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Cellular/Molecular

A Circadian Clock in the Olfactory Bulb Controls Olfactory
Responsivity

Daniel Granados-Fuentes, Alan Tseng, and Erik D. Herzog
Department of Biology, Washington University, St. Louis, Missouri 63130-4899

Recently, it has been shown that multiple mammalian cell types express daily rhythms in vitro. Although the suprachiasmatic nucleus
(SCN) of the hypothalamus is known to regulate a wide range of circadian behaviors, the role for intrinsic rhythmicity in other tissues is
unknown. We tested whether the main olfactory bulb (OB) of mice mediates daily changes in olfaction. We found circadian rhythms in
cedar oil-induced c-Fos, a protein marker of cellular excitation, in the mitral and granular layers of the OB and in the piriform cortex (PC).
These oscillations persisted in constant darkness with a fourfold change in amplitude and a peak ~4 h after the onset of daily locomotor
activity. Electrolytic lesions of the SCN abolished circadian locomotor rhythms, but not odor-induced c-Fos rhythms in the OB or PC.
Furthermore, removal of the OB abolished spontaneous circadian cycling of c-Fos in the PC, shortened the free-running period of
locomotor rhythms, and accelerated re-entrainment after a 6 h advance and slowed re-entrainment after a 6 h delay in the light schedule.
OB ablation or odorant altered the amplitude of c-Fos rhythms in the SCN and ablation of one OB abolished c-Fos rhythms in the
ipsilateral PC, but not in the contralateral OB and PC. We conclude that the OB comprises a master circadian pacemaker, which enhances

olfactory responsivity each night, drives rhythms in the PC, and interacts with the SCN to coordinate other daily behaviors.
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Introduction

The suprachiasmatic nucleus (SCN) of the hypothalamus is con-
sidered the master circadian clock, which controls rhythmic ex-
pression of many physiological variables in mammals (Moore
and Card, 1985; Reppert and Weaver, 2001). The recent discov-
eries of extra-SCN tissues and cell types that express daily
rhythms in gene expression in vitro have motivated analyses of
coordination among multiple circadian oscillators in vivo and
their relevance to timing-related disorders, including jet lag (Bal-
salobre et al., 1998, 2000a,b; Yamazaki et al., 2000; Stokkan et al.,
2001; Schibler and Sassone-Corsi, 2002; Tosini and Fukuhara,
2003; Panda and Hogenesch, 2004; Guo et al., 2005). Among
mammalian neural tissues, the SCN, retina, and main olfactory
bulb (OB) have been shown to generate near 24 h rhythms in
hormone secretion or firing rate, which can be synchronized to
24 h cycles in their environment (Tosini and Menaker, 1996; Abe
et al,, 2002; Granados-Fuentes et al., 2004a,b; Abraham et al.,
2005). Importantly, the roles for clocks outside the SCN are
unknown.

The OB is the first relay of the mammalian olfactory system
and is critical to detection and discrimination of odorants using
precisely wired neural circuits. Mitral-layer neurons of the OB
send olfactory information to higher brain centers, including the
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piriform cortex (PC), anterior olfactory nucleus (AON), amyg-
dala, and hypothalamus (Komiyama and Luo, 2006; Mori et al.,
2006). Using the protein of the immediate early gene, c-Fos, as an
indicator of cellular responses, Amir et al. (1999a) reported day—
night differences in odor-induced responses in multiple brain
areas associated with olfaction. Furthermore, indirect projections
from the OB to the SCN have been reported (Krout et al., 2002),
and olfactory stimulation enhances light-induced phase shifts of
locomotor activity and c-Fos expression in the SCN (Amir et al.,
1999b). Combined, the anatomical evidence suggests that the OB
could gate daily olfactory processing and interact with the canon-
ical SCN-driven circadian system.

