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Abstract

The preprocessing pipelines of the Human Connectome Project (HCP) were made publicly 

available for the neuroimaging community to apply the HCP analytic approach to data from non-

HCP sources. The HCP analytic approach is surface-based for the cerebral cortex, uses the CIFTI 

“grayordinate” file format, provides greater statistical sensitivity than traditional volume-based 

analysis approaches, and allows for a more neuroanatomically-faithful representation of data. 

However, the HCP pipelines require the acquisition of specific images (namely T2w and field 

map) that historically have often not been acquired. Massive amounts of this ‘legacy’ data could 

benefit from the adoption of HCP-style methods. However, there is currently no published 

framework, to our knowledge, for adapting HCP preprocessing to “legacy” data. Here we present 

the ciftify project, a parsimonious analytic framework for adapting key modules from the HCP 

pipeline into existing structural workflows using FreeSurfer’s recon_all structural and existing 

functional preprocessing workflows. Within this framework, any functional dataset with an 

accompanying (i.e. T1w) anatomical data can be analyzed in CIFTI format. To simplify usage for 
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new data, the workflow has been bundled with fMRIPrep following the BIDS-app framework. 

Finally, we present the package and comment on future neuroinformatics advances that may 

accelerate the movement to a CIFTI-based grayordinate framework.

1.0 Introduction

The Human Connectome Project (HCP) has incorporated major technical advances at many 

steps of neuroimaging data acquisition and analysis [1,2]. At the level of MR acquisition, the 

HCP used multi-band MR pulse sequences, which increased both the temporal and spatial 

resolution of MR data [3,4]. In addition, the HCP project took great care to utilize state-of-

the-art approaches to correct for MR field bias and image distortions apparent across MR 

modalities [2]. At the level of MR analysis, as part of the minimal preprocessing pipelines, 

the HCP introduced a novel Connectivity Informatics Technology Initiative file format 

(CIFTI; https://www.nitrc.org/projects/cifti/) for conducting analyses in the “grayordinate” 

framework. In CIFTI format, data from cerebral cortical gray matter is stored in relation to 

2-dimensional surface meshes, whereas subcortical data is maintained in 3-dimensions, 

within the same file, by representing only subcortical gray matter voxels. The HCP also 

introduced a powerful visualization tool, Connectome Workbench, with an accompanying 

suite of command-line functions that allow for the manipulation of CIFTI, GIFTI and NIFTI 

format images [5].

A 2D cortical surface-based approach to MR analysis of cortical signals provides several 

advantages over the more commonly used 3D volume-based approach as previously 

described [6-9]. Most notable benefits include better adherence to the inherent geometry of 

cortical surfaces, increased statistical power [7,10-14], removal of the deleterious effects of 

volume-based smoothing (which markedly erodes spatial localization [14], superior 

visualization [15], and finally a simplified, more compact framework for multimodal 

analysis (such as analyses combining surface-based anatomical features, e.g., cortical 

thickness, and fMRI). If should be noted that these benefits have been reported using data 

with lower spatial and temporal resolutions than the HCP. For these reasons, surface-based 

analyses have provided new insights into how the human cortex is functionally organized 

within humans at both the population level [16-20] and individual level [16,21,22].

Although the benefits of surface-based over volume-based registration have been widely 

recognized for nearly a decade and despite the continued development and promulgation of 

surface-based tools by several groups [6-9,15], the adoption of surface-based analyses by the 

neuroimaging community has been slow. One reason for this inertia is that many widely 

used tools for MR preprocessing (e.g., SPM, FSL) as well as widely adopted pipeline tools 

(e.g., NIAK, CPAC) do not offer “out of the box” workflows with surface-based registration 

steps. These tools are not designed to support the CIFTI format, or provide visualization 

frameworks for combined 2D/3D geometry. The HCP consortium released its pipelines as 

part of the Minimal Preprocessing Pipeline GitHub project [23]. One key requirement of the 

Minimal Preprocessing Pipeline is acquisition of a high-resolution T2-weighted image, used 

to generate high-quality surface reconstructions [23] and myelin maps [24,25], that was not 

typically acquired in legacy human MR protocols. Therefore, many ‘legacy’ acquisitions 
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often collected without high-resolution T2 images or fieldmaps cannot be processed using 

the HCP’s pipelines.

It is estimated that tens of thousands of participants are scanned annually as part of research 

studies, and this number has been growing for over 25 years [26]. Thanks to data sharing 

consortia such as the International Neuroimaging Data-Sharing Initiative (INDI, [27]) and 

OpenfMRI [28], thousands of legacy datasets are publicly available [29,30]. The National 

Institute of Mental Health (NIMH) have also committed to data sharing via the NIMH Data 

Archive (NDA; ndar.nih.gov). These legacy datasets are drawn from healthy individuals plus 

a wide variety of clinical populations and developmental stages. While some clinical and 

developmental populations are now being scanned according to HCP acquisition standards, 

it may be years before these sample sizes will be large enough to answer some of today’s 

most pressing questions. The HCP requirements can be viewed either as a barrier or as an 

opportunity. If viewed as an opportunity, there is a concomitant need to develop tools for 

HCP-style analyses applicable to legacy MR data available today (and likely the near future) 

Therefore, maximally leveraging large legacy datasets is important for clinical research, 

especially for those attempting to characterize disease heterogeneity [31].

