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Summary

Two goals motivate treating diseases with drug combinations: reduce off-target toxicity by 

minimizing doses (synergistic potency), and improve outcomes by escalating effect (synergistic 

efficacy). Established drug synergy frameworks obscure such distinction, failing to harness the 

potential of modern chemical libraries. We therefore developed Multidimensional Synergy of 

Combinations (MuSyC), a formalism based on a generalized, multi-dimensional Hill-equation 

which decouples synergistic potency and efficacy. In mutant-EGFR driven lung cancer, MuSyC 

reveals that combining a mutant-EGFR inhibitor with inhibitors of other kinases may only result in 

synergistic potency, whereas synergistic efficacy can be achieved by co-targeting mutant-EGFR 

and epigenetic regulation or microtubule polymerization. In mutant-BRAF melanoma, MuSyC 

determines whether a molecular correlate of BRAFi insensitivity alters a BRAF inhibitors potency, 

efficacy, or both. These findings showcase MuSyC’s potential to transform the enterprise of drug-

combination screens by precisely guiding translation of combinations towards dose reduction, 

improved efficacy, or both.

Graphical Abstract

eTOC Blurb:

Meyer CT et al. developed a framework for measuring drug combination synergy. The framework, 

termed MuSyC, distinguishes between two types of synergy. The first quantifies the change in the 

maximal effect with the combination (synergistic efficacy) and the second measures the change in 

a drug’s potency due to the combination (synergistic potency). By decoupling these two synergies 
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conflated in prior methods, MuSyC rationally guides discovery and translation of drug 

combinations for the improvement of therapeutic efficacy and reduction of off target toxicities via 

dose reduction.

Introduction

Recent decades have witnessed an exponential expansion of available drugs for the treatment 

of disease (Gong et al., 2017). This expansion has been concomitant with an evolving 

understanding of disease complexity; complexity commonly necessitating combination 

therapy (He et al., 2016). However, clinical applications of combination therapy are often 

limited by tolerable dose ranges, and, therefore, it is desirable to identify combinations that 

enable dose reduction (Tallarida, 2011), i.e., synergistic potency. Additionally, combining 

drugs does not guarantee a priori an increase in efficacy over the single agents, and, 

therefore, it is desirable to identify combinations with effects greater than achievable with 

either drug alone (Foucquier and Guedj, 2015), i.e., synergistic efficacy. To assess a 

combination’s performance toward these goals, several drug synergy metrics have been 

proposed (Foucquier and Guedj, 2015). The roots of current synergy metrics can be traced 

back to either Loewe, who advanced the Dose Additivity Principle (Loewe, 1926) or Bliss 

who first described the Multiplicative Survival Principle (Bliss, 1939). Nearly a century 

later, methods to quantify drug synergy continue to appear (Chou et al., 1983; Yadav et al., 

2015; Twarog et al., 2016; Zimmer et al., 2016; Schindler, 2017) based on these two 

principles. However, none of these methods distinguish between synergistic potency and 

synergistic efficacy. Instead, they either make no distinction or tacitly assume the only form 

of synergism is through potency.

Nevertheless, this distinction is essential to arrive at an unambiguous definition of synergy 

and properly rationalize the deployment of drug combinations, e.g. in personalized 

medicine. Indeed, conflating them may mislead drug combination discovery efforts. For 

instance, a search for improved efficacy based on traditional synergy frameworks may be 

confounded by an inability to sort out synergistically potent combinations.

To address this critical shortcoming and resolve these two independent types of synergy, 

herein we propose a synergy framework termed Multi-dimensional Synergy of 

Combinations (MuSyC), which is based on a two-dimensional (2D) extension of the Hill 

equation derived from mass action kinetics. The 2D Hill equation extends dose-response 

curves to dose-response surfaces.

MuSyC distinguishes between synergistic potency and synergistic efficacy based on 

parameters in the 2D Hill equation. These synergy parameters are extensions of standard 

pharmacologic measures of potency and efficacy, and define a dose-response surface onto 

which changes in potency and efficacy are orthogonal. We visualize synergy of potency and 

efficacy on Drug Synergy Diagrams (DSDs) which globally stratify drug combinations 

along orthogonal axes of synergy facilitating comparisons between the synergistic profiles of 

many combinations.
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To demonstrate the value of MuSyC, we investigate a panel of anti-cancer compounds in 

combination with a third-generation mutant-EGFR inhibitor, osimertinib, in EGFR-mutant 

non-small cell lung cancer (NSCLC). We find that drugs targeting epigenetic regulators or 

microtubule polymerization are synergistically efficacious with osimertinib. In contrast, 

drugs co-targeting kinases in the MAPK pathway affected potency, not efficacy of 

osimertinib. These conclusions have implications for drug combination deployment in 

NSCLC where increasing the efficacy of EGFR-inhibitors has historically relied on trial and 

error with no overarching principles to guide development (Schiffmann et al., 2016).

We also apply MuSyC to study the well-established, clinically-relevant combination 

targeting RAF and MEK in BRAF-mutant melanoma (Long et al., 2014).We find this 

combination to be synergistically efficacious, though in several cases at the cost of potency. 

We then identify NOX5 as a previously unsuspected molecular determinant of sensitivity to 

BRAF inhibition (BRAFi) in BRAF-mutant melanoma. Applying MuSyC, we find that 

NOX5 expression levels affect BRAF inhibition efficacy, but not potency.

In direct comparisons, we found that traditional synergy frameworks are biased and 

ambiguous even for the most synergistically efficacious of the NSCLC and melanoma 

combination studies, leading to misclassifications of combination synergy. We further show 

how MuSyC addresses and corrects these problems by generalizing the traditional models.

Results

2D Hill equation decouples synergy of efficacy from synergy of potency.

The dose-effect relationship of a single drug is traditionally quantified by the Hill equation, 

which contains parameters describing efficacy (Emax) and potency (EC50) of a dose-
response curve (see STAR Methods section Methods Details for equation derivation and 

Table 1 for definitions) (Figure 1A). The Hill equation is derived from a phenomenological 

2-state model of drug effect (Figure S1A). Therefore, to characterize the dose-effect 

relationship for drug combinations, we extended this model to a 4-state model (Figure S1B) 

to derive a 2D generalization of the Hill equation, using principles of mass action kinetics 

(see STAR Methods section Methods Details). The 2D Hill equation parameterizes a dose-
response surface (Figure 1B, Table S1 for parameter descriptions) (Greco, Bravo and 

Parsons, 1995), a 2D extension of 1D dose-response curves (Figure 1A). In this equation, the 

changes in the efficacy and potency resulting from the combination are quantified by 

parameters for synergistic efficacy, denoted by β, and synergistic potency, denoted by α 
(Table S1). These parameters govern the shape of the dose-response surface and can capture 

complex patterns in experimental data.

The parameter β is defined as the percent increase in a drug combination’s effect beyond the 

most efficacious single drug. For instance, in the case of synergistic efficacy (β>0), the 

effect at the maximum concentration of both drugs (E3) exceeds the maximum effect of 

either drug alone (E1, E2) (Figure 1C Quadrants I, II). For antagonistic efficacy (β<0) 

(Figure 1C Quadrants III, IV), at least one or both drugs are more efficacious as single 

agents than in combination. See Supplemental Movie 1 for an animated example of how the 

dose-response surface changes as a function of β.
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The parameter α quantifies how the effective dose of one drug is altered by the presence of 

the other. In the case of synergistic potency (α>1), the EC50 (denoted C in Figure 1B) 

decreases due to the addition of the other drug (Figure 1C Quadrants I, IV) corresponding to 

an increase in potency. In the case of antagonistic potency (0≤α<1), the EC50 of the drug 

increases as a result of the other drug (Figure 1C Quadrants II, III) corresponding to a 

decrease in potency. See Supplemental Movie 1 for an animated example of how the dose-

response surface changes as a function of α. Since each drug can modulate the effective dose 

of the other independently (Zimmer et al., 2016), the 2D Hill equation contains two α values 

(α1 and α2) (Figure S1B, bottom and right edges of surface). This separation of α values in 

the 2D Hill equation makes it possible for a given drug combination to have synergism of 

potency in one direction (α1>1), and antagonism of potency in the other (α2<1), or vice 

versa (see Figure S1C for example surfaces).

Both MuSyC parameters for synergy of efficacy (β) and synergy of potency (α) correspond 

to geometric transformations of the dose-response surface, analogous to the parameters for 

efficacy (Emax) and potency (EC50) that transform the single-drug dose-response curve in 

classic pharmacology. We surveyed eight synergy methods to understand how they might 

account for these distinct types of synergy, including traditional methods of Bliss, Loewe, 

and Highest Single Agent (HSA)(Gaddum, 1940), as well as more recent frameworks 

including Combination Index (CI)(Chou et al., 1983), Zimmer et al.’s Equivalent Dose 

Model (Zimmer et al., 2016), Schindler’s PDE-Hill Model (Schindler, 2017), ZIP (Yadav et 

al., 2015), and BRAID (Twarog et al., 2016). We find Bliss, Loewe, HSA, PDE-Hill, ZIP, 

and BRAID conflate synergy of efficacy and potency (Figure S2A-F), so that a drug 

combination with high synergistic potency scores identical to a combination with high 

synergistic efficacy (Figure S2A). This conflation, even in methods classically regarded as 

quantifying exclusively changes in efficacy, such as HSA, underscores the necessity of 

considering the entire topology of the dose-response surface in order to decouple synergistic 

efficacy from synergistic potency.

In other methods (Equivalent Dose and CI), only synergistic potency is tacitly assumed by 

asserting the maximal effect of each drug and of the combination is equal to zero (Figure 

S2G-J). (see STAR Methods section Methods Details subsection “Comparison to alternative 

synergy models” for a case-by-case comparison of MuSyC with other synergy frameworks.)

By using the Hill equation as the basis for MuSyC, the metric of drug effect is not bounded 

to range between 0 and 1, as is the case for Bliss, CI, and Equivalent Dose Model, providing 

a greater versatility for application to other systems. Indeed, the challenges in applying prior 

synergy frameworks to our recently proposed metric of drug effect, the drug-induced 

proliferation (DIP) rate (Harris et al., 2016), provided the initial impetus for developing this 

framework.

In summary, the 2D Hill equation enables a formalism, termed Multi-dimensional Synergy 

of Combinations (MuSyC), in which synergistic efficacy and synergistic potency are 

orthogonal and quantified by the parameters β and α, respectively. We have provided an 

interactive MuSyC demo (see STAR Methods, Data and Software Availability section) to 
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facilitate an intuitive understanding of the relationship between different parameter values 

and shape of the dose-response surface.

MuSyC quantifies synergy of potency and efficacy in a drug combination screen.

We applied MuSyC to evaluate the synergistic potency and efficacy of a 64 drug panel (See 

Table S2 for drugs, drug classes, nominal targets, and tested concentration ranges) in 

combination with osimertinib, a mutant EGFR-tyrosine kinase inhibitor recently approved 

for first-line treatment of EGFR-mutant NSCLC (Soria et al., 2018). The selected drugs span 

a diverse array of cellular targets that can be broadly grouped into four categories: kinases, 

receptors and channels, epigenetic regulators, and mitotic check-points (Figure 2D), each 

with several sub-categories. The combinations were tested in PC9 cells, a canonical model 

of EGFR-mutant NSCLC (Jia et al., 2013) using a high-throughput, in vitro, drug-screening 

assay (Figure 2A). We quantified drug effect using the DIP rate metric (Harris et al., 2016), a 

metric which avoids temporal biases characteristic of traditional endpoint assays (see STAR 

Methods section Quantification and Statistical Analysis).

To fit the resulting dose-response surfaces, we developed a Bayesian fitting algorithm, using 

a Particle Swarm Optimizer (PSO) to seed priors for a Markov Chain Monte Carlo (MCMC) 

optimization (Figure S3A-B, STAR Methods section Quantification and Statistical 

Analysis). The algorithm also accounts for non-optimal drug dosage selection, since dose-

ranges which are insufficient to observe saturating effects – due to limited solubility or 

potency of the drug – result in a commensurate increase in the uncertainty of MuSyC’s 

synergy parameters (Figure S3C-E).

Applying this algorithm, we extracted synergy parameters (α1, α2, and βobs) from fitted 

surfaces for all osimertinib combinations (βobs is the observed synergistic efficacy at the 

maximum tested dose range) (see STAR Methods section Methods Details).

As single agents, the drug panel displays wide ranges of efficacy (E2) and potency (C) 

(Figure S4A). The efficacy and potency of the single agents have no relationship with the 

synergistic efficacy and synergistic potency when combined with osimertinib (p-value>0.2) 

(Figure S4B) confirming MuSyC’s synergy parameters are independent of single-agents’ 

dose-response curve and therefore, as expected, cannot be predicted from the single-agent, 

pharmacologic profiles.