The field of circadian biology has relied heavily on daily
running-wheel activity in rodents as an indicator of the state of
intrinsic circadian timekeeping. Although this behavior is easy to
measure and highly repeatable from day to day, it may not reflect
rhythmicity in all circadian clocks. We sought to measure an
alternative output that might reflect the action of a pacemaker in
the olfactory system. We measured running-wheel activity pat-
terns and spontaneous and odor-evoked c-Fos expression at dif-
ferent times of day in the olfactory system of intact, SCN-lesioned
(SCNX), and bilateral or unilateral bulbectomized (OBX) mice.
The results indicate that the OB clock regulates olfactory respon-
sivity within the OB and PC as a function of time of day.

Materials and Methods

Animals and locomotor activity recordings. Male C57BL/6 mice (2 months
of age) were purchased from Charles River (Boston, MA) and housed
individually for 1 week in a 12 h light/dark (LD) cycle (lights on at 7:00
AM.). For locomotor activity assays, cages were then placed in light-
tight, ventilated chambers illuminated by fluorescent bulbs (3.9 X 10'7
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to 6.9 X 10'® photons/s/m? at the bottom of the cages). We recorded
running-wheel revolutions in 1 min bins using Clocklab (Actimetrics,
Evanston, IL) as described previously (Aton et al., 2004). All procedures
were approved by the Animal Care and Use Committee at Washington
University and conformed to National Institutes of Health guidelines.

Surgical procedures. For SCN lesions, mice were anesthetized with ket-
amine (75 mg/kg) and medetomidine (0.5 mg/kg, i.p.) and placed in a
stereotaxic apparatus (David Kopf Instruments, Tujunga, CA). Bilateral
lesions were made by passing an anodal current (40 s of 1.25 mA DC)
through a tungsten electrode (563410; A-M Systems, Carlsborg, WA)
placed 0.6 mm posterior to, =0.1 mm lateral to, and 5.7 mm below
bregma (Paxinos, 2003). Control animals received sham SCN lesions in
which no current was passed through the electrode.

For bulbectomies, animals were anesthetized with ketamine (75 mg/
kg) and medetomidine (0.5 mg/kg, i.p.), and bilateral or unilateral holes
3 mm wide were drilled above the OB and the bulbs suctioned. Control
animals were treated identically, but no suction was applied.

Operated animals received atipamezole (0.1 mg/kg) to reverse the an-
esthetic and, after 1 h, were returned to their home cages. After behav-
ioral and histological examination, we excluded mice with incomplete
SCN lesions (n = 3) or incomplete bulbectomies (n = 1).

c-Fos expression in the OB and PC. To test for circadian changes in OB
and PC excitability, we measured odor-induced c-Fos expression in mice
maintained in a 12 h LD cycle (lights on at 7:00 A.M.) for 5 d and then in
constant darkness (DD) for 10 d. We defined the time of daily activity
onset in DD as circadian time 12 (CT12) and other times in circadian
hours (24 divided by the free-running period of the locomotor activity)
from CT12.

Under infrared illumination (number 11 filter; Kodak, Rochester, NY)
and wearing night-vision goggles (model E1700-4C; Excalibur Electron-
ics, Fogelsville, PA) and disposable gloves, D.G.-F. exposed mice to cedar
oil (§79956; Fisher Scientific, Pittsburgh, PA) diluted 1:1000 in mineral
oil (M-8410; Sigma, St. Louis, MO) for 5 min at CTO0, 4, 8, 12, 16, or 20
(n = 4 mice per CT). We exposed mice to odorant in a room adjacent to
the room where locomotor activities were monitored to avoid stimula-
tion of neighboring mice. The tip of a cotton swab, soaked with 100 ul of
the odorant, was placed 2 cm below the lid of the home cage. Mice
typically investigated the cotton swab for nearly the full 5 min of exposure
so that the latency to sniff and duration of active investigation did not
vary with circadian time (data not shown).