Here, we address the opportunity to leverage important innovations of the HCP pipelines to 

enable integration of two decades of existing legacy human neuroimaging data into the 

CIFTI grayordinate-based framework. To expand the utility of HCP-style methods, we 

present the ciftify package for grayordinate-based (CIFTI format) analysis of legacy 

acquisitions that have already been processed using FreeSurfer. (Datasets that use other 

cortical segmentation methods or have no surface-based processing at all are considered in 

the discussion.) Ciftify translates two key modules of the HCP Minimal Preprocessing 

Pipeline: the FreeSurfer-to-Connectome Workbench conversion, and the fMRI surface 

projection, into simple command line tools. Integrating these two steps will work from 

FreeSurfer-based anatomical outputs (generated from only T1w images) to convert current 

volume-based fMRI analysis pipelines into a grayordinate-based one. These tools allow 

researchers to move their analyses to the surface while ensuring the opportunity to analyze 

non-HCP quality data. Below, we describe the ciftify package and discuss its expected use 

case. We also introduce additional tools for running and interpreting group-level analyses in 

CIFTI format.

2.0 The ciftify preprocessing workflow and BIDS-app

A diagram of the ciftify preprocessing workflow is given in Figure 1. As a precursor to 

ciftify, surfaces are generated from T1w anatomical images using FreeSurfer’s recon_all 

function [6], and fMRI runs are preprocessed using other software as discussed below. The 

BIDS-app Docker container will use FMRIPrep [32,33] for these preprocessing steps if they 

have not already been run. Anatomical data is converted from FreeSurfer to CIFTI formats, 

and MNI inter-subject anatomy-based registration and resampling is performed by the 

ciftify_recon_all function (using FSL’s FNIRT). Next, fMRI acquisitions are projected to 

the surface, and subcortical data are resampled by the cifitfy_subject_fmri function. Quality 

assurance visualizations for these steps are generated with the cifti_vis_recon_all and 

cifti_vis_fmri utilities.
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2.1 Step 0: Prerequisite processing to ciftify

The ciftify approach is achieved starting from the standard FreeSurfer recon-all output 

derived from at least one raw T1w image. The requirements for the T1w image is that is can 

be used to produce freesurfer surface outputs passing quality assurance. Therefore, like 

FreeSurfer, we recommend a resolution no greater than 1mm isotropic. The ciftify approach 

to fMRI should, in theory, work on any Freesurfer output along with any fMRI volume that 

has been preprocessed with any fMRI preprocessing pipeline, assuming that 1) no volume-

based smoothing has been applied and 2) the image has not been non-rigidly warped into 

standard space (Note: optional, expert user options allow for a standard space functional 

image to be provided with additional files detailing the standard space warp performed, see 

online documentation at https://edickie.github.io/ciftify/). To ensure the quality of the 

surface mapping step, it is recommended that preprocessing prior to ciftify_subject_fmri 

include steps to correct for EPI signal distortions. The fMRIPrep pipeline [32,33] 

incorporates many recommended practices for these fMRI preprocessing steps, as well as 

running the FreeSurfer pipeline (version 6.0). Therefore, the fmriprep_ciftify BIDS-app will 

run FMRIPrep to accomplish these preprocessing steps. Those wishing to run ciftify without 

the FMRIPrep preprocessing base can run the individual ciftify steps manually. More 

instructions for doing so are given at https://edickie.github.io/ciftify/#/tutorials/example-

usage. Recommendations for EPI distortion correction step are detailed further in 4.2 
Functional preprocessing considerations.

Importantly, the quality of surface-mapped MRI is strongly influenced by the registration 

between the functional volume and the anatomical data, which suffers in areas where the EPI 

image is distorted. HCP pipelines include two preprocessing steps to maximize the quality 

of registration across MR modalities: the acquisition and use of b0 field inhomogeneity 

maps [23], and the use of Boundary-Based Registration (BBR) for cross-modal alignment 

[34]. The FMRIPrep pipeline is a “glass box” workflow that allows for a simplified user 

interface for the implementation of these recommended approaches for fieldmap-based EPI 

distortion correction and Boundary-Based Registration (BBR) for cross-modal alignment. In 

addition, FMRIPrep offers an option for “fieldmap-less” distortion correction, which 

estimates the areas of distortion using a combination of a participant’s T1w anatomical data 

and an average fieldmap template [35,36].

