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Summary:

The study of the origin and development of cerebellar tumors has been hampered by the 

complexity and heterogeneity of cerebellar cells that change over the course of development. We 

used single-cell transcriptomics to study >60,000 cells from the developing murine cerebellum, 

and show that different molecular subgroups of childhood cerebellar tumors mirror the 

transcription of cells from distinct, temporally restricted cerebellar lineages. Sonic Hedgehog 

medulloblastoma transcriptionally mirrors the granule cell hierarchy as expected, whereas Group3 

MB resemble Nestin+ve stem cells, Group 4 MB resemble unipolar brush cells, and PFA/PFB 

ependymoma and cerebellar pilocytic astrocytoma resemble the pre-natal gliogenic progenitor 

cells. Furthermore, single-cell transcriptomics of human childhood cerebellar tumors demonstrates 
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that many bulk tumors contain a mixed population of cells with divergent differentiation. Our data 

highlight cerebellar tumors as a disorder of early brain development, and provide a proximate 

explanation for the peak incidence of cerebellar tumors in early childhood.

Introduction

Pediatric brain tumors are most commonly found in the posterior fossa, particularly the 

cerebellum, where medulloblastoma, ependymoma, and pilocytic astrocytoma are most 

prevalent. Cerebellar tumors are currently treated using non-specific therapies. They have 

few somatically mutated driver genes2,17,22–26 which has impeded the understanding of their 

biology and resulted in the development of targeted therapies lagging behind other major 

cancer types. Nevertheless, childhood cerebellar tumor types are known to have distinct 

molecular subtypes with different clinical behaviours. ‘Medulloblastoma’ is now known to 

comprise four molecularly distinct diseases (subgroups), with further clinical and molecular 

heterogeneity within each subgroup1–5. Sonic Hedgehog (Shh-MB), Group 3 (Grp3-MB), 

and Group 4 medulloblastoma (Grp4-MB) are thought to originate in the cerebellum6–11, 

while Wnt-MB arises from the lower rhombic lip of the developing brain stem12. Although 

Shh-MB is thought to arise from the granule cell precursors (GCPs), careful examination of 

fully developed Shh-MB revealed populations of cells displaying varying levels of 

differentiation and growth capacity, mirroring the temporal evolution of the developing GCP 

hierarchy13. It is currently unclear to what extent the other molecular subgroups of 

medulloblastoma recapitulate a similar developmental hierarchy. Ependymomas are found 

throughout the central nervous system, but in the cerebellum are thought to be largely 

limited to two variants: PFA and PFB14–16, and have been suggested to arise from regional 

radial glial-like cells17–19. Molecular subgroups of medulloblastoma and ependymoma have 

been delineated by transcriptomics as well as patterns of DNA CpG methylation, both of 

which have been suggested to reflect the cell of origin20,21.

The cerebellum is made up of a large variety of cell types, with many undergoing temporally 

regulated differentiation through defined developmental hierarchies27–29. GABAergic 

neurons, including Purkinje cells and a variety of interneurons, arise from the ventricular 

zone (VZ), while glutamatergic neurons, including those of the cerebellar nuclei (CN), the 

inner granule cell layer, and the unipolar brush cells (UBCs) arise from the upper rhombic 

lip (URL). Cerebellar glial cells, including radial glia, astrocytes, and Bergmann glia also 

arise from stem cells in the VZ that produce a proliferating progenitor still present in the 

cerebellar cortex after birth30–32. In the past, transcriptional studies of bulk cerebellar tissue 

were performed on a complex mixture of GABAergic neurons, glutamatergic neurons, glia, 

and non-neuronal cells. The use of mixed transcriptomes from normal bulk cerebellum 

precludes a meaningful comparison to the transcriptome or epigenome of cerebellar tumors. 