Inspection of dose-response surfaces from this combination screen, highlight the 

significance of resolving synergistic potency and efficacy. For instance, the dose-response 

surface for the osimertinib combination with M344 (a histone deacetylase (HDAC) 

inhibitor) exhibits synergistic efficacy (βobs=1.25±0.03, reflecting a 125% increase in 

efficacy over osimertinib alone) (Figure 2B,E). However, this improved efficacy comes at 

the cost of potency (log(α2)=−0.90±0.01) as observed in the shift in the EC50 of osimertinib 

in the presence of 1uM M344 (Figure 2B red to purple dotted line). In contrast, ceritinib, an 

ALK inhibitor with off-target effects on IGF1R (Shaw et al., 2014), increases osimertinib’s 

potency (log(α2)=6.25±0.50) (Figure 2C green to orange dotted line) at 4uM (maximal 

tested concentration), but with inconsequential improvement of efficacy (βobs=0.28±0.003)
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To visualize synergy globally, we plotted drug combinations on DSDs, with observed 

synergistic efficacy (βobs) and potency on the vertical and horizontal axes, respectively 

(Figure 2E). These DSDs reveal distinguishing trends between the four drug categories 

tested.

Within the mitotic checkpoint drugs, tubulin destabilizers (including vindesine and 

vinorelbine) showed an upward shift along the axis of synergistic efficacy (Figure 2E). The 

marginal distribution confirmed this trend in comparison to all the drugs (Figure 2F, blue 

versus black vertical distributions). Similar results were obtained for the HDACi subgroup 

within the epigenetic regulators (Figure 2E, F). As expected, we observed limited 

synergistic/antagonistic efficacy for drugs targeting G-protein coupled receptors (GPCRs) 

(Figure 2E,F red versus black distributions). We also observed limited synergistic efficacy in 

directly co-targeting kinases in the MAPK pathway suggesting this may be an unproductive 

avenue in EGFR-mutant NSCLC (Figure 2E,F purple to black comparison along vertical 

axis).

In summary, by quantifying synergy of potency separate from synergy of efficacy, MuSyC 

reveals drug-class trends which can be used to guide subsequent screens and drug 

combination deployment in NSCLC.

MuSyC validates co-targeting RAF and MEK in BRAF-mutant melanoma.

The NSCLC drug screen (Figure 2) suggests combinations targeting molecules within the 

same signaling pathway may not be productive avenues for increasing efficacy. However, a 

combination used clinically in BRAF-mutant melanoma co-targets kinases BRAF and MEK 

in the MAPK pathway (Long et al., 2014; Eroglu and Ribas, 2016). To investigate this 

combination in more detail, we screened a panel of 8 BRAFV600-mutant melanoma cell 

lines (See (Paudel et al., 2018) for cell-line information) against 16 BRAFi/MEKi 

combinations (see Table S2 for drug information and tested dose ranges).

Based on the mean βobs across cell-lines, all 16 combinations were synergistically 

efficacious (Figure 3A, Figure S5C) indicating MuSyC would have identified this treatment 

strategy prospectively. In contrast, conventional methods produce ambiguous results (Figure 

S6, top 3 panels in each cell line group), such that this combination strategy could have not 

been identified. Furthermore, MuSyC detected variations in synergistic efficacy between cell 

lines (Figure 3A, S5C), underscoring its sensitivity and pointing to heterogeneous, cell-

intrinsic mechanisms modulating the efficacy of BRAF/MEK inhibition. In particular, 

A2058 displayed low average synergistic efficacy, suggesting that its canonical insensitivity 

to BRAFi does not depend on MEK reactivation, but rather on altered metabolic phenotype 

(Parmenter et al., 2014; Hardeman et al., 2017).

MuSyC also provides information on synergistic potency for these combinations. A 

clinically deployed combination (dabrafenib and trametinib) is synergistically efficacious, 

but antagonistically potent in all cell lines except one (Figure S5), a trade-off that may be 

relevant in the clinic.
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Together, MuSyC analyses of NSCLC and of melanoma combination screens indicate the 

magnitude of a drug combination’s synergistic efficacy depends upon the oncogenetic 

context, i.e., co-targeting within the MAPK pathway may work for mutant-BRAF 

melanoma, not for mutant-EGFR NSCLC.

MuSyC reveals whether molecular correlates of insensitivity alter synergistic efficacy, or 
potency.

While drug combinations are commonly identified from top-down approaches, e.g., high 

throughput drug screens, others, including BRAFi/MEKi, were discovered from a bottom-up 

approach via investigating molecular correlates of insensitivity. However, these molecular 

correlates may alter either the potency or the efficacy of the primary drug (or both). MuSyC 

can distinguish among these possibilities, enabling an informed choice between improving 

either efficacy or potency. As an example, we looked for molecular correlates of BRAFi 

insensitivity between subclones of a BRAF-mutant melanoma cell line (SKMEL5) with 

differential sensitivity to BRAFi (Figure 4A). Specifically, we quantified gene expression 

using RNAseq and identified the top 200 differentially expressed genes (DEGs) 

(FDR<0.001, see STAR Methods section Quantification and Statistical Analysis). This gene 

set was significantly enriched in processes, cellular components, and molecular functions 

relating to metabolism (Figure 4B), aligning with previous reports on the relationship 

between altered metabolism and resistance to BRAFi (Parmenter et al., 2014; Hardeman et 

al., 2017). We computed the correlation of the 200 DEGs’ expression to BRAFi sensitivity 

across a 10 cell line panel (see STAR Methods) using expression data from (Subramanian et 

al., 2017). NADPH oxidase 5 (NOX5) stood out as one of five genes with a significant, 

positive correlation with BRAFi insensitivity (Pearson r=0.65, p-val=0.042) (Figure 4C-D, 

Table S3 for quantification of BRAFi insensitivity and Table S4 for genes correlated with 

BRAFi insensitivity) and was significantly up-regulated in the BRAFi insensitive subclone 

(SC10) compared with the sensitive subclone (SC01) (Figure 4E). Previously unconsidered, 

NOX5 is an interesting target due to its convergent regulation on metabolic and redox 

signaling at mitochondria (Lu et al., 2012), processes significantly enriched in the DEGs 

(Figure 4B).

To study NOX5’s contribution to the potency or efficacy of BRAF inhibition, we tested 

PLX4720 in combination with a NOX5 inhibitor, DPI (Jaquet et al., 2011), in a panel of 7 

melanoma cell lines selected based on differential NOX5 expression. We found synergistic 

efficacy correlated with NOX5 expression (Pearson r=0.77, p-value=0.043) (Figure 4G-H); 

however, synergistic potency did not (Pearson r=0.01, p-value=0.96) (Figure 4G,I). Of note, 

A2058, well-known for its resistance to BRAFi exhibited the highest NOX5 expression 

among the cell lines and the highest synergistic efficacy (βobs=1.42±0.05) (Figure 4F) 

which was more synergistically efficacious than all tested MEKi/BRAFi combinations 

(Figure 3A).

Taken together, these results suggest co-targeting NOX5 in BRAF-mutant melanoma could 

lead to improved outcomes for BRAF-mutant melanoma patients with a unique metabolic 

program for which NOX5 is a biomarker. Furthermore, this study demonstrates the utility of 
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MuSyC for distinguishing a molecular constituent’s role in modulating the potency or 

efficacy of a drug.

MuSyC generalizes traditional synergy metrics and removes biases and ambiguities.

To investigate how results from MuSyC compare with the most frequently used synergy 

metrics, we calculated synergy using Loewe additivity, Combination Index (CI), and Bliss 

on data from the NSCLC (Figure 2) and the melanoma (Figure 3A) screens. Loewe synergy 

was calculated directly from the DIP rate data, while CI and Bliss, which require percent 

metrics, were calculated from 72-hour percent viability (Barretina et al., 2012) imputed from 

the growth curves (see STAR Methods section Quantification and Statistical Analysis) . 

Unlike MuSyC, these metrics are evaluated at every concentration resulting in dose-

dependent distributions of synergy (Figure 5A, S6) commonly resulting in ambiguous 

classification of a combination. By the median of each distribution, none of the metrics can 

statistically discriminate between the MuSyC DSD quadrants (Figure 5A, S6, Kruskal-

Wallis p-value > 0.05).

Examining the models underlying these metrics revealed several limitations and biases 

accounting for their ambiguity. For Loewe additivity, synergy is undefinable for many tested 

concentrations as Loewe cannot be calculated at combination conditions with effects 

exceeding the maximum effect of the weaker drug (Foucquier and Guedj, 2015). This is 

particularly limiting for synergistically efficacious combinations, which, by definition, 

achieve greater effect than either drug alone. In the NSCLC screen, because osimertinib 

alone was not sufficient to achieve a negative DIP rate (i.e., regressing population), Loewe is 

undefinable for all conditions where DIP rate was less than zero (Figure 5B). For conditions 

where Loewe is defined, Loewe additivity has been reported to be most appropriate for 

combinations of mutually exclusive inhibitors (Chou and Talalay, 1984). Accordingly, we 

found Loewe emerges from MuSyC as a special case under the conditions of both α1=α2=0 

(i.e., the drugs are mutually exclusive) and h1=h2= 1 (see STAR Methods section Methods 

Details subsection 2.1). If the condition h1=h2=1 is not satisfied (Figure 5C), MuSyC 

predicts that when the geometric mean of the hill slopes is less than one ( h1 ∗ h2 < 1), the 

linear model of Loewe will overestimate synergy and when h1 ∗ h2 > 1, Loewe will 

underestimate synergy (Figure 5C). Correspondingly, we found the median value of Loewe 

synergy was negatively correlated with the geometric mean of the hill coefficients in both 

the NSCLC and melanoma screens (Figure 5D, spearman r= −0.51 and −0.41, p-value=1e-3 

and 8e-4 respectively). That is, the synergy of a combination according to Loewe additivity 

could be estimated based on the hill slope of a single drug alone in contrast to MuSyC where 

synergistic potency and efficacy are decoupled from the single drug's pharmacologic profile 

(Figure S3B).

CI is a special case of Loewe additivity which adds the additional condition that E0=1, 

E1=E2=E3=0, such that the drug effect is equated with percent inhibition (Chou et al., 

1983). The condition on effect range assumes all drugs achieve the same maximum effect, 

and thus, unlike Loewe additivity, CI range is not limited by the weaker drug. However, in 

percent viability data, many drugs do not achieve 0% viability (e.g., methotrexate, which 

reaches a maximum effect of 52% viability)(Figure 5E). In these cases, fits for the single-
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drug dose-response curves used to calculate CI are poor (Figure 5E). CI is thus inappropriate 

for cell-based assays of drug effect where the correspondence between percent inhibition 

and cell viability is not one-to-one.

Bliss, like CI, can only be applied to percent metrics with the condition E0=1, E1=E2=E3=0. 

As with CI, because most drugs in combination do not satisfy this condition, Bliss is also an 

inappropriate model to use. However, if this condition is satisfied, Bliss emerges as a special 

case of MuSyC under the conditions α1=α2=1 (see STAR Methods section Methods Details 

subsection 2.2)

In summary, MuSyC subsumes Loewe (and therefore CI) and Bliss into a single framework 

satisfying both the Dose Additivity and the Multiplicative Survival Principles under certain 

conditions. For combinations that do not satisfy these conditions, we show the traditional 

metrics lead to biased and ambiguous results, while MuSyC’s generality resolves these 

limitations. Specifically these limitations are: traditional methods cannot distinguish synergy 

of potency from synergy of efficacy (Figure 5A,S2); Loewe is undefined for combinations 

with synergistic efficacy (Figure 5B); Loewe (and by extension CI) contain an artificial bias 

toward synergy for drugs with hill slopes much less than one (Figure 5C,D); and, CI leads to 

poor fits because it disregards synergistic efficacy by assuming that maximal effect of a drug 

reaches 0%, even when this is not the case (Figure 5E).

Discussion

The goal of using synergistic drugs is to achieve more with less. It is therefore intuitive that 

two types of synergy exist: one corresponding to how much more is achievable (synergistic 

efficacy), the other to how much less is required (synergistic potency). Finding such 

combinations is vital for optimizing therapeutic windows, as there exists a fundamental 

trade-off between clinical efficacy and tolerable doses. Diseases for which singledrug 

efficacy is sufficient would benefit from synergistically potent combinations to drive down 

toxicity and/or side effects. Diseases with treatments of insufficient efficacy are in pressing 

need of synergistically efficacious combinations in order to improve depth and durability of 

response. By stratifying synergy along distinct axes of potency and efficacy using MuSyC, 

informed choices can be made about this trade-off. The distinction facilitates identifying 

drug-class trends that can be iteratively expanded in future screens to optimize synergistic 

efficacy or synergistic potency, whichever is desirable for a particular disease.