2.2 Step 1: The participant anatomical workflow.

The first step in the ciftify workflow is accomplished by ciftify_recon_all, a command line 

utility adapted from the PostFreeSurferPipeline module of HCP’s Minimal Preprocessing 

Pipeline. Outputs from FreeSurfer are converted to GIFTI and CIFTI format. In turn, 

surface-based alignment of the cortical mesh is performed using the MSMSulc algorithm 

[37] followed by resampling to a 32k standard. In line with the HCP’s Minimal 

Preprocessing Pipeline, ciftify_recon_all outputs a directory structure where output files are 

divided into subfolders representing analysis “spaces”. More detail on these “spaces” is 

given in Glasser and colleagues [23]. In general, the MNINonLinear/fsLR32k combines the 

benefits of MNI volumetric registration (for subcortical structures) with surface-level 

registration based on sulcal anatomy for the cortex. This 91,282 standard-mesh 

“grayordinates” space, resampled to an approximate ‘32k’ (average ~2mm spacing), is the 
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HCP’s standard space for human fMRI and multimodal analyses (note that HCP fMRI was 

acquired with 2mm voxel resolution). The surface meshes for fsLR32k space differ from the 

fsavarge meshes (used in FreeSurfer pipelines) not only in resolution (fsaverage5 has ~4mm 

spacing), but also (and more importantly) by providing mirror-symmetry between the left 

and right meshes (i.e., vertex 1024 on the left mesh corresponds in geographic location to 

vertex 1024 in the right mesh [15]. This mirroring facilitates the analysis of symmetries and 

asymmetries in brain connectivity and diverse cortical features. Importantly, the CIFTI 

format also includes the FreeSurfer volumetric segmentation of subcortical and cerebellar 

structures.

For the purpose of retaining data provenance, ciftify_recon_all also produces a log file that 

records information about the input arguments, software environment, and information 

copied from the FreeSurfer logs about the environment in which recon_all was run. These 

logs also record all executed command line calls, so that the user can review the intermediate 

steps performed.

Due to the widespread use of FreeSurfer in the scientific community, it is anticipated that 

many investigators may already have recon_all outputs generated for their specific projects, 

with appropriate quality assurance completed. For such studies, the process to convert this 

data to CIFTI format can be achieved relatively quickly. However, if a high-resolution T2w 

image is available (i.e. a T2w image of voxel size matched to the T 1w image), it is 

recommended that the HCPPipelines anatomical modules are run (PreFreeSurfer, 

FreeSurfer, PostFreeSurfer) instead of FreeSurfer and cifitify_recon_all (see 4.1 Anatomical 
preprocessing considerations).

The anatomical workflow also produces quality assurance (QA) images, using the 

cifti_vis_recon_all utility, for reconstructed surfaces and subcortical masks (see Figure 2A). 

These images are analogous to those produced for other FreeSurfer quality assurance 

frameworks (such as FreeSurfer’s own QATools). Some investigators may find these outputs 

to be a valuable adjunct to FreeSurfer recon_all outputs. An optional flag will output an 

accompanying “.scene” file, which allows the user to browse these QA views interactively in 

the connectome-workbench viewer. These QA views include slice representations with pial 

and white surface contour overlays, as well as the reconstructed surfaces (derived from the 

midthickness surface) with FreeSurfer’s automatic parcellation (aparc) anatomical labels 

viewed from multiple standard angles. These images are generated using both the native and 

MNI space version of the outputs. Also, slices showing the masks generated by the 

FreeSurfer Automatic Segmentation (aseg) are presented in native T1w space so that these 

masks can be evaluated.

2.3 Step 2: The participant functional workflow

Once surface anatomy has been defined for a particular subject, the ciftify_subject_fmri 

utility is employed. The ciftify_subject_fmri stage maps preprocessed fMRI volumes to a 

specific subject’s fsLR23k “grayordinate” space. This utility, adapted from the fMRIsurface 

module of HCP’s Minimal Preprocessing Pipeline, projects from volume to the surface in a 

weighted, ribbon-constrained manner, where the value assigned to each vertex is calculated 

as a weighted average of the voxels encompassed (or partially encompassed) by the cortical 
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ribbon. Excessively noisy voxels, defined according to their local coefficient of variation, are 

excluded from the mapping. Importantly, this surface mapping approach differs from those 

used in other known pipelines - such as FreeSurfer, that resample only from voxels that 

intersect with the midthickness surface. Another notable difference from previous 

approaches is that data from subcortical structures are resampled within their anatomical 

masks to approximately 32k subcortical voxels (including cerebellum). The final output is a 

CIFTI mapped (dtseries.nii) version of the functional data, in MNINonLinear, fsLR32k 

space. Note that the fMRI input volume should be “minimally” preprocessed with no 

volume smoothing and no non-rigid registration to standard space (else that same 

registration would need to be applied to the surfaces too, which is not supported by ciftify). 

From this step, optional additional CIFTI smoothing can be added (2D surface smoothing 

for the cortical ribbon and parcel-constrained smoothing for subcortical volumes), though 

see the cautionary note in Coalson et al (2018) about smoothing of any kind.

Like the anatomical workflow, the functional workflow also produces visualizations for QA 

of the volume-to-cortex mapping step as well as subcortical resampling (see Figure 2B), 

using the cifti_vis_fmri utility. These images include slice overlays of the functional volume 

with the pial surface and views of the unsmoothed functional signal on the surface.

2.4 Generating a group quality assurance interface

These images are then combined into HTML pages so that collections of images can be 

viewed together in a browser window. Importantly, the HTML pages present the QA images 

in both subject-level pages (where all images related to one scanning session are presented 

together) as well as population-level index pages. These pages present the same view for all 

subjects in a study together. When the population is displayed beside each other, on the same 

page, QA failures can be identified more easily.