To test whether the canonical master circadian pacemaker plays a role
in c-Fos expression in the OB and PC, a second group of mice was
exposed to odorant after receiving bilateral electrolytic lesions to their
SCN. All lesions were done at CT4, and locomotor activity was recorded
for eight additional days in DD. We stimulated mice with cedar oil at
projected CTO, 4, 8, 12, 16, or 20 (n = 4 per CT). Projected CT12 was
extrapolated from the onsets of free-running locomotor activity on the
12-15 d before SCN ablation and defined as the time of projected activity
onset on the eighth day after SCN ablation (supplemental Fig. 1, available
at www.jneurosci.org as supplemental material). Other circadian times
were defined in circadian hours from projected CT12. Some sections
were also stained for Nissl to identify the layer boundaries and cellular
identities in the OB. Granular cells were characterized by their smaller
size and darker nuclei.

Animals in each of these two groups were anesthetized (avertin, 0.75
mg/g) 50 min after odor presentation, perfused intracardially with 0.9%
saline followed with 4% paraformaldehyde (441244)-lysine (L5626)-
periodate (PLP) (S-1878; all from Sigma; pH 7.2) fixative, and their
brains were dissected. Each isolated brain was stored in PLP for 1 hat4°C
and then transferred successively to 10%, 20% (for 1 d each), and 30%
sucrose phosphate-buffered (PB) solutions for 3 d until brains sank.
Intact and SCNX animals were divided randomly into two groups that
were fixed on two separate days. Serial coronal sections (40 wm thick)
were obtained with a cryostat (CM1850; Leica, Maryland Heights, MO)
and stored in 0.1 M PBS, pH 7.2, at 4°C for 24 h. Sections were processed
in two groups with two mice from each CT for c-Fos (s.c.-52 rabbit
polyclonal antibody; Santa Cruz Biotechnology, Santa Cruz, CA) immu-
noreactivity according to the avidin-biotin method (ABC kit, pk-6101;
Vector Laboratories, Burlingame, CA). Specificity controls for this anti-

Granados-Fuentes et al. @ The OB Controls Circadian Olfactory Responsivity

body in mouse brain have been published previously (Van Der et al.,
2000; Schwartz et al., 2004). Sections were mounted on precleaned slides
(12-550-14; Fisher Scientific) and coverslipped with Permount (SP15-
500; Fisher Scientific).

Digitized images (Retiga 1350EX; QImaging, Burnaby, British Colum-
bia, Canada) using Northern Eclipse software (Empix, North
Tonawanda, NY) were taken using standardized illumination for all sec-
tions. We assigned sections randomly to two individuals, blind to exper-
imental conditions. The numbers of c-Fos-expressing cells in a volume of
1 X 107 um? were counted in 100 nonadjacent fields (50 X 50 X 40 wm)
of two sections containing the medial OB and two sections containing the
PC and SCN. Some sections were counted by both observers; counts
never differed by >5%.

Regulation of c-Fos expression in the PC by the OB. To test the hypoth-
esis that a circadian clock in the OB modulates excitability in the olfac-
tory cortex, three groups of mice were maintained in LD for 5 d and
received sham, bilateral (OBX), or unilateral bulbectomies (UOBXs).
Sham and OBX mice were then kept for 5 d in LD followed by 10 d in DD
and killed at CTO0, 4, 8, 12, 16, or 20 (n = 4 per CT). UOBX animals (n =
6 per CT) were stimulated with cedar oil (diluted 1:1000) at CT8 or CT16
and killed 50 min later. The fixed brains of all mice were processed for
c-Fos immunoreactivity as described above.

Modulation of SCN controlled circadian rhythms by the OB. To investi-
gate whether the OB affects rhythms controlled by the SCN, we studied
whether bulbectomies or olfactory stimulation changed c-Fos expression
in the SCN. From the sham, odor-exposed, and OBX groups (n = 24
mice in each group; six CTs), we counted c-Fos-immunopositive cells in
the core and shell of the SCN. Two observers, blind to experimental
conditions, combined to count immunopositive cells in 93 nonadjacent
fields (40 X 40 X 40 wm) from two medial SCN sections of each mouse.