In this respect, MuSyC provides a global view of the synergistic behavior of whole classes 

of drugs, e.g., from a high-throughput drug screen, via DSDs. In this work, MuSyC revealed 

a subclass of epigenetic regulators as potentially interesting targets for combination therapy 

in an EGFR-oncogene addicted background. Epigenetic regulators have previously been 

suggested to prime NSCLC for sensitivity to EGFRi (Schiffmann et al., 2016) and the 

HDACi entinostat in combination with erlotinib (first generation EGFR-TKI) has been 

shown to increase overall survival in EGFR-mutant, NSCLC cases with high expression of 

E-cadherin (Witta et al., 2006, 2012). Consistent with this, we also observe entinostat was 

synergistically efficacious with osimertinib (βobs=0.84±0.027) in PC9 cells, an E-cadherin 

high expressing cell line (Shimoyama et al., 1992). As is typical of high-throughput screens, 

Meyer et al. Page 10

Cell Syst. Author manuscript; available in PMC 2020 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



there were results of undetermined significance, including dronedarone (an anti-arrhythmic 

sodium channel inhibitor) and GW694590a (an antiangiogenesis compound targeting the 

TIE2 receptor) which were the most antagonistic and synergistically efficacious compounds 

out of the Receptors and Channels drug class respectively. Further studies are needed to 

verify these results. Nonetheless, MuSyC provides a quantitative foundation to further 

investigate unsuspected combinations.

The global views provided by the MuSyC DSDs also reveal synergistic trends that vary 

according to disease context. For example, co-targeting the MAPK pathway in NSCLC or 

BRAF-mutant melanoma yields different outcomes: in the former, only synergistic potency 

is observed, while in the latter synergistic efficacy, and sometimes potency, is registered. The 

disparity emphasizes that synergistic trends require data-driven metrics that distinguish 

between synergy of efficacy and potency.

MuSyC dose-response surfaces facilitate evaluating the significance that combination 

synergy should be assigned. That is, MuSyC’s synergy parameters quantify the relative 
increase in efficacy or potency of the combination, with respect to single agents, and 

therefore the improvements should be interpreted in the context of the absolute potency and 

efficacy. This information is directly conveyed in the topology of the dose-response surface. 

As an example, in the NSCLC screen, the combination of osimertinib with quisinostat 

exhibited the greatest total efficacy. However, since quisinostat is already significantly 

efficacious on its own, that combination ranks lower than the M344-osimertinib combination 

along the axis of synergistic efficacy on a DSD. Thus, DSDs are useful to rank relative 

increase in potency or efficacy, whereas surfaces convey the absolute efficacy and potency 

achieved by a combination.

MuSyC is also useful for investigating a molecular species’ contribution to the potency and 

efficacy of a compound. Here we demonstrated NOX5 activity modulates the efficacy, but 

not the potency, of BRAFi. However, the NOX5i used, DPI, is known to have off-target 

effects (AltenhÖfer et al., 2015); therefore, further evidence for the role of NOX5 in BRAFi 

efficacy will require extending MuSyC to studies combining drugs and gene silencing 

technology (e.g., RNAi or CRISPR).

To fit the dose response surface and extract synergy parameters, MuSyC utilizes a Bayesian 

approach combining PSO and a multi-tier MCMC walk in order to track uncertainty in the 

values for synergistic potency and efficacy. The sources for this uncertainty include noise, 

partial dose-response curves, and data density. A similar Bayesian approach was previously 

implemented for Loewe (Hennessey et al., 2010).

Loewe additivity and Bliss independence have maintained dominance in the field, along with 

the related work of Chou and Talalay. Yet there is no consensus regarding the appropriate 

use of these methods because they are based on distinct foundational principles, often 

leading to incompatible results (Greco et al., 1992). MuSyC removes these sources of 

confusion by unifying these methods into a consensus framework, within which Loewe and 

Bliss emerge as special cases.
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There has been much critical analysis over the past twenty-five years on the term ‘synergy’ 

(Greco et al., 1992), arguably rooted in the practice of defining synergy with respect to 

arbitrary expectations of drug additivity implicitly codified in previous methods’ 

foundational principles. In contrast, ambiguity about the meaning of ‘synergy’ disappears in 

MuSyC, because its synergy parameters relate directly to the textbook pharmacology 

concepts of efficacy and potency. Indeed, a major advance of MuSyC is the decisive shift 

toward synergy calculations directly related to an observable change in efficacy and/or 

potency. Thus, ambiguous questions, such as “Is there synergy?” can be recast into more 

precise questions, such as “How much does efficacy/potency of drug X change when drug Y 

is added?” Such precise language should promote a move away from arbitrary cut-offs for 

“significant synergy” which are context dependent.

While we focused on the DIP rate as our metric of effect, MuSyC may be applied to any 

quantifiable phenotype whose dose-response is suitable to be fit by a Hill equation. In 

contrast, all other synergy models we surveyed impose strict constraints on the type and/or 

magnitude of the drug effect metric. Thus, MuSyC opens up the potential to study synergy 

of drug effects previously impossible to address by existing methods. Examples of metrics 

include immune activation, growth in 3 dimensional culture, or second messenger efflux. 

The flexibility is particularly critical in translating drug combinations to the clinic by using 

models of increasing complexity, such as organoids, which better represent drug sensitivity 

of a patient (Jabs et al., 2017). Indeed, that most clinical combinations can be explain by 

patient-to-patient variability (Palmer and Sorger, 2017) is strong rationale for translating 

combination screens to more complex, pre-clinical models. Subsequent work will be devoted 

to scaling the combination drug screening pipeline developed here to pre-clinical 

experimental models of increasing complexity, such as organoids.

In conclusion, we have presented MuSyC, a drug synergy framework that maintains a 

distinction between two intuitive types of pharmacological synergy and that may be applied 

to any drug effect metric. We showed this framework allows for a richer understanding of 

drug interactions, with practical, translational consequences. We foresee this approach will 

streamline drug discovery pipelines and facilitate the deployment of precision approaches to 

therapeutic combinations.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Vito Quaranta (vito.quaranta@vanderbilt.ed)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

PC9 (previously PC-14, gender unknown) cells were obtained from W. Pao (U Penn.) and 

were cultured in RPMI 1640 medium containing 10% FBS at 37C and 5% CO2. Cells were 

engineered to express histone 2B-mRFP via lenti-viral transfection using the pHIV-H2B-

mRFP plasmid (Welm et al., 2008) as previously described (Tyson et al., 2012). A single-

cell derived clonal population demonstrated to exhibit proliferation characteristic of the 
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parental population was then selected by limiting dilution. BRAFV600-mutant melanoma 

lines cells (A2058 (M), WM1799 (U), A375 (F), WM983B (M), SKMEL5 (F), SKMEL28 

(M), WM2664 (F), M=Male, F=Female, U=Unknown) were obtained from ATCC or M. 

Herlyn (Wistar Institute)(see Key Resources Table) and were cultured in DMEM media 

containing 2 mM glutamine, 4.5 g/L glucose, 10% FBS and no sodium pyruvate (catalog 

11965-092) as previously described (Hardeman et al., 2017). SKMEL5.SC10, 

SKMEL5.SC07, and SKMEL5.SC01 are single cell-derived subclones from SKMEL5 

(Paudel et al., 2018). Cell lines were tested for mycoplasma before each experiment.

METHODS DETAILS

Key Equations—For full derivation of these equations, see subsection 4 Derivation of 

generalized 2-dimensional hill equation. This section is meant to serve as a quick reference 

guide for the main equations used in the paper.

If the behavior of the drugs in the model formulation of Figure S1B obey detailed balance, 

then the effect of the combination (i.e., the height of combination surface) is described by

Ed =
C1

h1C2
h2E0 + d1

h1C2
h2E1 + C1

h1d2
h2E2 + (α2d1)

h1d2
h2E3

C1
h1C2

h2 + d1
h1C2

h2 + C1
h1d2

h2 + (α2d1)
h1d2

h2
(1)

where Ed represents the expected effect for a given dose pair d1, d2 and is specified with 9 

parameters defined in Table S1. In addition, detailed balance enforces the constraint that

α1
h2 = α2

h1 (2)

α is a unitless scalar transforming dose d into an effective dose a ⋅ d and is used to quantify 

synergistic potency in MuSyC.

Synergistic efficacy (β) is calculated from E0, E1, E2, E3. β is defined in equation 3 and is 

interpreted as the percent increase in maximal efficacy of the combination over the most 

efficacious single agent. The observed β at the maximum of tested concentrations is defined 

in eq. 4.

β =
min(E1, E2) − E3
E0 − min(E1, E2) (3)

βobs =
min[E1(d1max), E2(d2max)] − E3(d1max, d2max)

E0 − min[E1(d1max), E2(d2max)]
(4)
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Equation 1 can be re-written to include β explicitly by replacing E3 with min(E1, E2) – β * 

(E0 − min(E1, E2) resulting in the following equation.

Ed

=
C1

h1C2
h2E0 + d1

h1C2
h2E1 + C1

h1d2
h2E2 + (α2d1)

h1d2
h2min(E1, E2) − β ∗ (E0 − min(E1, E2))

C1
h1C2

h2 + d1
h1C2

h2 + C1
h1d2

h2 + (α2d1)
h1d2

h2

(5)

For drugs that do not follow detailed balance, we have derived a more general formulation 

with 12 parameters:

Ed = [E0 E1 E2 E3]

⋅

−(r1d1
h1 + r2d2

h2) r−1 r−2 0

r1d1
h1 −(r−1 + r2(α1d2)

h2) 0 r−2

r2d2
h2 0 −(r1(α2d1)

h1 + r−2) r−1
1 1 1 1

−1

⋅

0
0
0
1

(6)

where again E3 can be replaced to include β explicitly.

Because we do not know a priori whether combinations will follow detailed balance, we use 

an information theoretic approach to pick the best model for the data. We have defined six 

tiers of model complexity, and the best model is selected based on minimizing the deviance 

information criterion. (See section Quantification and Statistical Analysis, subsection 1 

Fitting Dose-response Surfaces for description of fitting algorithm and Table S5 for 

description of model tiers).

Comparison to alternative synergy models—Several other methods for calculating 

synergy exist, including long-standing traditional methods Loewe (Loewe, 1926, 1927) , 

Bliss (Bliss, 1939), HSA (Gaddum, 1940; Greco, Bravo and Parsons, 1995), and CI (Chou 

and Talalay, 1984), as well as more recent methods such as ZIP (Yadav et al., 2015), BRAID 

(Twarog et al., 2016), the effective dose model (Zimmer et al., 2016), and Schindler’s Hill-

PDE model (Schindler, 2017). All of these methods, as well as our own, define a null 

surface. Combinations with effects greater than or less than expected based on the null 

surface are deemed synergistic or antagonistic respectively. These methods broadly use one 
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of two approaches to quantify synergy. Loewe, Bliss, CI, HSA, Schindler’s Hill-PDE, and 

ZIP quantify synergy at every concentration based on how the experimentally measured 

response deviates from the null surface. BRAID, the effective dose model, and MuSyC 

provide equations with synergy parameters describing the entire surface which is fit to 

experimental data using non-linear curve-fitting techniques.

Here, we briefly compare our model to each of these others and show that our model (1) 

describes distinct combination surfaces, (2) results in synergy parameters which are straight 

forward to interpret, (3) is not restricted to a special class of effects with bounded scales, and 

(4) reduces to many of these other approaches in special cases thereby unifying and 

generalizing seemingly disparate synergy principles.

The Dose Equivalence Principle: Loewe and CI: The first prevalent foundational 

principle, established by Loewe (Loewe, 1926) and subsequently expanded on by CI (Chou 

and Talalay, 1984), is the Dose Equivalence Principle. This principle states that for a given 

effect magnitude E achieved by dose x of drug X alone or dose y of drug Y alone, there 

exists a constant ratio R = x
y  such that using Δx less of drug X can always be compensated 

for by using Δy = RΔx more of drug Y. Therefore, the null surface is only defined for 

combinations whose magnitude of effect is less than the weaker drug’s maximal effect. This 

is because for combination effects greather than the effect of the weakest drug, no amount of 

the weaker drug can compensate for reducing the dose of the stronger drug.

The resulting null surfaces have linear isoboles. Our model recovers this under the constraint 

that the two drugs are maximally antagonistic. This can be seen by setting α 0, and reducing 

eq. 6 to

(E − E0) + (E − E1)
d1
Φ1

h1
+ (E − E2)

d2
Φ2

h2
= 0

By this it is easy to see when h1 = h2 = 1, iso-effect lines ( ∂
∂E = 0) are represented by the 

linear isoboles characteristic of Loewe Additivity and the CI null models. However, even in 

this case MuSyC is not limited by the weaker drug, and can therefore extend Loewe’s 

isoboles to any combination doses.

