediction of the music box model is that changes in
song tempo lead to a proportional temporal scaling of song ele-
ments. Our analysis clearly shows that proportional scaling does
not hold for zebra finch song, contradicting the simplest forms of
this model. Furthermore, the distinction between syllables and
gaps in the correlation structure suggests the presence of neural
mechanisms specifically dedicated to the production of song
syllables.

The other two models both presume the existence of syllable-
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based units but differ in whether gaps are units of song or simply
left over from the interplay between syllable length and song
tempo. One piece of evidence suggesting that gaps may be left
over from tempo and syllable interactions is the anticorrelation in
elasticity between syllable-gap pairs making up inter-onset inter-
vals (Fig. 10). Conversely, the relative inelasticity of syllables
could be explained by the chaining model if this elasticity induces
an active compensation in the subsequent gap length so that
inter-onset intervals scale nearly proportionally with song
length. There is actually a fundamental limitation in distin-
guishing these models in our analysis: song length is deter-
mined by the sum of syllable lengths and gap lengths. Given
this mathematical relationship, any temporal structure can be
explained by any two of syllable length, gap length and song
tempo. Whatever the structure of the pattern generator for
song, gaps must have some form of representation in the sys-
tem because they correspond to activation of motor neurons
driving inspiration (Wild et al., 1998; Suthers and Margoliash,
2002; Goller and Cooper, 2004).

Locus of hierarchical representations

Hahnloser et al. (2002) have shown that song activity is driven by
regular, clock-like bursting from HVCy,, neurons. However,
our behavioral data demonstrate that syllables and gaps scale
differently with changes in song tempo, and that variations in
syllable and gap lengths are correlated with other intervals of the
same type. How can these two sets of data be reconciled?

One possibility is that the bursting of HVC ) neurons does
not act like the ticking of a single clock but rather as a series of
bursts grouped into functional units. There are a number of can-
didate mechanisms within HVC that may subserve this grouping.
For example, previous recordings within HVC showed modula-
tions in firing rate that were tied to individual syllables and re-
peated by motif (Yu and Margoliash, 1996). Subsequent record-
ings suggest that this activity was most likely attributable to the
spiking of inhibitory interneurons within HVC (Hahnloser et al.,
2002; Fee et al., 2004). It is possible that these interneurons, via
their projections onto HVC ) neurons (Mooney and Prather,
2005), serve to organize the HVC y,, activity into functional
groups. This proposal is supported by evidence from brain slice
recordings showing that transient pulses delivered to HVC can
induce inhibition-dependent rhythmic bursting whose timing
approximately matches the rate of syllable production (Solis and
Perkel, 2005).

Temporal grouping of activity might also be driven by afferent
input to HVC. Bilateral HVC recordings show brief periods dur-
ing each motif in which multiunit activity becomes synchronized
across hemispheres (Schmidt, 2003). Because there are no inter-
hemispheric connections in the avian forebrain, this synchroni-
zation must be induced by HVC afferents. Synchronization pref-
erentially occurs at syllable onsets, consistent with our data that
intervals may be grouped into inter-onset pairs. This view of
HVCis consistent with data from the afferent nucleus uvaeformis
of the thalamus (Williams and Vicario, 1993; Coleman and Vu,
2005).

Alternative hypotheses also exist. Bursting in HVC g, neu-
rons could scale proportionally, whereas downstream mecha-
nisms lead to the production of syllable-based units. One possi-
bility is that output from an HVC clock encounters syllable-based
representations within the premotor nucleus RA (or subsyllabic
representations) (see Yu and Margoliash, 1996). Like HVC, RA
has a rich network of inhibitory interneurons, and these may give
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RA dynamic properties distinct from its HVC input (Spiro et al.,
1999; Abarbanel et al., 2004).