In addition, we analyzed running-wheel activity of sham (n = 10) and
OBX (n = 24) mice from 10 din a 12 h LD cycle (lights on at 7:00 A.M.),
from 11 d after a 6 h delay in the light cycle (lights on at 1:00 P.M.), from
11 d after advancing the light schedule (lights on at 7:00 A.M.), and finally
from 6 d in DD. Onsets and offsets of daily activity were determined
using a 6 h on/6 h off template with Clocklab software. We measured the
number of days to re-entrain after each shift in the light schedule, the
average onset time of daily activity (termed the phase angle of entrain-
ment) during the last 3 d in each light cycle, and the free-running period
during the 6 d in DD.

Results

Odor-evoked c-Fos is circadian in the OB and PC

To test whether the circadian patterns of gene expression and
firing rate in the cultured OB (Abe et al., 2002; Granados-Fuentes
et al., 2004b) relate to olfactory function in vivo, we counted
c-Fos-immunoreactive (c-Fos-IR) cells in the olfactory system of
mice after stimulation with cedar oil at different times of the day.
In constant darkness, cedar oil induced similar daily rhythms in
the number of c-Fos-IR cells of the OB and PC (Fig. 1) (supple-
mental Fig. 1, available at www.jneurosci.org as supplemental
material). Approximately four times as many cells were labeled
during the early subjective night compared with the subjective
day in all three areas. Labeling was found throughout the OB and
PC, regardless of the CT, and in some cells of the glomerular
layer. Nissl-stained sections revealed that c-Fos-IR cells were pre-
dominantly granular cells in both the mitral and granular layers.

Odor-evoked c-Fos rhythms do not require the SCN

To assess the role of the canonical circadian pacemaker in the
SCN on rhythms in the olfactory system, we measured c-Fos
induction by cedar oil in SCN-lesioned mice. Because destruction
of the SCN abolished locomotor rhythms during the 8 d before
olfactory stimulation, we exposed mice to odorant for 5 min at a
projected circadian time determined by extrapolating the daily
onsets of locomotor activity before lesioning the SCN. We found
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Figure 1.  Odor-evoked c-Fos rhythms persisted in the OB and PC of SCNX mice. Intact mice showed high-amplitude circadian

rhythmsin running-wheel activity and in cedar oil-induced c-Fos expression in their 0B and PC (n = 4 per (T). a, ¢, e, The numbers
of c-Fos-positive cells in the mitral and granular layers of the OB (a, ¢) and in the PC (e) peaked during the subjective night,
approximately (T16, and declined approximately fourfold to a minimum during the subjective day, approximately (T8 (£, ,3) =
10.3,p < 0.0001 formitral; F 55, = 15.5,p << 0.0001for granular; £, ,3 = 9.6, p << 0.0001 for P counts; one-way ANOVA and
Tukey's test). SCNX mice were arrhythmicin running-wheel activity but showed a circadian rhythm in odor-induced c-Fos expres-
sionin their 0B and PC (n = 4 per (T). b, d, f, The numbers of c-Fos-positive cells in the mitral (b) and granular (d) layers of the 0B
and in the PC () peaked during the projected subjective day (CT0 - 4) and declined approximately twofold to a minimum during
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OB normally augments spontaneous c-Fos
expression in the PC around subjective
dawn.

Because OB afferents exclusively
project ipsilaterally to the PC (Brodal,
1981; Brunjes et al., 2005), we predicted
that OB regulation of PC rhythms would
be strongly lateralized. We performed uni-
lateral bulbectomies and found that cedar
oil-induced higher c-Fos at CT16 than
CT8 in the remaining OB and in the ipsi-
lateral PC but no day-night difference in
the contralateral PC (Fig. 4). These data
indicate that the OB normally augments
odor-evoked responses in the ipsilateral
PC during the subjective night.