The cifti_vis utilities employ wb_command’s ‘-show-scene’ functionally to generate images 

for visual inspection. An optional flag will output an accompanying “.scene” file, which 

allows the user to browse these QA view options interactively in the connectome-workbench 

viewer. This framework does not require an external display nor MatLab proprietary 

software, which allows for easier generation on high-performance clusters, thus providing an 

advantage compared to other QA image-generating tools.

2.5 Programming Environment and Usage

The ciftify package contains a set of command-line utilities coded in Python. All code is 

publicly available under the MIT license at https://github.com/edickie/ciftify. The ciftify 

Python package (version 2.3.2) can be installed locally using the Python package 

management system (i.e., pip). Like the HCP pipeline, the ciftify package depends upon 

publicly available MR analysis software packages (FSL, FreeSurfer and Connectome 

Workbench) for various conversion and image manipulation steps. Also in concordance with 

the HCP Pipeline, the default surface registration algorithm is MSMSulc, dependent on the 

MSM registration tool (https://github.com/ecr05/MSM_HOCR/releases), and the Python 

packages docopt (docopt.org), nibabel [38], nilearn [39], pybids [40], NumPy [41], SciPy, 

PyYAML (https://pyyaml.org/), pandas [42], seaborn [43] and Matplotlib [44] are 
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dependencies. For further usage instructions and example code, see https://github.com/

edickie/ciftify/wiki.

This complete programming environment is available as a BIDS app [45] available on 

Docker Hub (https://hub.docker.com/r/tigrlab/fmriprep_ciftify/). Therefore, the workflow 

should be relatively straightforward to set up and run for any dataset organized in 

accordance with the Brain Imaging Data Structure (BIDS; [46].

Example Docker usage:

docker run -ti --rm \

  -v /path/to/bids/raw/data:/bids_in:ro \

  -v /path/to/output:/derivatives \

  tigrlab/fmriprep_ciftify:latest /bids_in /derivatives participant

As with all BIDS apps the <bids_in> should be the top level bids directory containing all 

data participants data for the study. The <derivatives> output directory path will be 

populated with three subfolders of outputs (freesurfer/ fmriprep/ and ciftify/). If one has 

already completed part of the processing (i.e. FreeSurfer) these processing steps will be 

skipped by the BIDS app if the output folders are already present. The “bids_in” input 

argument provides a path to the dataset to be analyzed (read-only), which must conform to 

the BIDS standard (see the BIDS speciftication (http://bids.neuroimaging.io) and 

Supplementary Table 1 for more details of the input file structure). The above command 

would run the ‘participant’ level workflow for all available functional data in the dataset in a 

serial fashion. However, additional flags can be added select specific participants, sessions 

or tasks for processing. These flags are valuable for splitting up participant level processing 

into smaller tasks to be submitted to a computing cluster.

For example, one could select to only process the resting state task data from session 015 of 

the MyConnectome data (as in the above figure), using the following command:

docker run -ti --rm \

  -v /path/to/local/ds000031:/bids_in:ro \

  -v /filepath/to/output:/derivatives \

  tigrlab/fmrirep_ciftify:latest /bids_in /derivatives participant \

  --participant_label=01 \

  --task_label=rest \

  --session_label=015

Once all participants have been run, a final ‘group’ level mode will quickly write group level 

(index) quality assurance html pages.

docker run -ti --rm \
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  -v /path/to/data/dir:/data:ro \

  -v /filepath/to/output/dir:/out \

  tigrlab/fmriprep_ciftify:latest /bids_in /derivatives group

The ciftify Docker container is intended to be run on personal computers and cloud services; 

however, Docker requires root or root-like permissions, and therefore may not be permitted 

in many multi-user environments, like High-Performance Clusters, for security reasons. For 

those using High-Performance Clusters, we recommend using the Singularity software. A 

Singularity image can either be built directly from the Docker specification (Singularity 

version >= 2.5), or the docker2singularity converter can be used to convert a Docker image 

into a Singularity image. For more detailed instructions for each use-case see (https://

edickie.github.io/ciftify/#/01_installation).

For example, to build a Singularity image from the DockerHub specification:

singularity build /my_images/fmriprep_ciftify_image.simg docker://tigrlab/

fmriprep_ciftify:latest

To run the Singularity image:

singularity run --cleanenv \

  -B /path/to/bids/raw/data:/bids_in:ro \

  -B /path/to/output:/derivatives \

  fmriprep_ciftify_image.simg /bids_in /derivatives participant

The output directory structure is in similar to that of the HCP-Pipelines, is organized into 

folders according to the “space” in which the files are registered. Outputs are comprise of 

~122 files approx 670 MB per participant. (See Supplementary Table 2 for more detailed list 

of all files generated).