The requirement that α = 0 means the Loewe and CI null models assumes infinite potency 

antagonism (α1 = α2 = 0). Therefore, combinations with (0 < α < 1) may be deemed 

synergistic by Loewe or CI. However, these values directly reflect a decrease in potency, and 

our formulation accurately identifies this as antagonistic. Finally, their null model also 

ignores the possible effect of hill slopes not equal to 1. For drugs with h < 1, they will tend 

to overestimate synergy, while drugs with h > 1 will lead to underestimated synergy (Figure 

5C,D). Because their null model relies on such specific assumptions, which are not true for 

many drugs, it is generally impossible to know whether their results reflect true underlying 

synergy/antagonism, or simply stem from an inappropriate null surface.
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The Multiplicative Survival Principle: Bliss and Effective Dose Model: The other 

prevalent foundational synergy principle is multiplicative survival, described by Bliss (Bliss, 

1939). Bliss’ null model assumes the probability of a cell being unaffected by drug 1 (U1) is 

independent of the probability of a cell being unaffected by drug 2 (U2). From this, the null 

surface states the probability of being unaffected by both drug 1 and drug 2 in combination 

is U1,2 = U1 ⋅ U2. When there is no potency synergy or antagonism, MuSyC reproduces this 

behavior in the following manner.

Setting α1 = α2 = 1, consider the fraction of unaffected cells, U, for each drug in isolation:

Ui = 1

1 +
di
Φi

hi

And for the two drugs in combination, solving eq. 67 for U we get

U1, 2 = 1

1 +
di
Φi

h1
+

d2
Φ2

h2
+

d1
Φ1

h1 d2
Φ2

h2

From this, it is easy to verify that U1,2 = U1 ⋅ U2, which is equivalent to Bliss Independence. 

However, the Bliss method explicitly requires the effect being measured in the combination 

surface is "percent affected", such as percent of cells killed vs. percent of cells remaining. 

For drugs which induce different maximum effects, Bliss is unable to account for the 

difference between being affected by drug 1 (E1), drug 2 (E2), and or both (E1,2), and may 

give unreliable results. Our model addresses this by decoupling the effect of a drug (E0, E1, 

E2, E3) and the "percent affected" by a drug (U, A1, A2, A1,2). If the effect itself is 

measuring percent (un)affected, that corresponds to the case where E0 = 1, E1 = E2 = E3 = 0, 

in which case MuSyC’s null model is identical to Bliss’.

Zimmer et. al. introduced the effective dose model (Zimmer et al., 2016) as a parameterized 

version of Bliss, and shares the same null surface. However, while Bliss defines synergy at 

every concentration independently, the effective dose model introduces a parameter ai,j to 

quantify synergy, similar to MuSyC’s potency synergy (α). The ai,j parameter reflects how 

the presence of drug i modulates the potency of drug j. However, like Bliss, the effective 

dose model can only be applied to drug responses where the measured drug effect is 

"percent affected" thereby implicitly requiring the maximum effect of both drugs and the 

combination is 100% affected which is commonly not observed in dose-response studies 

(Fallahi-Sichani et al., 2013).

ZIP: Like the equivalent dose model (Zimmer et al., 2016), as well as our potency synergy 

(α), ZIP (Yadav et al., 2015) works by quantifying how one drug shifts the potency of the 

other. ZIP is formulated for arbitrary E0 and Emax; however, it assumes Emax is the same for 

both drugs, as well as the combination (explicitly E1 = E2 = E3). To identify potency shifts, 

the ZIP method fixes the concentration of one drug, then fits a Hill-equation dose response 
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for the other drug. However, for combinations with efficacy synergy or antagonism, dose 

responses can have non-Hill, and even non-monotonic shapes. In our data, several drugs 

displayed this behavior. Because our method accounts explicitly for efficacy synergy, our 

surfaces are able to describe such complex drug combination surfaces where ZIP fails.

Furthermore, ZIP calculates synergy at every concentration. This is similar to the approach 

taken by Bliss, Loewe, and CI, and can be used to find doses which “maximize” the 

observed synergy. However, quantifying synergy on a dose-by-dose basis confounds synergy 

of potency and efficacy which emerge only on inspection of the global dose-response 

surface. Additionally, this dose dependent synergy often leads to ambiguous results about 

whether a given combination is synergistic or not, as it synergizes at some concentrations, 

and antagonizes at others (Figure 5A).

BRAID: Like ZIP, BRAID (Twarog et al., 2016) assumes that each drug alone has a 

sigmoidal dose-response, and constructs a Hill-like equation for the combination. This 

equation uses a single dose parameter κ which combines the doses of both individual drug. 

To uniquely solve for κ, this formalism, like Loewe additivity, adds the constraint that a drug 

in combination with itself must be neither synergistic nor antagonistic. By adjusting κ, 

BRAID is able to fit complex drug combination surfaces, including non-monotonic 

responses. Because BRAID fits the whole combination surface using a single parameter, it 

can be used to make unambiguous statements about whether the combination is synergistic 

or antagonistic. Nevertheless, BRAID does not account for differences in synergy due to 

efficacy vs. potency, whereas we find many combinations that are synergistic with respect to 

one, but antagonistic with respect to the other. Further, the biochemical interpretation of κ is 

not straightforward. And finally, the BRAID model is unable to fit combination surfaces 

with synergistic efficacy, as it assumes that the maximum effect of the combination is equal 

to the maximum effect of the stronger singledrug.

Highest Single Agent (HSA): HSA, originally proposed by Gaddum in 1940 (Gaddum, 

1940) and then revived later by Greco (Greco, Bravo and Parsons, 1995), is a simple 

heuristic which argues synergy is any combination effect which exceeds the effect of either 

single agent. While β is conceptually similar to HSA, β provides a global view of the 

possible increase in effect rather than a point-by-point dose comparison as done in HSA. 

Because HSA is calculated at every dose it cannot distinguish between synergistically 

efficacious combinations and synergistically potent combinations as both will increase the 

effect at intermediate doses (Figure S2). Additionally, as HSA is only defined on a dose-by-

dose basis with no model fit, it is sensitive to the dose range selected.

Schindler 2D-Partial Differential Equation (PDE) Model: Schindler’s Hill PDE was 

derived to impute the dose-response surface from the single dose-response curves alone 

(Schindler, 2017). Therefore, it does not contain any fit parameters, but rather defines a null 

surface for which synergy results in deviations in the surface. While Schindler did not 

specify how to account for these devations, he postulates some implementation of 

perturbation theory would be sufficient. Like CI and the Equivalent Dose Model, Schindler’s 

framework requires effects in a range between 0 and 1, based on the assumption that the 

metric is a percent. Therefore, Schindler cannot be applied to data collected with other types 
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of metrics (e.g., DIP Rates). Additionally, Schindler’s maximum effect of the combination 

(E3) is set equal to the average of the single drug maximal effect. This allows for smooth 

transitions between the two single dose-response curves but results in some non-intuitive 

solutions. For example, if drug 1 has a maximal effect of 50% and drug 2 has a maximal 

effect of 70% the expected additive effect of the combination in the null model is 60% which 

is less than the maximal effect of drug 1. Therefore, an effect of 65% in combination, though 

less than achievable with one drug, is designated synergistic by Schindler.

Sham Experiment

It is common for synergy metrics to examine the special case in which the two drugs being 

combined are actually the same drug in a so called sham experiment first postulated by Chou 

(Chou and Talalay, 1984). Famously, Loewe, Combination Index, and other methods based 

on the Dose Equivalence Principle are sham compliant while Bliss and other methods based 

on the Multiplicative Survival Principle are not. Because our method distinguishes between 

two types of synergy, we tested sham compliance for each independently. It is immediately 

apparent synergistic efficacy is sham complaint in all conditions. This can be observed by 

substituting E1 = E2 = E3, as the maximum effect of the drug remains constant, into the 

definition for β in equation 3

β =
min(E1, E2) − E3
E0 − min(E1, E2) = 0 (7)

To test the sham compliance of synergistic potency, we can write the full dose response 

surface as a direct 2D extension of the 1D dose-response curve in equation 12 by replacing d 
with d1 + d2.

Ed =
Em(d1 + d2)h + E0Ch

(d1 + d2)h + Ch (8)

Our 2D generalization of equation 12, given by equation 1 can be rewritten for the case of 2 

identical drugs by observing that C1 = C2 = C, h1 = h2= h, and E1 = E2 = E3 = Em, resulting 

in

Ed =
C2hE0 + d1

hChEm + Chd2
hEm + (α2d1d2)hEm

C2h + d1
hCh + Chd2

h + (α2d1d2)h . (9)

Setting equations 8 and 9 equal to one another, we find
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α2 = Ch (d1 + d2)h − d1
h − d2

h

(d1d2)h , (10)

This equality is true when α2 = α1 = 0 and h = 1. This makes sense as our model reduces to 

Loewe additivity under those conditions, and Loewe additivity was developed to explicitly 

address the sham-combination case. In conclusion, MuSyC satisfies the sham experiment in 

all conditions where Loewe is the appropriate model.

Derivation of generalized 2-dimensional hill equation

One-dimensional sigmoidal dose-response curve: In pharmacology, the effect of a drug is 

usually described by the Hill equation, which arises from the equilibrium of a reversible 

transformation between an unaffected population (U) and an affected population (A)

U + h
r1

r1 ∗ [d1]
A (11)

Here, [d] is the concentration of the drug, h is the Hill slope, and r1 and r−1 are constants 

corresponding to its rate of action. Solving for the equilibrium results in

∂U
∂t = A ⋅ r−1 − U ⋅ r1dh ≡ 0

A
U =

r1dh

r−1

When dh =
r−1
r1

, then half the population is affected, and half is unaffected (A = U). This 

dose is the EC50, denoted as Ch =
r−1
r1

. Adding the constraint that U + A = 1, which states 

that 100% of the population is either unaffected or affected, we find the classic Hill 

equation :

U = Ch

Ch + dh

If the unaffected and affected populations differ phenotypically by some arbitrary effect 

(e.g., proliferation rate), the observed effect over the whole population at dose d of some 

drug will be a weighted average of the two effects by the percent affected and unaffected. 

Namely,
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Ed = U ⋅ E0 + A ⋅ Em

where E0 is the effect characteristic of the unaffected population, and Em is the effect 

characteristic of the affected population. From this we find the final form of a 4-parameter 

sigmoidal equation describing dose-response due to Hill-kinetics:

Ed − Em
E0 − Em

= Ch

Ch + dh (12)

Extending the mass action paradigm to simple four-state model assuming detailed 
balance: Consider a cell type U that can transition into a “drugged” state A1 in the presence 

of drug d1 and into a different drugged state A2 in the presence of drug d2 (Figure S1B). We 

can write these transitions as

U
r−1

r1 ∗ [d1]
A1 (13)

U
r−2

r2 ∗ [d2]
A2 (14)

where [di] denotes concentration of drug di. At equilibrium, the forward and reverse rates of 

these processes are equal, i.e.,

r1[d1][U] = r−1[A1] (15)

r2[d2][U] = r−2[A2] (16)

where [Ai] is the population of cell state Ai. Defining Θx as the ratio of forward and reverse 

rates (Θx ≡ r−x/rx) and assuming the system obeys detail balance, we find

[U]
[A1] =

Θ1
[d1] (17)
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[U]
[A2] =

Θ2
[d2] (18)

Now assume that a fourth state exists, A1,2, corresponding to a “doubly” drugged state 

(Figure S1B). A1 cells can transition into this state in the presence of drug d2 and A2 cells 

can transition into this state in the presence of drug d1. We can write these processes as

A1 r−2

r2 ∗ α1[d2]
A1, 2 (19)

A2 r−1

r1 ∗ α2[d1]
A1, 2 (20)

Note that without loss of generality, we set the forward rate constant for (19) equal to the 

same value in (14) multiplied by a factor α1 > 0. Similarly, the rate constant for (20) is the 

same as in (13) multiplied by a factor α2 > 0. Here α represents how each drug potentiates 

the action of the other and can be interpreted as a change in the “effective” dose of one drug 

given the presence of the other. When α=1 the effective dose of the first drug is the same 

given the presence of the second drug. When α<1, more of the first drug is required to 

observe the same effective concentrations due to the presence of the second drug. Finally, 

when α>1 the same concentration of the first drug is effectively increased by the second 

drug.