The OB modulates circadian rhythms
regulated by the SCN
Some anatomical and behavioral studies
have suggested an OB-to-SCN signaling
pathway but have not revealed functional
evidence for this interaction (Goel and
Lee, 1997; Goel et al., 1998; Possidente et
al., 1990; Governale and Lee, 2001; Krout
et al., 2002). We explored the potential
role of the OB in SCN-controlled locomo-
tor activity rhythms and in c-Fos expres-
sion rhythms in the SCN.

We tested whether removal of the OB

the subjective night (F, ,5) = 7, p = 0.001 for mitral; f, ,3) =
counts; one-way ANOVA and Tukey's test).

that the odor-evoked rhythms persisted in the mitral and granu-
lar layers of the OB and in the PC of SCNX mice (Fig. 1) (supple-
mental Fig 1, available at www.jneurosci.org as supplemental ma-
terial). Critically, odor-induced rhythms peaked ~8 h before the
time of projected locomotor activity onset and 12 h out of phase
with the c-Fos rhythm seen in SCN-intact mice. Peak-to-trough
rhythm amplitude was unaffected by SCN ablation in the mitral
(207.5 = 21.5 c-Fos-IR cells in SCN-intact mice vs 163.3 == 3.8 in
SCNX; mean = SEM; p = 0.09, Student’s ¢ test) or granular layers
of the OB (1123 * 76.2 intact vs 1024.8 = 67.8 SCNX; p = 0.4,
Student’s ¢ test) but reduced in the PC (663 = 93.7 intact vs
374.3 * 39.5 SCNX; p = 0.03, Student’s ¢ test). Thus, odor in-
duced a greater response in the OB and PC during times when
mice would typically be active, but this rhythm did not require
the SCN or daily rhythms in sleep-wake.

Spontaneous and odor-induced circadian rhythms in c-Fos in

the PC require the OB

Because the PC receives the vast majority of afferent fibers from
the OB (Brunjes et al., 2005), we predicted that the OB clock
could regulate circadian rhythms in the PC. We found circadian
rhythms peaking at approximately CTO in the number of
c-Fos-IR cells of the OB and PC from mice that were not exposed
to cedar oil (Fig. 2). This “spontaneous” circadian rhythm pro-
vided the opportunity to test whether rhythms in the PC are
driven by the OB. We found that removal of the bilateral OB
resulted in arrhythmic numbers of c-Fos-IR cells in the PC across
the circadian cycle (Fig. 3). Because levels were intermediate
compared to intact, nonstimulated animals, we conclude that the

= 8.05, p < 0.0001 for granular; F,

affects SCN-driven rhythms in wheel run-
ning. OBX significantly reduced the num-
ber of days needed to re-entrain to a 6 h
advance in the LD cycle and significantly
lengthened the time needed to re-entrain to a 6 h delay (Table 1).
Consistent with these changes in re-entrainment rates, OBX
shortened the free-running period of locomotor rhythms but did
not change the phase angle of entrainment to a 12 h LD cycle.
These results indicate that, in mice, the OB can modulate circa-
dian behaviors that require the SCN.

We examined the effects of odor presentation on c-Fos ex-
pression in the SCN. Previous reports highlighted spontaneous
daily rhythms peaking near CT12 in c-Fos expression in the ven-
trolateral (“core”) and, with lower amplitude, in the dorsomedial
(“shell”) of the rat SCN (Sumova et al., 2000). We found signifi-
cant circadian rhythms in the numbers of c-Fos-IR cells in the
core and shell of the SCN of mice that had or had not been
exposed to cedar oil (Fig. 5). The rhythms of cedar oil-stimulated
and control animals peaked at approximately CT12 in the SCN
core and shell and had a significantly higher peak in the core of
odor-exposed mice. OBX increased the rhythm amplitude in the
core at four of six circadian points but had no significant effect in
the SCN shell. These results show that stimulation or removal of
the OB induces changes in SCN c-Fos patterns.