3.0 Running analyses in CIFTI format

After data has been preprocessed into CIFTI format, the researcher needs to manipulate 

CIFTI files, in order to extract measures or run group analyses. For a researcher experienced 

only in volume-based analysis, this may present a challenge, as code may need to be adapted 

or rewritten. With recent software developments, most (if not all) calculations previously run 

in the volume are now possible on the surface. The Connectome Workbench command-line 

utility (wb_command) offers an extensive suite of functions that are well documented and 

computationally efficient [5; https://www.humanconnectome.org/software/connectome-

workbench]. In addition, the nibabel Python package (http://nipy.org/nibabel/) can read and 

write NIFTI, GIFTI and CIFTI formats, allowing for custom computations in the MatLab or 

Python (NumPy) environments. Connectome Workbench offers conversion utilities (-cifti-

convert) that convert CIFTI data to a “fake” NIFTI (i.e., a file that can be read and written by 

NIFTI utilities, but that does not contain correct spatial information) so that analyses that 

have been written for the NIFTI file format can be run. The greatest challenge is presented 

by those analyses that need to take spatial information into account (e.g., calculations of the 
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spatial extent of a statistical cluster). Fortunately, the command line version of FSL’s 

statistical packages, such as FSL’s linear modelling tools (FILM and FLAME), MELODIC 

and FSL’s Permutation Analysis of Linear Models [PALM; 47,48], for groupwise statistical 

tests, handles surface data and cifti format.

3.1.0 Additional utilities and ciftify binder.org learning environment.

The ciftify package also contains several utilities to assist in CIFTI-based surface-level 

analyses (see Table 1). These utilities are not meant as a replacement for the functionality in 

Connectome Workbench. In many cases, they are simple utilities that chain together multiple 

calls to Connectome Workbench. In these cases, commands can be echoed to the user when 

these utilities are run in with the “--verbose” or “--debug” flags. In some cases (such as the 

ciftify_meants), data is read into NumPy arrays using the NiBabel package. All code and 

examples are publicly available on our GitHub repository (https://github.com/edickie/

ciftify), which we hope can serve as example workflows for researchers new to the CIFTI 

analyses.

In contrast to the full ciftify preprocessing workflow, which requires more than 10 Gigabits 

of neuroimaging software prerequisites, these tools require only python as well as 

connectome-workbench. Therefore, they should be easier to install for new learners in a 

classroom or workshop setting. The programming environment is also available in an online 

interactive instance on binder.org (https://mvbinder.org/v2/gh/edickie/ciftify/master). Future 

work intends to build interactive examples into this public, online, tutorial space.

3.1.1 ciftify_statclust_report—The ciftify_statclust_info utility generates a table (.csv 

output) listing statistical clusters defined from an input CIFTI (.dscalar.nii) statistical map. A 

CIFTI file of labelled clusters is also output. The table lists, for each cluster, the cluster ID 

and name (matching the label in the corresponding dlabel.nii output), as well as the surface 

area of that cluster (calculated on the midthickness surface). The table also reports the 

overlap of the cluster with three atlases: (i) the FreeSurfer anatomical atlas [49]; (ii) the Yeo 

seven resting state networks atlas [17]; and (iii) the Glasser Multimodal Parcellation atlas 

[16]. For each peak, for each atlas, the table reports the label in which the peak vertex falls, 

as well as the proportion of the cluster (from the statistical input map) that overlaps with that 

index (see Figure 3).

4.0 DISCUSSION

The brain imaging field has lacked a framework for leveraging the HCP preprocessing 

philosophy for non-HCP legacy data. The ciftify project presented here helps to close this 

gap and encourages wider adoption of surface-based analysis of MR data, specifically using 

the CIFTI file format, for groups working with non-HCP legacy datasets. Allowing 

researchers to adapt the preprocessing pipelines they are most familiar with allows for 1) 

easier uptake of surface-based analysis insofar as we remove a steep learning curve and 2) a 

more flexible framework whereby we can test different preprocessing steps in order to 

optimize surface-level results across various acquisition settings. For this purpose, the 

workflow (fmriprep_ciftify), packaged in as a BIDS-app, adapts two critical sections from 

HCP’s Minimal Preprocessing Pipelines and can be readily deployed on legacy datasets. 
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This workflow also integrates the generation of quality assurance visualizations. In addition, 

the ciftify package contains a suite of tools to aid in the analysis and manipulation of data 

after it has been preprocessed into CIFTI format.

4.1 Anatomical preprocessing considerations

The goal of ciftify_recon_all was to start directly from default recon-all FreeSurfer outputs. 

Thus it offers a relatively simple starting point for groups to adopt and test: generating a 

CIFTI file of surface-level structural measures (such as cortical thickness) is just one 

command line call away from the workflow that many researchers are already familiar with. 

While this is an attractive prospect, we feel it important to stress that, when a high-resolution 

T2w image is available, the additional preprocessing steps incorporated into HCP’s Minimal 

Preprocessing Pipeline (especially the adapted FreeSurfer approach that uses the T2w signal 

for better pial surface placement) will yield superior results. To be even more explicit, 

although the results generated from ciftify will retain many advantages over volume-based 

processing, they are not equivalent to the results generated from the HCP’s minimal 

preprocessing pipelines. Note that by “high resolution” T2w image, we are referring to a 

T2w, or FLAIR acquisition matched in voxel size to the T1w image (i.e. no greater than 

1mm isotropic). Hence many existing studies that acquired T2w or FLAIR scans with thick 

slices or gaps of 2-7mm would not be appropriate. Therefore, the ciftify_recon_all workflow 

is only recommended for cases when a high-resolution T2w image is not available. Note that 

the anatomical outputs from the HCP’s Minimal Preprocessing Pipeline can be substituted 

for ciftify_recon_all outputs for those who would like to use ciftify’s other tools (such as 

ciftify_subject_fmri).