Again asserting the system obeys detailed balance at equilibrium, we have

[A1]
[A1, 2] = 1

α1

Θ2
[d2] (21)

[A2]
[A1, 2] = 1

α2

Θ1
[d1] (22)

We can derive the relationship between the multiplicative factors α1 and α2 by rearranging 

Eq. (17) as

[U] =
Θ1
[d1] [A1] (23)
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Substituting for [A1] from Eq. (21) gives

[U] = 1
α1

Θ1
[d1]

Θ2
[d2] [A1, 2] (24)

Substituting for [A1,2] from Eq. (22) gives

[U] =
α2
α1

Θ2
[d2] [A2] (25)

Finally, substituting for [A2] from Eq. (18) gives

[U] =
α2
α1

[U] (26)

i.e., α1 = α2 = α . Note this equality only holds for systems obeying detailed balance. In 

general, we do not assume this (See Section 4.4 ‘Generalized derviation without assuming 

detailed balance’) and α1 and α2 are independent (Figure S4). However, assuming detailed 

balance facilitates in deriving a more intuitive form of the 2D Hill equation (eq. 1) compared 

to the full form (eq. 6).

Now, we define the total cell count

CT ≡ [U] + [A1] + [A2] + [A1, 2] (27)

Substituting for [A1], [A2], and [A1,2] from Eqs. (17), (18), and (24), respectively, gives

CT = [U] +
[d1]
Θ1

[U] +
[d2]
Θ2

[U] + α
[d1]
Θ1

[d2]
Θ2

[U] (28)

Solving for [U] gives

[U] =
Θ1Θ2CT

Θ1Θ2 + [d1]Θ2 + Θ1[d2] + α[d1][d2] (29)

Substituting Eq. (29) into Eq. (17) and rearranging gives

[A1] =
[d1]Θ2CT

Θ1Θ2 + [d1]Θ2 + Θ1[d2] + α[d1][d2] (30)
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Similarly, from Eq. (18) we get

[A2] =
Θ1[d2]CT

Θ1Θ2 + [d1]Θ2 + Θ1[d2] + α[d1][d2] (31)

and from Eq. (24)

[A1, 2] =
α[d1][d2]CT

Θ1Θ2 + [d1]Θ2 + Θ1[d2] + α[d1][d2] (32)

As in the derivation of the 1D Hill equation, the measured effect (Ed) is then the relative 

proportion of cells in each state multiplied by the effect characteristic of that state as in

Ed = E0 ∗ U + E1 ∗ A1 + E2 ∗ A2 + E3 ∗ A1, 2 (33)

Here we define the effect of each state (E0, E1, E2, E3) to be proliferation rate in the 

following way.

We assume that cells in each state can divide and die at rates characteristic of the state, i.e.,

Ci

ki
div

Ci + Ci (34)

Ci

ki
die

∅ (35)

where Ci is specific state of the cell.

We define the drug-induced proliferation (DIP) rate for each state as the difference between 

the division and death rate constants, i.e.,

ki
dip ≡ ki

div − ki
die (36)

Using Eq. (27), the rate of change of the total cell population is

dCT
dt = d[U]

dt +
d[A1]

dt +
d[A2]

dt +
d[A1, 2]

dt (37)

From (13), (14), (19), (20), (34)-(36), we get
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dCT
dt = k0

dip[U] + k1
dip[A1] + k2

dip[A2] + k3
dip[A1, 2] (38)

Substituting Eqs. (29)-(32) and rearranging, we get

dCT
dt = kT

dipCT (39)

with

kT
dip ≡

Θ1Θ2k0
dip + [d1]Θ2k1

dip + Θ1[d2]k2
dip + α[d1][d2]k3

dip

Θ1Θ2 + [d1]Θ2 + Θ1[d2] + α[d1][d2] (40)

Note that with a slight modification, Eq. (40) can be written as

kT
dip =

Θ1k0
dip + [d1]k1

dip +
Θ1[d2]

Θ2
k2

dip +
α[d1][d2]

Θ2
k3

dip

Θ1 + [d1]
Θ1[d2]

Θ2
+

α[d1][d2]
Θ2

(41)

Therefore, if [d2] = 0 (i.e., single-drug treatment) we get

kT
dip =

Θ1k0
dip + [d1]k1

dip

Θ1 + [d1]

=
Θ1k0

dip + [d1]k1
dip + (Θ1k1

dip − Θ1k1
dip)

Θ1 + [d1]

=
(Θ1 + [d1])k1

dip + Θ1(k0
dip − k1

dip)
Θ + [d1]

= k1
dip +

Θ1
Θ1 + [d1] k0

dip − k1
dip

(42)

Rearranging gives

kT
dip − k1

dip

k0
dip − k1

dip =
Θ1

Θ1 + [d1] (43)
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Comparing to Eq. (12), we see that Eq. (43) is a one-dimensional sigmoidal dose-response 

curve with Ed = kT
dip, E0 = k0

dip, Em = k1
dip, C = Θ1, and h = 1. By analogy, we surmise that eq. 

(40) is a 9 parameter, two-dimensional generalization of Eq. (12), i.e.,

Ed =
C1

h1C2
h2E0 + d1

h1C2
h2E1 + C1

h1d2
h2E2 + (α2d1)

h1d2
h2E3

C1
h1C2

h2 + d1
h1C2

h2 + C1
h1d2

h2 + (α2d1)
h1d2

h2
(44)

with Ed = kT
dip, E0 = k0

dip, E1 = k1
dip, E2 = k2

dip, E3 = k3
dip, C1 = Θ1, C2 = Θ2, h1 = 1, h2 = 1, and 

the additional parameter α2. Note that under the assumption of detailed balance we found α1 

= α2 for the case when h = 1. Therefore, in the general case when h ≠ 1, α1
h2 = α2

h1. By fitting 

the eq. 44, α1 is uniquely determined.

Four-state model with multiple steps between states: Let us assume instead of occurring 

in a single step, the cell state transitions are h step processes, i.e.,

Ci r−x, 1

rx, 1 ∗ αy[dx]
Ci j

1
r−x, 2

rx, 2 ∗ αy[dx]
Ci j

2 ⋯
r−x, h − 1

rx, h − 1 ∗ αy[dx]
Ci j

h − 1
r−x, h

rx, h ∗ αy[dx]
C j (45)

p

Assuming that all steps are in rapid equilibrium, it is straightforward to show that

[Ci]
[C j]

=
Πm = 1

h Θx, m

[αydx]
h (46)

where Θx, m ≡ r−x,m/rx,m. Defining Φx ≡ ∏m = 1
h Θx, m

h , Eq. (46) can be written as

[Ci]
[C j]

=
Φx

h

[αydx]
h (47)

which is the well-known Median-Effect Equation from Chou (Chou et al., 1983; Chou and 

Talalay, 1984; Chou, 2010). Replacing reactions (13) and (14) with multi-step processes of 

the form (45), gives us

[U]
[A1] =

Φ1
h1

[d1]
h1

(48)
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[U]
[A2] =

Φ2
h2

[d2]
h2

(49)

Similarly, we replace reactions (19) and (20) with the same multi-step process except with 

the rate constant for the Ci Ci
1 transition (entry into the cascade) equal to αyrx,1[dx], 

giving

[A1]
[A1, 2] =

Φ2
h2

[α1d2]
h2

(50)

[A2]
[A1, 2] =

Φ1
h1

[α2d1]
h1

(51)

Note, we assume that the number of steps in the cascade (45) is dependent on the drug type 

(i.e., U → A1 and A2 → A1,2, both driven by d1, take h1 steps, while U → A2 and A1 → 
A1,2, both driven by d2, take h2 steps). Using Eqs. (48)-(51) and again defining the total cell 

count CT as in Eq. (27), we derive

[U] =
Φ1

h1Φ2
h2CT

Φ1
h1Φ2

h2 + [d1]
h1Φ2

h2 + Φ1
h1[d2]

h2 + [α2d1]
h1[d2]

h2
(52)

[A1] =
[d1]

h1Φ2
h2CT

Φ1
h1Φ2

h2 + [d1]
h1Φ2

h2 + Φ1
h1[d2]

h2 + [α2d1]
h1[d2]

h2
(53)

[A2] =
Φ1

h1[d2]
h2CT

Φ1
h1Φ2

h2 + [d1]
h1Φ2

h2 + Φ1
h1[d2]

h2 + [α2d1]
h1[d2]

h2
(54)
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[A1, 2] =
α[d1]

h1[d2]
h2CT

Φ1
h1Φ2

h2 + [d1]
h1Φ2

h2 + Φ1
h1[d2]

h2 + [α2d1]
h1[d2]

h2
(55)

Therefore, in the same way that we arrived at Eq. (40), we can derive

kT
dip ≡

Φ1
h1Φ2

h2k0
dip + [d1]

h1Φ2
h2k1

dip + Φ1
h1[d2]

h2k2
dip + [α2d1]

h1[d2]
h2k3

dip

Φ1
h1Φ2

h2 + [d1]
h1Φ2

h2 + Φ1
h1[d2]

h2 + [α2d1]
h1[d2]

h2
(56)

which is of the form Eq. (44) with Ed = kT
dip, E0 = k0

dip, E1 = k1
dip, E2 = k2

dip, E3 = k3
dip, C1 = 

Φ1, and C2 = Φ2. From this it is clear the hill coefficent (h) is related to the number of 

intermediate steps in the system.

The derivation of Eq. (56) assumes that the populations of all intermediate cell states 

Ci j
m(m ∈ {1…h − 1}) in (45) are small (≈ 0).1 We can satisfy this assumption by requiring that 

all rx,m, r−x,m ⪢ 1 (m ∈ {1 …h}) and Θx,1 ⪢ Θx,2 ≈ ⋯ ≈ Θx,h−1 ⪢ Θx,h. To see this, consider 

cell state U and all of its intermediate states between states A1 and A2. Let us define

UT ≡ [U] + ∑h1 − 1
m = 1

[C01
m ] + ∑ h2 − 1

m′ = 1
[C02

m′] (57)

From (45), we see that Θx, 1 ∕ [dx] = [Ci] ∕ [Ci j
1 ], Θx, 2 ∕ [dx] = [Ci j

1 ] ∕ [Ci j
2 ], etc. Therefore,

UT = [U] 1 +
[d1]
Θ1, 1

+
[d1]2

Θ1, 1Θ1, 2
+ ⋯ +

[d1]
h1 − 1

Πm = 1
h1 − 1

Θ1, m

+
[d2]
Θ2, 1

+
[d2]2

Θ2, 1Θ2, 2
+ ⋯

+
[d2]

h2 − 1

Πm′ = 1
h2 − 1

Θ2, m′

(58)

p

If Θ1,1 ⪢ 1, Θ1, Θ1,m ⪡ 1 (m ∈ {2 … h1 − 1}) and Θ2,1 ⪢ 1, Θ2,m′, ⪡ 1 (m′ ∈ {2 … h2 

− 1}), we get UT ≈ [U], i.e., the populations of all intermediate states are ≈ 0. Now consider 

1This is most evident in our use of Eq. (27) for the total cell population, where we only consider the end states. However, it is also 
implicit in our use of Eq. (46), which is used to derive Eqs. (52)-(55) that lead to Eq. (56) via Eq. (38). In other words, we are 
assuming that the intermediate states do not significantly contribute to the dynamics of the total cell population. Since it is not 
reasonable to assume that cells in these states do not divide and die, we must assume the percent occupancy of these states is near 
zero.
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cell state A1 and all of its intermediate states between cell state A1,2. Similar to above, we 

have

A1
T ≡ [A1] + ∑h2 − 1

m = 1
C13

m (59)

and

A1
T = [A1] 1 +

α[d2]
Θ2, 1

+
[α1d2]2

Θ2, 1Θ2, 2
+ ⋯ +

[α1d2]
h2 − 1

Πm = 1
h2 − 1

Θ2, m

(60)

Thus, as before, if Θ2,1 ⪢ 1 and Θ2,m, ⪡ 1 (m ∈ {2 … h2 − 1}) we have A1
T ≈ [A1]. However, 

from (45) we also have

[A1] =
[d1]

Θ1, h1
+ [C01

h1 − 1
]

=
[d1]

h1

Θ1, 1Θ1, 2…Θ1, h1

(61)

Since, from above, Θ1,1 ⪢ 1 and Θ1, m ⪡ 1 (m ∈ {2 … h1 − 1}), we must require that Θ1,h1 
⪡ 1 and Θ1,m ⪢ 1 (m ∈ {2 … h1 − 1}) in order to offset the large value of Θ1,1 and to ensure 

that [A1] ≈ 0, and to ensure. The latter condition means that Θ1,m ≈ 1 (m ∈ {2 … h1 − 1}). 

Therefore, we have the condition that Θ1,1 ⪢ Θ1,2 ≈ ⋯ ≈ Θ1,h1−1 ⪢ Θ1,h1 . Similarly, we can 

derive that Θ2,1 ⪢ Θ2,2 ≈ ⋯ ≈ Θ2,h2−1 ⪢ Θ2,h2 by considering cell state A2 and all of its 

intermediate states between cell state A1,2 (not shown).