Massive changes during early development, and the relative inaccessibility of the cerebellum 

inside the skull further complicate the study of the normal developing cerebellum, 

particularly from human samples. However, the recent development of large-scale single cell 

RNA sequencing (scRNA-seq) permits the development of a ‘cellular scaffold’53,54 for 

cerebellar development in which the transcriptomes of distinct hierarchies can be determined 

at various points in time, and subsequently compared to the transcriptomes of childhood 
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cerebellar tumors. Identification of temporally and lineage restricted cell populations in the 

developing cerebellum that most closely mirror the transcriptome of cerebellar neoplasms 

could allow for identification of tumor cells of origin, as transcriptional similarity can be 

construed as good evidence for the lineage of cellular origin. Although it remains possible 

that a more differentiated cell could ‘de-differentiate,’ or that a cell from another lineage 

hierarchy could ‘trans-differentiate’ during the process of transformation32 there is scant 

evidence for de-differentiation or trans-differentiation in human brain tumors. Furthermore, 

because of the low mutational burden in cerebellar tumors, it would seem likely that the 

tumor remains similar to its cell of origin. Benefits of matching cerebellar tumors to their 

transcriptional best match from cerebellar development include the discovery of 

developmental checkpoints defective in cerebellar tumors, the development of clinically 

relevant mouse models, and direct comparison of tumor and normal cell transcriptomes to 

discover tumor-related changes in transcriptional programs. Insights into the process of 

transformation from a normal cerebellar cell to a cerebellar cancer cell could lead to the 

development of novel targeted therapies.

Identification of transcriptional clusters in the developing murine 

cerebellum

We isolated the mesial cerebellum (E14-P14), or hindbrain (E10-E12) from wild-type mice, 

and performed scRNA-seq on > 60,000 cells from five embryonal time points and four early 

postnatal time points (Figure-1, Extended Figure-1 a–c, Extended Figure-2). Unsupervised 

clustering of individual cell transcriptomes yielded >30 distinct clusters, many of which 

were heavily populated by cells from specific time points in development (Figure-1). 

Expression of known marker genes allowed identification of clusters of progenitors 

belonging to glutamatergic (Atoh1), GABAergic (Ptf1a, Calb1, Pax2) and glial (Fabp7, 

Gdf10, Olig1) lineages (Extended Figure-1d, Extended Figure-4). Stem cell-like clusters 

marked by Nestin expression were primarily seen early, while glutamatergic and GABAergic 

neuronal populations appeared in mid development, and glial cells developed later overall. 

Conversely non-CNS cells were found across all time points. Several distinct clusters of 

cells only appear during restricted developmental time points, with many not found in the 

postnatal period (Extended Figure-4). We conclude that scRNA-seq is able to identify 

biologically distinct cerebellar cellular populations.

Based on known developmental relationships, and transcriptional similarity, we constructed 

pseudo-time trajectories for the various cerebellar lineages (Figure-2, Extended Figure-3). 

Nestin+ve early neural stem cells give rise to the two major lineages of the cerebellum: 

GABAergic cells from the ventricular zone (VZ) and glutamatergic cells from the URL 

(Extended Figure-3a). Stem cells in the VZ give rise to both GABAergic neurons (Purkinje 

cells and GABAergic interneurons) as well as the cerebellar glia (Figure-2a, Extended 

Figure-3b,c). The URL gives rise to excitatory neurons of the cerebellar nuclei, GCPs, and 

UBCs (Figure-2b,c, Extended Figure-3d). Clustering of scRNA-seq profiles combined with 

the construction of pseudo-time trajectories that largely conform to known patterns of 

cerebellar development allows us to build a ‘single cell genomic transcriptional scaffold’ of 

cerebellar development (Extended Figure-4).
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Cerebellar tumors mirror the transcriptomes of specific embryonic 

cerebellar cell clusters.

Using a carefully curated list of mouse/human orthologs and an algorithm to deconvolute 

complex RNA mixtures against a series of single cell type transcriptional profiles, we 

compared the transcriptomes of bulk human ependymomas (PFA and PFB, 43 tumors) as 

well as cerebellar pilocytic astrocytomas (C-PA, 10 tumors) to distinct developmental 

clusters. PFA, PFB, and C-PA are all transcriptionally most similar to the gliogenic 

progenitors-1 cell cluster (Extended Figure-5), with some similarity to the proliferating VZ 

progenitors, and to a novel cluster of ‘roof plate-like’ stem cells which has transcriptional 

similarity to the developing roof plate (Lmx1a, Msx1, Bmp7)33,34. The gliogenic progenitor 

cluster is observed initially at E12, peaks at E18, and has largely disappeared by P5 

(Extended Figure-4). The ‘roof plate-like’ stem cells are seen much earlier, appearing only 

between E10 and E12 (Extended Figure-4). This is consistent with PFA, PFB, and C-PA 

being classified as ‘gliomas’, and prior publications that suggest that PFA arises from the 

regional radial glia19.