There remains an ongoing debate regarding the best algorithms, parameters and software for 

accurate between-subject alignment. We argue that the best registration algorithm should 

achieve the best alignment for a given level of distortion, or the least distortion for a given 

level of alignment. This concept applies to both volume-based and surface-based alignment 

steps within the ciftify pipeline. For the volume-based transformation to standard (i.e. MNI) 

space, we prefer FNIRT. Compared to the ANTs implementation in fmriprep, FNIRT is 

tuned conservatively to generate less distortion and as a result, does not overfit to folding 

patterns [14 see Supplementary Figures S11 and S12]. This recommendation for volume-

based alignment mirrors recent observations for surface-based alignment, where the 

FreeSurfer default alignment produces more spherical distortion and performs less well at 

aligning cortical areas than does MSM alignment that has been tuned for less distortion (the 

amount of distortion allowed was determined by optimizing for maximal task-based 

functional alignment [37,50]. However, as both volume and surface alignment tools continue 

to be developed, mechanisms need to be available for available tools to be validated in 

comparison to one another, within the context of pipelines like ciftify. Therefore, we have 

added expert-user options to change realignment settings or to override the realignment with 

a user-provided (FSL format) transform file.

4.2 Functional preprocessing considerations

Importantly, the quality of surface-mapped MRI is a product of the quality of the volume-to-

surface mapping step. This, in turn, is a direct consequence of the registration between the 
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functional volume and the anatomical data, which suffers in areas where the EPI image is 

distorted. The HCP adopted state of the art methods to maximize the quality of registration 

across MR modalities. These methods included upgrading sequences to acquire data at a 

voxel size smaller than average cortical thickness, the acquisition of data for correcting EPI 

distortion [23], and the use of Boundary-Based Registration (BBR) for cross-modal 

alignment [34]. While it is clear that legacy acquisitions will generally not match the quality 

of HCP, it is important that investigators make preprocessing choices that will maximize the 

data quality of their dataset given its limitations.

A critical step for good fMRI-to-anatomical mapping is correcting for fMRI distortions. 

Correcting for susceptibility distortions in fMRI data can be done with several approaches. 

The preferred technique is to use data from additional field map or phase reversed spin echo 

scans. Phase encoding polarity techniques combine images with opposing phase encoding to 

calculate distortion maps (using tools such as FSL’s TOPUP [51]. This is the technique 

currently used by the HCP. Second, field maps can be estimated using sequences that 

measure phase evolution in time between two close gradient echo acquisitions [52]. It is 

becoming common practice to incorporate one of these techniques into current acquisition 

protocols. However, proper incorporation of these sequences into a fMRI preprocessing 

pipeline can be challenging for a novice brain scientist, as they often require increased 

knowledge of the specific scan acquisition settings. The fMRIprep pipeline offers a helpful 

interface in this regard, where the appropriate EPI distortion software will be called as long 

as the input files are organized in accordance with the Brain Imaging Data Structure (BIDS). 

For older acquisitions, where no field map or reverse-phase encoded maps are available, 

FMRIPrep has implemented a displacement field estimation via nonlinear registration. 

Another experimental approach is the incorporation of mean field map images (if they are 

available) from the employed scanner. Future work will explore these and other distortion 

correction options in legacy fMRI data to ensure that the deformations they generate lead to 

net improved registrations over no correction.

Another important consideration is whether or not to smooth data on the surface or within 

the subcortical grey matter structures. Spatial smoothing increases signal to noise ratio, but 

at a cost to anatomical specificity. It is extremely important to avoid volume-based 

smoothing before the volume-to-surface mapping step because such smoothing (even with a 

small 4mm FWHM kernel) is very deleterious to cortical anatomical specificity [14]. Once 

fMRI data is in cifti format, 2D surface-based smoothing can be applied to the cortical data 

and 3D parcel-constrained smoothing can be applied to the subcortical data. If smoothing is 

used, we recommend moderation, as even 4mm FWHM in the surface is mildly deleterious, 

particularly to cortical areas that are narrow [14], but may provide an acceptable tradeoff to 

increase signal to noise ratio in small sample sizes (in large datasets like the HCP smoothing 

is often unnecessary). A preferable alternative for improving the signal to noise ratio are 

approaches like parcellation [16] or using Wishart-based filtering to preferentially smooth 

noise over spatiotemporally structured signal [2]. Parcellation is especially preferable to 

smoothing for researchers who are interested in effects at the level of cortical areas.
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4.3 The value of higher resolution data

While we advocate use of the HCP analytic approach to all MR datasets, we recognize the 

synergistic benefits from combining the HCP’s analytic approach with the HCP’s higher 

standards for MR data acquisition. In particular, higher spatial resolution for MR data, 

specifically a voxel size less than the mean cortical thickness (~2.6mm) allows for better 

separation of signal across sulci/gyri of opposite grey matter ribbons [2]. That said, even 

fMRI resolution as low as 4mm benefits from the HCP-Style approach to cross-subject 

alignment and not smoothing in the volume [14]. In addition, increasing the temporal 

resolution of MR data allows for more effective cleaning for MR artifacts from motion or 

physiology [2,53,54].