Generalized derivation without assuming detailed balance: More generally if we do not 

assume detailed balance, the state occupancy of U, A1, A2, A1,2 are defined by the partial 

equilibrium equations

∂U
∂t = − U ⋅ (r1d1 + r2d2) + A1 ⋅ r−1 + A2 ⋅ r−2 (62)

∂A1
∂t = − A1 ⋅ (r−1 + α1r2d2) + U ⋅ r1d1 + A1, 2 ⋅ r−2 (63)
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∂A2
∂t = − A2 ⋅ (α2r1d1 + r−2) + U ⋅ r2d2 + A1, 2 ⋅ r−1 (64)

∂A1, 2
∂t = − A1, 2 ⋅ (r−1 + r−2) + A1 ⋅ α1r2d2 + A2 ⋅ α2r1d1 (65)

A final constraint is

U + A1 + A2 + A1, 2 = CT . (66)

At equilibrium, the equations 62 through 65 must be equal to zero; however, the system only 

defines a rank 3 matrix, necessitating equation 66. Thus we find

−(r1d1 + r2d2) r−1 r−2 0
r1d1 −(r−1 + r2(α1d2)) 0 r−2
r2d2 0 −(r1(α2d1) + r−2) r−2
1 1 1 1

⋅

U
A1
A2

A1, 2

=

0
0
0

CT

(67)

Equations of the form

Y ⋅ x = b

can be solved as

x = Y−1 ⋅ b

Thus we find the expected effect, as in the 1D case, is the weighted average of the 

characteristic effect of each state weighted by the state occupancy as governed by the 2D 

Hill Equation.

E = [E0 E1 E2 E3] ⋅ Y−1 ⋅

0
0
0
1

(68)

This is derived assuming mass action from the reaction rules U + d → A1 + d, A1 → U. If 

instead we assume a multi-step transition as in section 4.3, we can simply replace the 

following in 68
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d1 d1
h1

d2 d2
h2

α2d1 (α2d1)
h1

α1d2 (α1d2)
h2

resulting in

Ed = [E0 E1 E2 E3]

⋅

−(r1d1
h1 + r2d2

h2) r−1 r−2 0

r1d1
h1 −(r−1 + r2(α1d2)

h2) 0 r−2

r2d2
h2 0 −(r1(α2d1)

h1 + r−2) r−1
1 1 1 1

−1

⋅

0
0
0
1

(69)

Equation 69 has the following twelve explicit parameters: r1 r−1, r2, r−2, E0, E1, E2, E3, h1, 

h2, α1 and α2. There is a relationship defined between a drug’s EC50 (C in our derivation), 

the transition rates (ri, r−i), and the hill slope (hi), given by Ci
hi =

r−i
ri

∣ {i = 1 or 2}.

Combination experiments protocol—Experiments were conducted in the Vanderbilt 

High Throughput Screening Facility. Cells were seeded at approximately 300 cells per well 

in 384-well plates and allowed to adhere overnight. A preliminary image of each plate was 

taken approximately 8 hours after seeding to verify sufficient numbers of cells for each 

experiment. Images were taken on either the ImageXpress Micro XL (Molecular Devices) or 

CellaVista. The matrix of drug concentrations was prepared using a row-wise and column-

wise serial 2X or 4X dilution in 384 well plates using a Bravo Liquid Handling System 

(Agilent) or manually in 96-well plates. See Table S2 for dose ranges tested. After allowing 

to adhere overnight, medium containing drugs and 5 nM Sytox Green (to detect dead cells) 

was added (time = 0) and replaced after 72 hours. Images were obtained at intervals ranging 

from every 4 to 8 h, depending on the experiment, for >120 hours. Cell counts were 

determined using custom-image segmentation software developed in Python using scikit-

image package (van der Walt et al., 2014) and run in parallel using RabbitMQ/Celery (http://

www.celeryproject.org/).
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RNA-seq of melanoma cell lines—Total RNA was isolated from untreated SKMEL5 

single-cell derived sublines, each in triplicate, using Trizol isolation method (Invitrogen) 

according to the manufacturer’s instructions. RNA samples were submitted to Vanderbilt 

VANTAGE Core services for quality check, where mRNA enrichment and cDNA library 

preparation were done with Illumina Tru-Seq stranded mRNA sample prep kit. Sequencing 

was done at Paired-End 75 bp on the Illumina HiSeq 3000. Reads were aligned to the 

GRCh38 human reference genome using HISAT2 (Kim, Langmead and Salzberg, 2015) and 

gene counts were obtained using featureCounts (Liao, Smyth and Shi, 2014). All 

downstream analyses were performed in R (https://www.r-project.org) using the 

Bioconductor framework (https://www.bioconductor.org)

RT-qPCR quantification of NOX5 expression—Total RNA was extracted using Trizol 

isolation method (Invitrogen) according to the manufacturer’s instructions. cDNA synthesis 

was performed with QuantiTect Reverse Transcription Kit (Cat# 205311) from Qiagen. RT-

qPCR was performed using the IQTM SYBR Green Supermix from BioRad (Cat# 

1708880). Amplifications were performed in BioRad CFX96 TouchTM Real-Time PCR 

Detection System. All experiments were done at least in 3+ technical replicates. Log2 of the 

transcript expressions were normalized to SKMEL5 subline SC01. HPRT or 36B4 were used 

as housekeeping gene in all the experiments. Primers used in RT-qPCR are listed in Key 

Resources Table.

QUANTIFICATION AND STATISTICAL ANALYSIS

Fitting Dose-response Surfaces—We developed a fitting algorithm, implemented in 

Python, to fit the combinations experiments to the 2D Hill equation. The fitting is done in 

three steps, first estimates of the single dose-response parameters (C1,C2,h1,h2,E0,E1,E2) 

are extracted from fits to the single dose-response curves using the Pythonic implementation 

of a Levenburg-Marquart (LM) least squares optimization (scipy.optimize.curve_fit). The fit 

uncertainty (σ) is then the square root of the covariance matrix which is approximated as the 

inverse of the Hessian matrix (equal to JTJ in LM where J is the Jacobian) at the solution. In 

the second step, a Particle Swarm Optimizer (10,000 particles, 100 iterations) fits the full 2D 

Hill equation using the single parameter fits and uncertainties as initial values and bounds 

(±2σ). In the last step, the PSO optimized values are used to construct priors for a 

Metropolis-Hastings Monte-Carlo Markov Chain (MCMC) Optimization (Metropolis 

Hastings 10,000 iterations). Convergence is tested by checking all parameters’ Geweke Z-

score. If the Z-score range is (−2,2) over the sampling time frame, the optimization is 

considered to converge (Figure S3D,E). We found it necessary to use both the PSO and 

MCMC in order to fit a wide range of dose-response surfaces (Figure S3). To test the 

sensitivity of our fitting algorithm, we generated in silico data for 125 different dose-

response surfaces at different data densities. The density of data tested were square matrixes 

of rank 5, 7, 10, 15, and 25. At each density 25 different dose-response surfaces were 

sampled across a 5×5 grid of log(α) and β values ranging from [−2,2] and from [−0.5,0.5], 

respectively. The parameters for E0, the single drug hill slope, EC50, and maximal effects 

were held constant at (0.3, 1, 10e-5, and 0.0), respectively. Random noise equal to the 

average uncertainty in the DIP Rate fits from the NSCLC screen was added to the data 

(0.001). In all conditions we observed a PSO particle count of 10,000 converged to a 
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minimum in <60 iterations (Figure S3A). However, this minimum was not the optimal 

solution. The addition of an MCMC walk further improved fits (Figure S3B) (Pymc3 

package). The MCMC walk calculates the posterior distribution for each parameter from 

which each parameter’s value (mean of trace) and uncertainty (standard deviation of trace) is 

calculated. Uncertainty in (E0, E1, E2, and E3) was propagated when calculating β using the 

equation

σβ = E0 − E3
(E0 − Ex)2

∗ σEx
2

+ −σE3
E0 − Ex

2
+ E3 − Ex

(E0 − Ex)2
∗ σE0

2

Where Ex and σEx are min(E1,E2) and σ(min(E1, E2)) respectively. All other uncertainty 

propagations were handled with python package uncertainties (Lebigot, 2011). By 

calculating the uncertainty in the synergy parameters from the posterior distributions, the 

significance of synergy can be assessed in an unbiased way. Multiple factors contribute to 

increasing uncertainty in the fitted parameters. Dose-selection, an important consideration in 

all drug response profiling, changes the certainty of the fits (Figure S3C-E). While we are 

unable to observe saturating effects implicit in the model for some of our drug combinations 

– due to limited solubility or potency of the drug – by keeping careful account of the 

uncertainty in our synergy calculations we can still interpret the synergy of non-optimal 

dose-regimes. To demonstrate this, we generated the same 25 dose-response surfaces with 

varying log(α) and β values ranging from [−2,2] and from [−0.5,0.5] respectively but at 

different coverage of the dose-response curve. The uncertainty in the synergy parameters 

increases for decreased dose range (Figure S3C and D). It is important to note that in general 

the uncertainty is a function of many different aspects other than data density including the 

hill slope of the single curves (high hill slopes can result in higher uncertainty in log(α)), 

noise of experimental data, and quality of priors resulting from the single-drug fits. We posit 

the rigorous approach taken here accounts for all these sources resulting in a true estimate of 

confidence in a particular synergy value.

To prevent over fitting the data, we have defined six different model tiers which have 

increasing degrees of freedom (Table S5). To select the correct model tier, we penalize 

models with higher degrees of freedom by selecting the model based on minimizing the 

deviance information criterion (DIC) (Berg, Meyer and Yu, 2004). Fits for each nest are used 

to inform priors for subsequent nests. Only drug combinations which converged to the full 

model (tier 5 with fits for all 12 parameters – equation 69 in section 4.4 of Methods Details) 

were used for subsequent analysis. The MCMC optimization additionally allows for 

quantification of parameter confidence given the data. The following packages were used for 

fitting, data analysis, or visualization: GNU parallel (Tange, 2011), SciPy (Jones, Oliphant 

and Peterson, 2001), Numpy (Oliphant, 2006), Pandas (McKinney, 2010), Matplotlib 

(Hunter, 2007). Pymc3 (Salvatier, Wiecki and Fonnesbeck, 2016).

Calculating the DIP Rate—Traditionally, the efficacy of an anti-proliferative compound 

is measured as the percent of viable cells (relative to control) after a treatment interval 

(Fallahi-Sichani et al., 2013); however, it has been recently shown this metric is subject to 

temporal biases (Hafner et al., 2016; Harris et al., 2016). To address these biases, we 
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previously developed an unbiased metric of drug effect termed the drug-induced 

proliferation (DIP) rate (Harris et al., 2016). The DIP rate is defined as the steady state 

proliferation rate after drug equilibration. A positive DIP rate indicates an exponentially 

growing population, while a negative DIP rate indicates a regressing one. A rate of zero 

indicates a cytostatic effect, which may result from cells entering a non-dividing state or 

from balanced death and division (Paudel et al., 2018). We used the available findDIP R 

package for calculating DIP rates from growth curves which automatically selects the 

interval after drug equilibration (https://github.com/QuLab-VU/DIP_rate_NatMeth2016.git).

Calculating Loewe, CI, Bliss, and HSA—To compare our method to the prevailing 

methods for computing synergy, we calculated Loewe, CI, Bliss for the data from the 

osimertinib screen in Figure 2 and melanoma BRAF/MEK data of Figure 3. Loewe is 

agnostic to effect metric, and so we applied it directly to the DIP rate. To calculate CI and 

Bliss, we imputed the percent viability at 72 hours from the DIP rate for each condition. 

Percent viability is defined as in equation 1.

% − viable = Cell Count(t = 72hr)Treated
Cell Count(t = 72hr)Control (70)

Estimates of percent viability are sensitive to even small differences between initial cell 

counts in the control and treated wells due to exponential amplification (Harris et al., 2016). 

To correct for this the bias, a ‘matching’ control cell count at 72-hours for each treated 

condition was calculated using equation

Cell Count(t = 72hr)Control = (Cell Count(t = 0hr)Treated) ∗ 2Control Growth Rate ∗ 72hr (71)

where Control Growth Rate is the median of the fitted growth rates for all control wells. 

Because the automated microscope did not image all the conditions at exactly zero or 

seventy two hours, we extrapolate and interpolate respectively the cell count at these times 

from the measured time series.