=7.6,p = 0.001 for PC

Discussion

A fundamental question in circadian biology is whether and how
daily changes in gene activity relate to physiology and behavior.
We previously reported that circadian oscillations in PerI activity
in the OB are entrainable and temperature compensated in vitro
and persist in animals whose SCN were arrhythmic or had been
lesioned (Granados-Fuentes et al., 2004a,b). The present data
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Figure2.  Spontaneous c-Fos rhythms in the 0B and PC. Behaviorally rhythmic mice (n = 4

per CT time), which were not exposed to cedar oil, showed a peak in c-Fos expression around
subjective dawn (CT20—0) in the mitral and granular layer of the OB (a, b) and the PC (c). The
number of ¢-Fos-positive cells declined nearly fivefold to a minimum during the late subjective
day (3,23 = 9.2,p < 0.0001 formitral; F, 53 = 5.1,p = 0.004 for granular; F , 3y = 6,p =
0.002 for PC counts; one-way ANOVA and Tukey's test).
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Figure 3.  OBX abolished the PC rhythm in spontaneous c-Fos expression. Bulbectomized
mice showed free-running locomotor rhythms but lost rhythmicity in the PC (continuous line)
(F23 = 0.9; p = 0.5; one-way ANOVA). The number of c-Fos-IR cells was constant and
intermediate compared with intact mice (dashed line; replotted from Fig. 2¢).

implicate a circadian clock in the OB in the daily regulation of
olfactory responsivity.

Circadian regulation of olfaction
Circadian regulation of olfactory responsivity may be highly con-
served. We found that olfactory stimulation induced circadian
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Figure4. PCrhythmsrequire theipsilateral OB. Removal of one OB did not abolish locomotor

rhythms or cedar oil-induced c-Fos expression in the remaining 0B (cumulative counts from
mitral and granular layers) (a) or the ipsilateral PC (Ipsi-; b, dashed bars) with higher expression
atapproximately (T16 and lower at approximately (T8 (t = 3.9,p = 0.003for 0B;t = 3.3,p =
0.007 for PC; Student’s ¢ test). In contrast, the number of c-Fos-positive cells in the contralateral
PC(Contra-; b, gray bars) was low during both the subjective day and night (t = —0.2,p = 0.;
Student's t test; n = 5 per CT). Thus, UOBX specifically eliminated the odor-evoked rhythm in
the ipsilateral PC.

changes in c-Fos expression in the OB and PC of mice peaking at
approximately CT16 (Fig. 6). In rats, cedar oil-induced c-Fos was
also higher at CT15 than CT6 in the OB, PC, AON, infralimbic,
orbital, perirhinal-entorhinal cortices, and basolateral and cen-
tral nuclei of the amygdala (Amir et al., 1999a; Funk and Amir,
2000). Flies show circadian rhythms in odor-evoked antennal
field potentials and odor-cued avoidance or attraction behaviors
(Krishnan et al., 1999; Zhou et al., 2005). Moths show larger
responses to pheromone during the subjective night (Silvegren et
al., 2005), and salamanders reduce their foraging when exposed
to predator extracts more at approximately CT14 (Maerz et al.,
2001). In humans, odor-evoked event-related potentials are larg-
est at ~4:00 P.M. (Nordin et al., 2003). Indeed, it may turn out
that circadian modulation of sensory processing is ubiquitous,
because rhythms in acuity or sensitivity have been reported in
vision, audition, touch, and electroreception (Lotze et al., 1999;
Kavakli and Sancar, 2002; Kimchi and Terkel, 2002; Zupanc,
2002).