4.4 A note about visualizing a volume-based result on the cortical surface

It is becoming more common for researchers to provide surface visualizations when 

reporting the results of a volume-based group analysis. This practice is beneficial, in 

comparison to slice representations, for the communication of whole brain results, and can 

drive more thoughtful interpretations that reflect large-scale networks. For this reason, 

ciftify_vol_result, a utility for doing simple NIFTI to CIFTI mapping, is included in the 

ciftify package. If a group average ‘subject’ (i.e. HCP_S1200_GroupAvg) is specified, 

‘average fiducial mapping’, or mapping to average surfaces, is performed [55]. This type of 

mapping, while fast and easy, suffers from the drawback that group average surfaces fail to 

closely overlap with the actual location of the cortical ribbon. Instead, they “drift” towards 

the inside of curvature (often towards white matter) especially in areas of variable folding 

patterns, such as the association cortex [14]. What is more troubling is that if the 

correspondence between MNI coordinates and cortical areas is not uniform throughout the 

cortex, results will be most severely impacted in regions of high individual variability and 

especially for gyral crowns and sulcal fundi. An alternative approach is to repeat the 

volume-to-surface mapping steps using the surfaces from a collection of subjects, and then 

to summarise (i.e., average) the results. This so-called “multi-fiducial mapping” [55] 

samples more uniformly from association cortex, with the caveat that the effects of blurring 

from cross-subject misregistration will be applied twice [14].

Unfortunately, no direct method for surface projection of a group average volume result is 

accurate. Once data has been averaged and smoothed in the volume, precise cortical 

localization cannot be recovered for cortical areas of high folding variability (i.e. association 

cortex) [14] - although the magnitude of this problem may be minimal in some areas (like 

parts of the insula) where there is lower variability of folds and of areas relative to folds 

across subjects [14]. Therefore, the only way to accurately map the cortical areas for a 

statistical contrast of interest is following a surface-based preprocessing of individual 

subjects and surface-level group analysis. This fact is one of the major reasons we developed 

ciftify. This has implications for the appropriate combination of ciftify utilities when 

evaluating the result of a volume-based analysis: while it is technically possible to input a 

dense scalar file generated from ciftify_vol_result into ciftify_statclust_report, the resulting 

table should be interpreted with great caution. In particular, due to individual differences in 

cortical folding patterns and functional organization, the MMP1.0 parcellation cannot be 
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accurately translated into MNI volume space [14]. Therefore, ciftify_peaktable is not 

recommended for the results from a volume-based analysis.

4.5 Future directions

While important advances in software development for the CIFTI file format have been 

achieved, a multitude of analysis workflows are more easily applied in volume than on the 

surface. Examples of comprehensive analysis packages include the NiLearn project for 

machine learning in Python, which contains several integrated utilities of NIFTI file 

manipulation, plotting, and time-series extraction [39]. Future work will be needed to 

integrate CIFTI file reading and writing into these programming environments. In addition, 

neuroinformatics platforms are well known for the systematic (machine-readable) reporting 

and meta-analysis of statistical maps in MNI (volumetric) space. Specific projects include 

neurosynth [neurosynth.org; 56], NeuroVault [https://neurovault.org/; 57] and BrainMap 

(brainmap.org). Moreover, the greater neuroimaging community has aided these efforts by 

defining standards for reporting of these data as part of the neuroimaging data model [58]. 

The seeds for an alternative approach are provided by the BALSA database (balsa.wustl.edu, 

[59], a repository for sharing CIFTI-based results (via scene files in Connectome 

Workbench). Future work will be needed to develop methods for meta-analytic synthesis of 

these results.

Currently, the ciftify workflow employs surface anatomy (sulcal depth) based alignment to 

align cortical data across subjects. Recent advances show that improvements in cross-subject 

alignment can be gained using additional features such as resting-state connectivity 

[50,60,61] and/or surface myelin maps [50]. The HCP pipelines have implemented these 

advances in registration into their workflow, using the Multimodal Surface Matching 

registration tool [37,MSM; 50], to incorporate fMRI and anatomical features in the 

“MSMAll” registration [2]. A ciftify workflow using only T1w data cannot match the 

precision of the HCP Pipeline surfaces. The HCP surface refinement procedure requires the 

high-resolution T2w image as well as additional tools for registration. Individualized 

parcellations based on functionally-related features (such as resting-state connectivity) could 

potentially provide an additional mechanism for improving cross-participant correspondence 

when the signal is averaged within these parcels [16,21]. Future work is needed to validate 

which cortical regions might be effectively parcellated using the features available in legacy 

datasets.