The Bliss metric only requires marginal data. For each experiment, individually, we 

calculated a Bliss score as

Bliss = PV1 ∣ d1 ∗ PV2 ∣ d2 − PV1, 2 ∣ d1, d2 (72)

where PVi∣di is the %-viability measured for treatment with drug i alone at dose di, and 

PV1,2∣d1, d2 is the %-viability measured for the combination treatment. The first term 

corresponds to the expected viability, assuming independence, while the second term is the 

measured viability. By this definition, Bliss>0 is synergistic, and Bliss<0 is antagonistic.

Loewe and CI require parameterization of a 1D Hill equation for each drug alone.
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E = Emax +
E0 − Emax

d
C

h + 1
(73)

CI, as per standard calculations (Chou and Talalay, 1984), further requires that E0 = 1 and 

Emax = 0 and is fit to a linearized, log-transformed version of the hill equation(Chou, 2010) 

which has been previously critiqued for artificial compression of uncertainty in experimental 

data leading to poor model fits compared with nonlinear regression (Ashton, 2015). CI dose-

response curves were fit using the scipy.stats.linregress module. All data points with percent 

viability greater than 1 were excluded from the CI fit, as log(1 − pervia
pervia ) becomes complex.

For some drugs, this left too few points to fit a line, such that CI was undefined for 

combinations with those drugs. In other drugs, the fit hill coefficient was negative, and 

likewise all CI values were undefined for those drugs. For Loewe, we used the single-drug 

parameters fit by MuSyC.

From these parameterized hill equations, Loewe and CI were calculated using

S = − log10
d1
D1

+
d2
D2

(74)

where Di is the amount of drug i which, alone, achieves an effect equal to the combination 

effect, and is calculated from the Hill equation fit for that drug. We take the negative log to 

transform the synergy values to match Bliss, such that S>0 is synergistic, while S<0 is 

antagonistic. Because Loewe allows the two drugs to have different Emax, Loewe synergy 

cannot be calculated for measurements which exceed the weaker drug's Emax because no 

amount of the weaker drug alone would be sufficient to achieve that effect; therefore, those 

conditions are undefined.

For calculating HSA (Gaddum, 1940), we calculate the difference between the observed 

effect at each combination concentration and the most efficacious single agent effect at those 

doses. This difference is integrated across the surface to yield a single value for a particular 

combination.

Fitting ZIP, BRAID, Schindler’s Hill PDE, and Equivalent Dose Models—
Theoretical dose-response surfaces with different combinations of synergistic potency and 

efficacy were generated then fit to estimate the synergy according to these methods (Figure 

S2). Both ZIP and BRAID were calculated using the R packages available for each method 

(ZIP’s R code is in the supplemental file 1 of the manuscript (Yadav et al., 2015) and 

BRAID’s package is available from:https://cran.r-project.org/web/packages/braidReports/

braidReports.pdf). Schindler’s Hill PDE model contains no fitting parameters as the dose-

response surface is derived purely from the marginal data. In fact, Schindler does not 

propose a method to estimate synergy from experimental data, but postulates some 
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implementation of perturbation theory could be used to fit experimental data (Schindler, 

2017). Therefore, to calculate the synergy of this model, we defined the sum of residuals 

between the null surface and the experimental data to the metric of synergy. Finally, to fit 

Zimmer et al.’s Equivalent Dose Model we used the curve_fit() module of the 

scipy.optimization package in python. Specifically, the Equivalent Dose Model, equation 2 

in (Zimmer et al., 2016), contains parameters for C1,C2, a12, a21, h1, and h2 where the C 
parameters are the EC50 of the single agents, the ai,j parameters are the synergy values 

corresponding to a change in potency, and the h parameters are the hill slopes of the single 

agents. In the model, there are no parameters for efficacy because it is assumed the drug 

effect ranges between zero and one. When this is not true, the Effective Dose Model results 

in poor fits to the data (Figure S2) similar to CI.

Identifying DEGs for GO Enrichment Analysis—Differentially Expressed Genes 

(DEGs) were selected by ANOVA on baseline gene expression data on three clones based on 

a statistical cutoff of Likelihood Ratio Test (LRT) (p-values < 0.001). Functional enrichment 

analyses, including GO Term Enrichment and Pathway Enrichment Analysis were done 

using CRAN Package “Enrichr” (https://cran.r-project.org/web/packages/enrichR/

index.html), based on a web-based tool for analyzing gene sets and enrichment of common 

annotated biological functions (Kuleshov et al., 2016). The enriched GO terms and enriched 

KEGG pathways were restricted to those with p-values corrected for multiple testing less 

than 0.001. The top GO Biological Processes included generation of precursor metabolites 

and energy, electron transport chain, inorganic cation transmembrane transport, and 

metabolic process. The top GO Molecular Function terms included inorganic cation 

transmembrane transporter activity, cofactor binding, NAD binding, and ATPase activity. 

The top GO Cellular Component term was the mitochondria membrane. Top KEGG 

pathways enriched in the DEGs included metabolic pathways, oxidative phosphorylation, 

carbon metabolism and TCA cycle (Figure 3B). Overall, these enriched GO terms and 

pathways point toward differences in the regulators of metabolic function in the three 

subclones. This is consistent with previous reports that suggest altered metabolism is 

implicated in drug sensitivity and melanoma resistance to BRAFi (Parmenter et al., 2014; 

Hardeman et al., 2017).

Correlation of BRAFi insensitivity was computed for each identified DEG according to DIP 

Rate at 8uM PLX-4720 for a 10 cell line panel (Table S3) Pair-wise comparisons of DEGs 

was performed on genes (after low count genes were removed) using DESeq2 pipeline 

(Love, Huber and Anders, 2014).

DATA AND SOFTWARE AVAILABILITY

All raw cell counts, calculated DIP rates, DEGs between subclones, and expression data are 

available in the github repo: https://github.com/QuLab-VU/MuSyC_Cell.git in the folder 

Data. Additionally, the repo contains all the code required to reproduce all the figures and 

supplemental figures from the data and is found in the Code_Paper_Figures folder. The 

subfolders Fig2 and Fig3 contain html folders with interactive plots of all the screened 

combinations. Open the .html files using a browser. The raw RNAseq is available from GEO 

at the accession number GSE122041. The software for interactive manipulation of the 
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different parameters to study their contribution to the contours of the dose-response surface 

is also available in the github repo in the folder MuSyC_App. This folder contains both the 

matlab source code and a compiled application for the different operating systems. A copy 

of the github repo at the time of publication is also available from Mendeley Data via the 

following http://dx.doi.org/10.17632/n8bp8db5ff.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

1. MuSyC is a synergy framework applicable to any metric of drug combination 

effect

2. Unlike other methods, MuSyC decouples synergy of potency and efficacy

3. It subsumes traditional synergy methods resolving ambiguities and biases in 

the field

4. MuSyC reveals optimal co-targeting strategies in NCSLC and melanoma

Meyer et al. Page 39

Cell Syst. Author manuscript; available in PMC 2020 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 2D Hill equation parameterizing dose-response surfaces distinguishes synergistic 
efficacy and synergistic potency.
A) Sigmoidal dose-response curves relating drug concentration to a measured effect are 

commonly fit to the Hill equation, derived from a 2-state model of drug effect (Figure S1A). 

The equation contains parameters for calculating a drug's potency, (C) equal to the 

concentration required for half-maximal effect, and efficacy (Emax), equal to the maximal 

effect. Here, Drug 1 is more potent than Drug 2 (C1<C2) while Drug 2 is more efficacious 

(E2<E1). For simplicity, in this diagram we only depict a metric of drug effect for which 

increasing drug concentration results in lower values (e.g., anti-proliferative drugs). 

However, the same equation is valid for metrics which increase in value (Emax>E0) (e.g. 

percent effect). B) A dose-response surface for Drugs 1 and 2, based on the 2D Hill equation 

derived from a 4-state model of combination drug treatment (Figure S1B), under the null 

hypothesis of no synergy of efficacy (β=0) or potency (α1=α2=1). C) Representative dose-

response surfaces for each quadrant on a Drug Synergy Diagram (DSD). The vertical axis is 

divided into antagonistic (β<0) and synergistic (β>0) efficacy. The horizontal axis is divided 

into antagonistic (log(α*)<0) and synergistic (log(α*)>0) potency where α* can be either 

α1 or α2. Quadrant I corresponds to synergistic potency and efficacy. In contrast, 

combinations in quadrant IV have synergistic potency, but antagonistic efficacy 

corresponding to a blunting in efficacy at lower doses. See Supplemental Movie 1 a 

depiction of the orthogonal effects of α and β on the dose-response surface.
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Figure 2: High throughput screen of 64 drugs combined with osimertinib (mutant EGFR-TKI) 
reveals drug class dependence of synergistic potency and efficacy in NSCLC.
A) High-throughput pipeline for generating dose-response surfaces. Initial drug matrix is 

prepared on a 384-well plate and transferred to cells seeded at sub confluent densities. Cells 

are engineered to express a fluorescently tagged histone (H2B-RFP) allowing for cell counts 

using automated segmentation software (See STAR Methods section Quantification and 

Statistical Analysis). Each condition is imaged every 6-8 hours resulting in growth curves. 

The growth curves are fit for the DIP rate (slope of dotted line) (Harris et al., 2016) to 

quantify drug effect. This matrix of DIP Rates is fit to the 2D Hill equation to extract 
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synergy parameters. B) Combination surface of M344, an HDACi, and osimertinib (osi). 

Grey plane indicates a cytostatic growth rate (i.e., DIP rate=0 h−1). Left are the dose-

response curves for each drug alone (orange and red curves) and each drug with the 

maximum tested concentration of the other (green and purple). Colors correspond to the 

colored lines on the combination surface. The dotted lines demarcate the EC50 for each 

curve. C) Combination surface for ceritinib (cer), an ALK, in combination with osimertinib. 

Ceritinib increases the potency of osimertinib at maximum tested concentration, as observed 

in the shift of the EC50 between orange and green curves in the top left panel. The shift is 

proportional to the concentration used and would, therefore, increase at higher 

concentrations; however, such concentrations are not physiologically realizable due to the 

low potency of ceritinib in this system (EC50=2.02 uM) highlighting the importance of 

interpreting synergistic potency in the context of the absolute potency. D) Drug panel used in 

combination with osimertinib grouped in 4 categories (see Table S2 for details). E) DSDs 

for drug combinations. The vertical axis quantifies the observed synergistic efficacy, (βobs). 

The horizontal axis (log(α2)) quantifies how osimertinib's potency is modulated by each 

drug (see Figure S4C for α1- α2 plot). Error bars represent the parameter uncertainty based 

on the MCMC optimization (See STAR Methods for description of fitting algorithm). F) 2D 

density plots and associated marginal distributions for βobs (vertical axis) and α2 

(horizontal axis) for all drugs (black) and selected category subclasses. Colored tick marks 

indicate the 50% and 95% probability density intervals for each distribution.
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Figure 3: Synergistic efficacy and/or potency of drug combinations in BRAF-mutant melanoma.
A) 8 BRAF-mutant melanoma cell lines were treated with all possible pairwise 

combinations of 4 RAF and 4 MEK inhibitors (Table S2) for a total of 128 unique 

combinations. Waterfall plots of βobs for each cell line with all combinations which 

converged in fitting. Drug combinations noted by letter in the legend to right. (Also see 

Figure S5).
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Figure 4: NOX5, a molecular correlate of insensitivity to BRAFi, is a synergistically efficacious 
cotarget in BRAF-mutant melanoma.
A) Growth curves of differentially sensitive, single-cell-derived subclones from SKMEL5 

treated with 8uM PLX4720. Grey curves represent colony growth according to the clonal 

fractional proliferation assay (Tyson et al., 2012). The average population response indicated 

in black curve. SC01, SC07, and SC10 were subsequently used to identify 200 DEGs. B) 
Top gene set enrichment terms for 200 DEGs (see STAR Methods section Quantification 

and Statistical Analysis). C) Distribution of the correlation between 200 DEGs expression 

and BRAFi insensitivity. Drug sensitivity was quantified as DIP rate measured in 8μM 

PLX4720 (Table S3). Significance threshold of p-value<0.05 annotated in pink. D) NOX5 

expression correlates with BRAFi sensitivity in 10 BRAF-mutant melanoma cells. E) 
Pairwise comparison between SC01 and SC10 of DEGs (FDR<0.001) identified using 

DESeq2 (Love, Huber and Anders, 2014). The 200 identified DEGs (ANOVA between three 
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subclones) are in black. Dotted red lines denote plus/minus 4-fold change. F) Dose-response 

surface for PLX4270+DPI (NOX5 inhibitor) in A2058. G) DSD for NOX5i (DPI) plus 

BRAFi (PLX4720). H) Correlation (Pearson r) of NOX5 expression with observed 

synergistic efficacy (βobs). I) Correlation (Pearson r) of NOX5 expression with synergistic 

potency (α2=DPI’s effect on PLX4720 potency).
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Figure 5: Biases and limitations of Loewe, CI, and Bliss.
A) Drugs are separated based on their DSD quadrant from Figure 2, and distributions of 

synergy calculated by Loewe, CI, and Bliss are shown. Loewe was calculated directly from 

DIP rates, while CI and Bliss were calculated from 72-hour viability (See STAR Methods 

section Methods Details). Overall, most combinations span synergism and antagonism when 

quantified by Loewe, CI, or Bliss. Conditions for which synergy could not be defined were 

removed. Traditionally, Loewe and CI are synergistic between 0 and 1, and antagonistic for 

values >1; however, for visualization, we transformed them to −log(Loewe) and −log(CI), so 

synergism (Syn) corresponds to positive numbers (grey region), antagonism (Ant) to 

negative (white region). α2 is the change in osimertinib’s potency due to the other drug. 