Posterior fossa ependymomas and C-PAs are both histologically and clinically distinct from 

each other. Re-clustering of the gliogenic progenitors, early VZ radial glia, and roof plate-

stem cells identifies eight distinct transcriptional clusters within this lineage (Extended 

Figure-7). Both PFA and PFB remain transcriptionally best matched to the same 

developmental population (Extended Figure-7i). However, C-PA now transcriptionally 

match to a very distinct sub-cluster of the cerebellar gliogenic progenitor cell cluster, 

supporting a model in which posterior fossa ependymomas and C-PAs have distinct cells of 

origin (Extended Figure-7i).

Deconvoluting bulk RNA-seq transcriptomes from human medulloblastomas (Shh, Grp3-

MB, and Grp4-MB, total 145 tumors) against transcriptionally defined cerebellar clusters 

(Figure-3) demonstrated that Shh-MB is most similar to GCP clusters, as supported by prior 

publications6,7. Re-clustering of cells in the GCP lineage revealed additional heterogeneity, 

with the identification of seven distinct clusters (Extended Figure-8). Comparison of bulk 

human Shh-MB transcriptomes to these seven GCP cell lineage clusters revealed 

heterogeneity within Shh-MB (Extended Figure-8c). Shh MBs that transcriptionally 

resemble later time points in cerebellar development (SHH1 - similar to the Post-natal GCPs 

2.1) have a worse prognosis than those that resemble the earlier arising GCPs (SHH2- 

similar to the Post-natal GCPs 1.1 (Extended Figure-8g) (p=0.00442). Furthermore, Shh-β 
subtype medulloblastomas are more similar to the earlier “SHH2” subset, demonstrating the 

similarity of this subtype to differentiation states in earlier GCP development (Extended 

Figure-8j).

The cell of origin for Grp3-MB is not yet definitively known, but has been suggested to be a 

Nestin+ve cerebellar stem cell10. Comparison of Grp3-MB to developmental cerebellar cell 

clusters revealed a broad resemblance across Grp3-MB to Nestin+ve cerebellar early stem 

cells (Figure-3). Interestingly, subsets of bulk Grp3-MB transcriptomes also resemble 

developmental cell clusters in the GCP and UBC lineages, as well as similarity to cerebellar 

GABAergic interneurons (Figure-3). This multi-lineage differentiation is consistent with a 
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model in which Grp3-MBs contain Nestin+ve early neural stem-like cells that give rise to a 

variety of differentiated progeny; however this possibility cannot be evaluated properly using 

bulk RNA-seq data.

Mouse models of Grp4-MB are not available, and the cell of origin for Grp4-MB MB is 

unknown. Unexpectedly, Grp4-MB transcriptionally best matched to cells of the UBC 

lineage (Figure-3). UBCs are glutamatergic interneurons that derive from the URL, which 

have not been studied as deeply as other types of cerebellar neurons33. The cluster that best 

matched Grp4-MB MB (cluster #8) (Extended Figure-1) is first observed at E14, peaks in 

prevalence at E18, and has largely disappeared by P0 (Extended Figure-4). Re-clustering of 

cells in the UBC lineage followed by comparison to the transcriptomes of bulk human Grp4-

MB affirms that in all cases, the bulk Grp4-MB MB transcriptome is most similar to the 

UBC progenitor cell cluster (Extended Figure-9g). These data are consistent with a model in 

which Grp4-MB arises from a cell in the UBC lineage.

Temporal mirroring of specific embryonic cell clusters.

Different childhood tumors transcriptionally mirror specific clusters in defined cerebellar 

lineages. Many of these lineages are only detected over a defined period of development, 

while others persist into adulthood (Extended Figure-4). We compared human tumor 

transcriptomes to their best-matched developmental cluster as a function of time. 

Comparison of bulk PFA and PFB transcriptomes to murine single cells in the gliogenic 

progenitor cell lineage from E10 to P0 revealed a specific match to the E16 gliogenic 

progenitors (Figure-4a,b). Similarly, C-PAs revealed a very strong match at both E16 and 

E18 (Figure-4c). The gliogenic progenitor cells form a discrete cluster from E14 to P0 

(Figure-4d), bracketing the period of highest transcriptional resemblance. Comparison of the 

bulk transcriptomes of human Grp4-MB to murine cells in the UBC lineage revealed that 

some Grp4-MBs are transcriptionally most similar to E16, while others are more similar to 

E18 (Figure-4e). The UBC lineage is well defined and detected from E14 to P0 (Figure-4f). 