Syllable-based representations could also be induced by affer-
ent input to RA from the lateral magnocellular nucleus of the
anterior nidopallium (LMAN), the output nucleus of an indi-
rect pathway connecting HVC to RA that passes through the
avian basal ganglia (Fig. 1). Spike timing is highly correlated
across HVC, RA, and LMAN (Kimpo et al., 2003), and a re-
quirement for synchronous arrival of LMAN and direct HV-
C(ra) input could lead to inelasticity of activity within RA.
Moreover, this pathway has been implicated in syllable se-
quencing in Bengalese finches (Kobayashi et al., 2001), con-
sistent with the proposed role of the basal ganglia in sequential
behaviors (Hikosaka et al., 2002; Aldridge et al., 2004; Fujii
and Graybiel, 2005).

The departure from proportional scaling could also occur
when clock-like activity in RA projection neurons interacts with
the brainstem premotor nuclei for song production. These nuclei
have a complex network of interconnections (Wild et al., 1997;
Sturdy et al., 2003) and are responsible for the production of the
discrete unlearned vocalizations known as calls (Simpson and
Vicario, 1990). It may be here that song is organized into discrete
motor gestures at the syllable or subsyllable level.

Finally, it is possible that proportional scaling holds as far as
the motor neurons driving the syrinx and respiratory muscles but
physical constraints at the periphery lead to differential scaling of
syllable lengths with song tempo. There are several reasons
that this is unlikely to explain our data. First, although it is easy
to imagine how peripheral dynamics might constrain syllables
to show smaller changes than the overall song (B < 1), a
number of syllables show changes in length that are propor-
tionally greater than changes in tempo. Second, for several
syllables, 8 > 1 in the first motif and 8 < 1 in later motifs (Fig.
6). Finally, in our cursory analysis of acoustic structure, we
found no obvious differences in elasticity by syllable subtype
(supplemental data, available at www.jneurosci.org as supple-
mental material).

Evolution of vocal behavior

It has been proposed that learned song evolved as birds became
able to aggregate series of unlearned calls into organized se-
quences (Zann, 1993). Both the ability to learn from a song model
and the ability to coordinate and elaborate a series of calls is likely
to have required the involvement of complex and flexible senso-
rimotor circuits in the forebrain (Simpson and Vicario, 1990).
This hypothesis is similar to suggestions that human speech
evolved as complex cortical circuits built on brainstem circuits
gave rise to coordinated movements of the tongue, jaw, and dia-
phragm (MacNeilage, 1998). Under these hypotheses, motor rep-
resentations at the level of the forebrain would then evolve under
the competing constraints of constructing global representations
for vocal sequences and coordinating the production of the ele-
ments that constitute these sequences. Given these constraints, it
may not be surprising to find a mixture of both global and local
representational schemes within the forebrain circuits for com-
plex vocal behavior.

Appendix A: sequence template-matching algorithm
Following are the details of the template-matching algorithm we
used to identify target sequences in a given recording from the
undirected sample. Individual syllable—template matching is de-
scribed in Materials and Methods.

The main difficulty in sequence identification was false posi-
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tives from syllable-by-syllable matches, so the algorithm started
with the syllable that had the least number of matches. The loca-
tion of these candidate syllables were defined as “anchors” for
determining candidate motifs. From each anchor, a candidate
motif was determined by serially moving forward/backward and
looking for the appropriate next/previous syllable with the ap-
propriate timing. The forward-searching routine was defined as
follows: given that syllable # has just been found, look for a match
to syllable n + 1 starting in a time window from ¢1 to #2, where
t1 = onset(n) + 0.6 X length(n), and 12 = onset(n + 1) + 31 ms.
In this way, two syllable matches could overlap by no more than
40% of the length of the first template, and an inter-onset interval
could deviate positively from the motif template by a maximum
of 31 ms. This upper bound was determined in a previous analysis
of syllable onset deviations using a similar template-matching
algorithm. The backward-searching routine was a mirror image
of the forward search. Both routines were looped until the
boundaries of the sequence template were reached. If at any stage
the algorithm failed to find a candidate match for the appropriate
syllable, that motif was deemed not to match the template and
was not included in additional analysis. In the two birds with
non-identical motif structure, the entire song was treated as a
single motif.