Error bars for βobs and log(α2) calculated from MCMC optimization. B) Loewe is 

undefined (Und) for all concentrations which achieved a net negative DIP rate. C) Loewe 
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and CI assume the dose-response surface contours (i.e., the DIP rate axis comes out of the 

page) are linear (middle panel). The blue and white areas indicate regions which are 

synergistic and antagonistic respectively by MuSyC. When h1 ∗ h2 < 1 (left panel), Loewe 

and CI misclassify the hatched region as synergistic, while when h1 ∗ h2 > 1 (right panel), 

they misclassify the hatched region as antagonistic. D) As predicted, the median values of 

synergy calculated by Loewe are anti-correlated with the geometric mean of the hill slope in 

both the NSCLC and BRAF-mutant melanoma datasets. E) CI poorly fits drugs whose max 

effect is not equal to 0. The top panel shows linear dose-response fit by the CI algorithm, 

bottom shows the quality of fit in a standard dose-response view. The CI fit works well for 

drugs for which Emax ~= 0, like panobinostat (left, Emax=0.016, C=7.13 nM, h2=0.99 for 

orange fit, Emax=0, C=4.42 nM, h2=0.63 by CI). However, drugs with Emax >> 0, like 

methotrexate (right) lead to poor fits (Emax=0.52, C=0.119 uM, h2=1.88 by orange fit, 

Emax=0, C=34.7 uM, h2=0.23 by CI).
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Table 1:

Key Definitions

Potency The amount of drug required to produce a specified effect. A highly potent drug is active at low concentrations. 
Classically quantified as the required concentration to achieve half the maximal effect (EC50).

Efficacy The degree to which a drug can produce a beneficial effect. Classically quantified as the maximal effect (Emax).

Synergistic Potency The magnitude of the change in the drug potency, due to the presence of another drug.

Synergistic Efficacy The percent change in the maximal efficacy of the combination compared to the most efficacious single agent.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Bacterial and Virus Strains

Biological Samples

Chemicals, Peptides, and Recombinant Proteins

Trizol Invitrogen 15596026

DMSO Sigma D8418

FBS Gibco 10437-028

PBS Corning 21-040-CV

DMEM Gibco 11965-092

RPMI Corning 10-040-CV

TryplE Gibco 12604-013

DMEM/F12 Gibco 11330-032

SytoxGreen ThermoFisher S7020

5-Iodotubericidin ENZO EI-293

Abexinostat (PCI-24781) SelleckChem S1090

Acetylcysteine SelleckChem S1623

Afatinib (BIBW2992) LC Laboratories A8644

AG-879 ENZO EI-258

Alisertib (MLN8237) MedChemExpress HY-10971

Amiodarone HCl SelleckChem S1979

Aprepitant SelleckChem S1189

Bazedoxifene HCl SelleckChem S2128

Beclomethasone dipropionate Light Biologicals (NIH Clinical Collection II) MZ-3012

Bendroflumethiazide Light Biologicals (NIH Clinical Collection II) B-8008

BML-259 ENZO EI-344

Bosutinib (SKI-606) LC Laboratories B-1788

Brigatinib (AP26113) SelleckChem S8229

Buparlisib (BKM120, NVP-BKM120) SelleckChem S2247

Cabozantinib LC Laboratories C-8901

Carfilzomib LC Laboratories C-3022

Carmustine NCI Chemotherapeutic Agents Repository 409962

Cephalomannine SelleckChem S2408

Ceritinib (LDK378) SelleckChem S7083

Cisplatin Sigma 470306

Cobimetinib MedChemExpress HY-13064

Crizotinib LC Laboratories C-7900

Dabrafenib LC Laboratories D-5678

Dactolisib LC Laboratories N-4288

Dasatinib LC Laboratories D-3307

Docetaxel SelleckChem S1148

Dronedarone HCl (Multaq) SelleckChem S2114

Ensartinib (X-396) SelleckChem S8230

Entinostat (MS-275) SelleckChem S1053

Erlotinib LC Laboratories E-4007

Everolimus (RAD001) LC Laboratories E-4040

Foretinib (GSK1363089) SelleckChem S1111

Gefitinib (ZD1839) LC Laboratories G-4408
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REAGENT or RESOURCE SOURCE IDENTIFIER

Givinostat (ITF2357) SelleckChem S2170

GSK1751853A GSK PKIS N/A

GSK994854A GSK PKIS N/A

GW458787A GSK PKIS N/A

GW644007X GSK PKIS N/A

GW694590A GSK PKIS N/A

GW770249X (GW770249A) GSK PKIS N/A

Homoharringtonine (Omacetaxine mepesuccinate) Sequoia Research Products Ltd. (NIH Clinical Collection II) SRP02125h

Ivacaftor (VX-770) SelleckChem S1144

(+)-JQ1 SelleckChem S7110

Linsitinib (OSI-906) SelleckChem S1091

Loratadine SelleckChem S1358

LY294002 ENZO ST-420

M344 SelleckChem S2779

Methotrexate MedChemExpress OL-14377

MG-132 SelleckChem S2619

ML-9-HCl ENZO EI-153

Mocetinostat (MGCD0103) SelleckChem S1122

Naftopidil SelleckChem S2126

Nateglinide SelleckChem S2489

Nebivolol HCl SelleckChem S1549

Olaparib (AZD2281, Ku-0059436) LC Laboratories O-9201

Osimertinib (AZD9291) SelleckChem S7297

Paclitaxel Sigma 17191

Panobinostat NCI Chemotherapeutic Agents Repository 761190

2'-Amino-3'-methoxyflavone LC Laboratories P-4313

Pimobendan SelleckChem S1550

PLX-4720 SelleckChem S1152

Ponatinib (AP24534) LC Laboratories P-7022

PP2 ENZO EI-297

Pracinostat (SB939) SelleckChem S1515

Primaquine Diphosphate SelleckChem S4237

Quercetin ENZO AC-1142

Quisinostat (JNJ-26481585) SelleckChem S1096

RAF-265 MedChemExpress HY-10248

Rapamycin (Sirolimus) SelleckChem S1039

SB-253226 GSK PKIS N/A

Selumetinib (AZD-6244) LC Laboratories S-4490

SP 600125 ENZO EI-305

Sunitinib Malate SelleckChem S1042

TAK-632 SelleckChem S7291

Tanespimycin (17-AAG) SelleckChem S1141

Thioridazine hydrochloride SelleckChem S5563

Trametinib LC Laboratories T8123

AG-370 ENZO EI-229

U-0126 ENZO EI-282

Ulixertinib (BVD-523, VRT752271) SelleckChem S7854

Vemurafenib (PLX4032) SelleckChem S1267

Verteporfin SelleckChem S1787

Vindesine Sequoia Research Products Ltd. (NIH Clinical Collection) SRP01038v
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REAGENT or RESOURCE SOURCE IDENTIFIER

Vinorelbine Tartrate SelleckChem S4269

ZM 447439 SelleckChem S1103

Critical Commercial Assays

Tru-Seq stranded mRNA sample prep kit Illumina Cat # RS-122-2101

Reverse Transcription Kit QuantiTect Cat # 205311

IQTM SYBR Green Supermix BioRad Cat # 170

Deposited Data

Fitted combination surface plots This Paper https://
github.com/
QuLab-VU/
MuSyC_Cell.
git
In folder(s):
Code_Paper_F
igures/
Fig2(3)/html

Code for Generating Paper Plots This Paper https://
github.com/
QuLab-VU/
MuSyC_Cell.
git
In folder(s): 
Code_Paper_F
igures/

Table of fitted parameters for all experiments This Paper https://
github.com/
QuLab-VU/
MuSyC_Cell.
git
In folder: Data
Files:
MasterResults
.csv
&
MasterResults
_plx_dpi_mel
Panel

RT-qPCR quantification of NOX5 expression This Paper https://github.com/QuLab-VU/MuSyC_Cell.git
In file:
Data/nox5Expr.csv

DIP Rate Calculations This Paper https://github.com/QuLab-VU/MuSyC_Cell.git
In folder(s):
Data
Files:
−HTS018_rates
−HTS022_timeavg_rates_sub2.csv
−03-27-2018-dpi+plx-cm_bp_timeavg_preCalcDIP_timSub.csv
−dasatinib_osimertinib_cellavista_cm_8-24-17.csv
−linsitinib_osimertinib_cellavista_cm_8-24-17.csv
−HTS015_017_Combined.csv

cFP Raw Data This Paper https://github.com/QuLab-VU/MuSyC_Cell.git
In folder(s):
Data/SKMEL5_cFP

List of DEGS This Paper https://github.com/QuLab-VU/MuSyC_Cell.git
In folder(s):
Data/DEGs_GO_Analysis

Raw RNAseq data for subclones GEO GSE122041

This data is also available from Mendeley Data at 
the following doi

This Paper doi:10.17632/n8bp8db5ff.1

Experimental Models: Cell Lines

PC9-H2B.RFP Tyson et. al. 2012 (W. Pao at UPenn) N/A

SKMEL5-H2B.RFP Paudel et al. 2018 (ATCC) HTB-70

WM1799-H2B.RFP Paudel et al. 2018 (M. Herlyn at Wistar Institute) N/A

WM983B-H2B.RFP Paudel et al. 2018 (M. Herlyn at Wistar Institute) N/A

A375-H2B.RFP-FUCCI Paudel et al. 2018 (ATCC) CRL-1619

SKMEL28-H2B.RFP-FUCCI Paudel et al. 2018 (ATCC) HTB-72

WM2664-H2B.RFP Paudel et al. 2018 (M. Herlyn at Wistar Institute) N/A

A2058-H2B.RFP Paudel et al. 2018 (ATCC) CRL-11147

SKMEL5.SC10-H2B.RFP Paudel et al. 2018 Derived Subclone from SKMEL5-
H2B.RFP

N/A

SKMEL5.SC07-H2B.RFP Paudel et al. 2018 Derived Subclone from SKMEL5-
H2B.RFP

N/A

SKMEL5.SC01-H2B.RFP Paudel et al. 2018 Derived Subclone from SKMEL5-
H2B.RFP

N/A

Experimental Models: Organisms/Strains

Oligonucleotides
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REAGENT or RESOURCE SOURCE IDENTIFIER

NOX5_Forward Primer:
GGCTCAAGTCCTACCACTGGA

This paper N/A

NOX5_Reverse Primer:
GAACCGTGTACCCAGCCAAT

This paper N/A

HPRT_Forward Primer:
TGCTCGAGATGTGATGAAGGAG

This paper N/A

HPRT_Reverse Primer:
TGATGTAATCCAGCAGGTCAGC

This paper N/A

36B4_Forward Primer:
CATGTTGCTGGCCAATAAGG

This paper N/A

36B4_Reverse Primer:
TGGTGATACCTAAAGCCTGGAA

This paper N/A

PGC1a_Forward Primer:
TGCCCTGGATTGTTGACATGA

This paper N/A

PGC1a_Reverse Primer:
TTTGTCAGGCTGGGGGTAGG

This paper N/A

Recombinant DNA

pHIV-H2B-mRFP Addgene, Welm et al Cell Stem Cell. 2008 Plasmid #:18982

Software and Algorithms

Scikit-learn van der Walt et al. 2014 N/A

RabbitMQ/Celery www.celeryproject.org N/A

GNU parallel Tange, 2011 N/A

Scipy Jones, Oliphant and Peterson, 2001 N/A

Matplotlib Hunter, 2007 N/A

Pandas McKinney, 2010 N/A

Numpy Oliphant, 2006 N/A

Pymc3 Salvatier, Wiecki and Fonnesbeck, 2016 N/A

HISAT2 Kim, Langmead and Salzberg, 2015 N/A

featureCounts Liao, Smyth and Shi, 2014 N/A

Bioconductor (R) www.bioconductor.org N/A

ENRICHR (R) Kuleshov et al., 2016 N/A

DESeq2 Love, Huber and Anders, 2014. N/A

Other
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