It is interesting that olfactory responsivity oscillates in phase
with wakefulness in mice, rats, humans, and moths but peaks at
night in the diurnal fruit fly. It may be that daily modulation of
olfactory sensitivity is species specific or depends on which pro-
cess is measured. In the mouse OB and PC, the antiphase rhythms
of spontaneous and odor-evoked c-Fos likely reflect different un-
derlying neural processes that could improve odor detection,
perhaps at the expense of discrimination, during the night. Plot-
ting the ratio of odor-induced to spontaneous c-Fos, we see a
peak in the signal-to-noise around dusk in the OB and PC (Fig.
6). This is reminiscent of the circadian enhancement of visual
responsiveness and suppression of spontaneous photopigment
isomerizations in the eye the horseshoe crab, Limulus
polyphemus. A circadian clock in the Limulus brain augments
visual sensitivity in the lateral eyes at night by increasing the
likelihood of photon capture (Barlow, 1983; Chamberlain and
Barlow, 1987). At the same time, the clock reduces noise in the
eye by protonating rhodopsin, increasing its energy of activation
(Kaplan etal., 1990; Barlow et al., 1993). The increased sensitivity
at night comes at the cost of reduced spatial acuity because each
photoreceptor views a larger and overlapping field with its neigh-
bors (Barlow et al., 1980). The benefit is that horseshoe crabs can
use vision to find mates equally well day and night (Powers et al.,
1991). It will be important to learn the sites of action for the
nocturnal increase in odor-evoked c-Fos and decrease in sponta-
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Table 1. 0BX modifies motor activity rhythms
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Phase angle of entrainment (h) (lights on)

Rate of re-entrainment (d)

7:00 A.M. 1:00 P.M. 7:00 A.M. 6 h delay 6 hadvance Free-running period (h)
0BX (n = 24) 6.9 + 0.08 1.1 %0.02 7.01 = 0.05 0.6 £0.2 4306 23.9 £ 0.04
Sham (n = 10) 7.0 £0.03 1.1+ 0.04 6.9 *0.09 1.7 %03 24£03 23.2 £0.02
Student's t test p=106 p=109 p=0.09 p = 0.004 p=10.04 p = 0.0005

0BX and sham animals did not differ in their phase angles of entrainment but differed in the number of days needed to re-entrain to advances or delays in the LD cycle and their free-running periods. The delay from the daily onset of
running-wheel activity to the onset of light (phase angle of entrainment), the number of days required to synchronize locomotor activity after a shift in the light schedule (rate of re-entrainment), and the free-running period under DD are

expressed as mean = SEM.
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neous c-Fos, the number of circadian clocks involved, and how
this relates to olfactory-guided behaviors.

A separable circadian timing system

There is growing evidence for SCN-independent timekeeping in
mammals. Here, we present evidence that the olfactory system
performs similarly to the SCN-based canonical circadian system:
A master pacemaker drives rhythms in spontaneous and odor-
evoked activity in the OB and in its primary synaptic targets
within the PC. Although we cannot rule out a contribution from
the olfactory epithelium or a rhythm imposed by breathing, the
clock within the OB is likely a master circadian pacemaker in the
olfactory system, because it is circadian in the absence of the SCN
in vitro and in vivo and is required for rhythms in the PC. The PC,
which shows no intrinsic oscillations in clock genes in vitro (Abe
et al.,, 2002) and loses rhythms after bulbectomy, likely depends
on rhythmic input from the OB to oscillate in vivo. We do not
know whether the PC is the only brain area controlled by the OB
clock; other olfactory- and nonolfactory-related processing are
likely regulated by this clock, because its projections include areas
within the amygdala and entorhinal cortex (McDonald, 1998;
Mouly and Di Scala, 2006), some of which have been shown to
express day-night differences in c-Fos (Amir et al., 1999a). This

0 4 8 12 16 20 0 4 8

Olfactory stimulation or 0BX modify c-Fos rhythms in the SCN. A spontaneous rhythm in c-Fos expression in the core
and shell regions of the SCN (a, b) increased in amplitude after odor-exposure or 0BX (¢, €) in the core SCN at (T12 (F, o) = 4.5;
p = 0.04; one-way ANOVA) but not in the shell (d, f; F, o) = 2.4; p = 0.1; one-way ANOVA). Peak phase was similar across
treatments in the SCN core (a, ¢, e) and appeared to peak earlier in the SCN shell of OBX mice (fvs b and d).