There is rapid growth in the field of surface-based MR analysis. A growing number of 

analytic toolkits and methods use surface-based approaches, including novel 2D registration 

algorithms [37,60], diffusion embedding[19], and individualized parcellation[16,21,62,63]). 

However, due to differences in the underlying surface meshes (for example fsaverage5 vs 

fsLR32k vs CIVET), combining and comparing these methods remains technically 

challenging. The ciftify package allows for immediate application of tools and atlases 

developed using the HCP data (published in fsLR32k space) to a multitude of additional 

datasets. We believe the field will benefit from a simplified framework that promotes 

interoperability of different surface-based tools and facilitates evaluation of their 

performance on various type of MR acquistions (where diverse sources of noise may be 
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present). We hope that the ciftify toolkit will provide a more standardized (and available) 

approach for the steps required to integrate fsLR32k atlases and tools into extended 

harmonized workflows.

4.6 Conclusions

The ciftify package offers a bridging solution for legacy data that will allow many 

researchers to adopt CIFTI format analyses. We intend for the analytic framework provided 

within the ciftify package to be a starting point for future bridging work. In parallel, the 

research community is increasingly embracing the HCP’s standards for MR data acquisition. 

Several initiatives, e.g. HCP Lifespan, the Connectomes Related to Human Disease, ABCD 

[64] and the UK Biobank [65]) are now taking advantage of higher spatial and temporal 

resolution of MR data made possible using multi-band (multi-slice) acquisition (Ugurbil et 

al., 2013). Going forward, we hope that studies of such methodological quality will become 

the norm, rather than the exception. Whether using cifity for legacy data or CIFTI for HCP-

quality data, it is our hope that an analytic shift from traditional volume-based approaches to 

surface-based (i.e. grayordinate) approaches will accelerate within the neuroimaging 

community.
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HIGHLIGHTS

• the ciftify package allows for grayordinate-based (CIFTI format) analysis of 

non-Human Connectome Project (i.e. legacy) MR acquisitions

• The workflow and dependencies are distributed as a Docker container, 

following the BIDS-app interface

• Additional ciftify utilities aid in downstream analysis of CIFTI images

• We intend for this work to offer bridging solution for legacy data that will 

allow many researchers to adopt CIFTI format analyses
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Figure 1. 
Key modules from HCP minimal processing pipelines (left) were adapted to create the 

ciftify preprocessing workflow (right). Within the fmriprep_ciftify BIDSapp the prerequisite 

processing steps listed here are performed by fmriprep. Additional usage options, including 

the ability of the user to input pre-calculated transforms to standard space, are given at 

https://edickie.github.io/ciftify/.
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Figure 2. 
Example quality assurance (QA) pages created using A) cifti_vis_recon_all and B) 

cifti_vis_fmri. These example QA webpages can be viewed at https://edickie.github.io/

ciftify/demo/qc_recon_all/index.html.
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Figure 3. 
Example output table generated by ciftify_statclust_report. For this simulated statistical map 

(red-yellow shading), the output table summarizes a statistic map, according to input 

statistical thresholds, as one cluster (white outline). From the cluster, ID number, mean 

statistical value and the approximate surface area in mm2. Then, for three surface atlases, we 

report atlas labels encompassing the proportion of the cluster’s surface area that overlaps 

with this atlas label. In this example, 61.5% of the cluster overlaps the “L_precuneus” label 

of the FreeSurfer anatomical atlas (Desikan et al., 2006). Likewise, the entire cluster falls 

within Network 7 (i.e. the Default Mode Network) of the Yeo atlas (Yeo et al., 2011). Lastly, 

32.4% of the cluster’s surface area falls within the ‘L_31pv_ROI’ label from Glasser and 

colleagues Multimodal Parcellation atlas (Glasser et al., 2016a).
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Table 1.

Additional utilities included in the ciftify package

Name Description

ciftify_meants Produces a comma separated values (*.csv) file mean voxel/vertex timeseries from a functional file <func> within a 
seed mask <seed>. <func> functional data input can be NIFTI or CIFTI (*.dscalar.nii or *.dtseries.nii). Seed mask 
input can be in NIFTI, CIFTI (*.dlabel.nii or *.dscalar.nii) or GIFTI.

ciftify_seed_corr Produces a seed correlation map of the mean timeseries within the seed with every vertex/voxel in the functional file. 
Like ‘ciftify_meants’, can take a combination of NIFTI, CIFTI or GIFTI inputs. The output seed correlation map 
matches the file type (NIFTI or CIFTI) of the input functional file.

ciftify_clean_img Performs a combination of signal “cleaning” steps (bandpass filtering, confound regression, dummy TR removal and 
smoothing) for use on CIFTI and NIFTI inputs. Signal cleaning settings can be specified in combination in a “.json” 
configuration file, or as command line argument.

ciftify_statclust_report Creates a tabular statistical report from an input (*.dscalar.nii) map.
Includes overlap of clusters with standard atlases

ciftify_atlas_report Creates a tabular report of overlap between the input atlas or labels (*.dlabel.nii) with standard atlases

ciftify_vol_result Simplified mapping of a NIFTI statistical map or atlas to fsLR32k CIFTI “grayordinate” space of a specified subject.
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