If any candidate motifs overlapped, the one with the highest
average template match was chosen; this step was based on the
assumption that an overlap would indicate that at least one of the
matches was a false positive. If the gap between two identified
motifs deviated positively by >25 ms, they were partitioned into
separate sequences; otherwise, they were counted as part of the
same sequence. For example, if in the same recording a bird
produced a series of motifs, paused for a period of time, and
produced a second series, each series was counted as a differ-
ent sequence. On average, ~1.1-1.2 separate target sequences
per recording were identified; however, in one bird, this ratio
was closer to 2 because most sequences were separated by a
variable number of call-like notes not defined in the sequence
template.

Appendix B: dynamic time-warping algorithm
Following is the DTW we developed for the fine-grained mea-
surements of syllable onsets and offsets. Both templates and ac-
tual waveforms were truncated to include only data from the
beginning of the first peak to the end of the last peak. Peak begin-
nings and endings were defined as inflection points in the wave-
form on either side of the peak. To minimize discrepancies in the
lengths of templates and waveforms to be matched, endpoint
peaks used in the template were the very first and last and not
necessarily the ones chosen based on height and regularity to
define onsets and offsets.

Details of the DTW process are as follows (Rabiner and Juang,
1993). Paths were globally constrained by a Sakoe-Chiba band
defined by the midpoints of each time axis. Thus, total length
change was limited to fall between 1/2 and 2. Pathways were
locally confined to the following:

P, — (1,0)(2, 1)(3, 2)
P, — (1,1)
P, — (0, 1)(1, 2)(2, 3)

Hence a local length change was limited to fall between 2/3 and
3/2. Path sets were weighted by [2, 3, 2], which amounts to a slight
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bias away from a slope of 1, so the cumulative product matrix D
was computed as follows:

DG, j) =

20dG,j) +di —1,j) +d(i —2,j — 1)] + D(i — 3,j — 2)
3d(i,j) + D(i — 1,j — 1)
2dG, j) + d(i,j— 1) + d(i — 1,j — 2)] + D(i — 2, — 3)

max

>

where d was the outer product, i was the template index, and j was
the syllable index.

Endpoint constraints were relaxed because the correspon-
dence between syllable and template boundaries was itself an
object of this DTW. The default region in which the path could
end in time was delimited by the last 25% of the time axis for
either the template or the candidate waveform. This was
stretched accordingly if either length exceeded the other by
>25%.

The onset and offset of each syllable was determined by find-
ing the point on the syllable time axis corresponding to the onset
and offset times originally defined on the template time axis.

Appendix C: qualitative model of tempo changes

We qualitatively analyzed the relationship between interval vari-
ances and sequence length variance using a simple model set to
match the variance of overall sequence length o> and the mean
length of the intervals in the sequence, X;, X,, . . . , X,,,. The model
was constructed so that, by changing a single parameter, we could
consider the case in which intervals are independent and the case
in which the gross covariance measure g matches the experimen-
tal data, i.e., interval length changes are dominated by changes in
tempo. In both versions of the model, the SD of all intervals was
proportional to mean interval length. The length of each interval
was given by the following:

x; =X + ax(yn; + VI = Y:0),

where m; and 1), are 0-mean independent Gaussian variables with
SD equal to 1 (m, is the common variation shared by all intervals),
the parameter « controls the overall variance, and vy controls the
degree of independence in the different intervals. Overall se-
quence length variance is given by

o> =y %+ (1 -y %),
whereas gross covariance is given by

0_2

To obtain independent intervals, y and g were set equal to 1 and
a was solved for, whereas for the model with tempo changes, g
was set equal to the gross covariance of the bird being analyzed
and both « and vy were obtained from the two equations above.
The model contains a number of assumptions regarding the na-
ture of interval length variability and so did not form the basis for
any of the statistical conclusions reported.
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