when the SCN or the OB are ablated (Da-
vidson et al., 2001; Stephan, 2002; Herzog
and Muglia, 2006). Recent evidence has
suggested the FEO may be within the dor-
sal medial hypothalamus (Gooley et al.,
2006; Mieda et al., 2006; but see Landry et
al., 2006). A clock within the retina releases
melatonin and dopamine on a daily basis
(Tosini and Menaker, 1996; Doyle et al,,
2002), and other oscillators exist, which are revealed during
methamphetamine treatment or during forced desynchrony in
rats and humans (Folkard et al., 1984; Hiroshige et al., 1991;
Strijkstra et al., 1999). Understanding how these multiple circa-
dian oscillators interact to coordinate daily behavior will likely
provide insights into timing-related disorders like jet lag.

12 16 20

Interaction between oscillators

Although capable of self-sustained circadian cycling, the OB
likely interacts with the SCN and its pathways. For example, pro-
jections from the OB to the SCN suggest indirect synaptic com-
munication (Krout et al., 2002), and removal of the bulbs length-
ens the free-running periods of hamsters and mice (Possidente et
al.,, 1990; Pieper and Lobocki, 1991) and slows photic re-
entrainment in male Octogon degus (Goel and Lee, 1997; Lee and
Labyak, 1997; Goel et al., 1998; Governale and Lee, 2001). Con-
sistent with these results, we found that OBX lengthened the
period of mice locomotor rhythms in DD, altered resynchroni-
zation rates in response to advances or delays in the light cycle,
and enhanced c-Fos rhythms in the SCN core. In vivo, the SCN is
not necessary to maintain OB oscillations but for entrainment of
the OB (Granados-Fuentes et al., 2004b). This may explain the
change in phase of c-Fos rhythms in the OB of SCNX mice com-
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Figure 6.  The c-Fos induction index of odor-stimulated mice indicates peak responsivity

during the subjective night. The index was calculated as the number of c-Fos-IR cells within the
specified brain region of odor-exposed mice divided by the number of immunopositive cells in
the same region of mice not exposed to the odorant. From (T12 to (T20, the ratios of induced to
spontaneously expressing c-Fos cells in the OB (a, b) and PC (c) were >1 (dashed line), indi-
cating that circadian modulation activates responsiveness during the subjective night.

pared with SCN intact mice. After SCN ablation, the entraining
signal from the SCN is lost so the OB likely free-runs. The intrin-
sic period of the in vitro rat OB is ~1 h shorter than that of the in
vitro SCN or in vivo locomotor rhythms (Abe et al., 2002;
Granados-Fuentes et al., 2004b) so that, 8 d after SCN ablation,
the phase of the OB in vivo might be ~8-12 h advanced relative to
the projected onset of locomotor activity, consistent with the
results in Figure 1.

The effects of OBX on SCN-controlled rhythms may be
caused by direct or indirect loss of OB input to the SCN. OBX has
been shown to increase cAMP levels in the SCN and not in the
hippocampus (Vagell et al., 1991), and odorant exposure en-
hanced c-Fos expression within the SCN core, not shell, suggest-
ing some level of specificity. However, OBX induces a
depression-like state and changes neurotransmitter expression in
many brain areas (Song and Leonard, 2005). This may relate to
the hypothesis that some psychiatric disorders arise from internal
desynchronization between circadian oscillators (Kripke et al.,
1978; Lumia et al., 1992).

We conclude that the OB contains a clock that controls circa-
dian olfactory responsivity in mice and interacts with as a sepa-
rable, but integrated, part of the circadian system. Our results
highlight the need to study alternate circadian outputs to eluci-
date roles for extra-SCN pacemakers and the potential for odor-
ants to alter, directly or indirectly, SCN and locomotor rhythms.
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