Comparison of Grp4-MBs that more closely mirror E16 to those that mirror E18 

demonstrates that Grp4-β is largely restricted to E16 similar tumors, while Grp4-γ is 

completely restricted to E18 similar tumors (Extended Figure-9r, P=0.00004)1. These data 

suggest that differences between Grp4-β and Grp4-γ could be secondary to their arising at 

different time points in the UBC lineage1.

We did not attempt to temporally position Grp3-MBs using bulk transcriptomics, as Grp3-

MB often transcriptionally match more than one cluster in the developing cerebellum. While 

PFA, PFB, C-PA, and Grp4-MB are all transcriptionally best matched to cell clusters present 

during fetal development, Shh-MBs are best matched to the GCP lineage in the early 

postnatal period at P5 (Figure-4g,h)6. We conclude that in addition to transcriptional 

mirroring of specific cell populations in the developing cerebellum, human cerebellar tumor 

transcriptomes are most similar to specific time points during development, predominantly 

during fetal life.
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Single-cell heterogeneity in cerebellar tumors.

Medulloblastomas exhibit well-characterized intertumoral heterogeneity, as well as 

geographic, spatial (metastases) and temporal (at recurrence) heterogeneity1,2,24,35–39. 

Cerebellar ependymomas also show marked intertumoral heterogeneity15–19,26, while the 

intertumoral heterogeneity amongst C-PAs is not well characterized25. We undertook 

scRNA-seq of human cerebellar tumors including medulloblastoma (8 patients), PFA 

ependymoma (4 patients) and C-PA (3 patients). Analysis of clusters from scRNA-seq of 

human tumors revealed both tumor cell clusters, and non-tumor cell clusters (i.e., 

endothelium, monocytes/microglia, lymphocytes) (Extended Figure-6, Supplementary Table 

4). In keeping with our goal to compare tumor cells to cell populations in the developing 

cerebellum, non-tumor cell clusters were removed from current consideration.

Shh MB scRNA-seq clusters remain most similar to cells in the GCP lineage (Figure-5a). 

Some Shh sc-RNA-seq clusters are most similar to the UBC and GCP progenitor cell cluster. 

Comparison to the seven re-clustered clusters in the GCP lineage revealed that Shh-MBs 

contain cells transcriptionally similar to various different stages of GCP development 

(Extended Figure-8c). These results are consistent with a model in which Shh-MBs contain 

a variety of tumor cell types representing different stages of GCP differentiation, and which 

might exhibit distinct clinical behaviours and therapeutic responses13.

Identification and transcriptional mapping of individual tumor cell clusters from Grp3-MB 

reveal highly divergent lines of differentiation with tumor clusters similar to multiple normal 

developmental clusters in the GCP, UBC, Purkinje cell, and GABAergic interneuron 

lineages. This pattern is consistent with an origin from a very early, uncommitted cerebellar 

stem cell, followed by partial differentiation of transformed cells along diverse 

developmental lineages (Figure-5b).

scRNA-seq of human Grp4-MBs reveals discrete clusters that transcriptionally mirror the 

differentiated UBCs, as well as the UBC progenitors (Figure-5c, Extended Figure-9). 

Unexpectedly, we also observed tumor cell clusters from each human Grp4-MB that 

transcriptionally are most similar to the GCP lineage (Figure-5c). Comparison of Grp4-MB 

single cell tumor cluster transcriptomes to both the GCP and UBC lineages, revealed that 

‘GCP similar’ clusters are in fact transcriptionally more similar to the GCP lineage than the 

UBC lineage (Supplementary Table 8- tab 5). Conversely, UBC similar clusters are more 

similar to the UBC lineage (Supplementary Table 8- tab 4). Individual Grp4-MBs contain 

highly variable percentages of differentiated versus less differentiated cells (Extended 

Figure-9f). Comparison of the Grp4-MB scRNA-seq data reveals that ‘UBC-like’ cells in 

Grp4-MB transcriptionally mirror several time points in UBC development (Extended 

Figure-9h). Two distinct types of UBCs have been described in the mammalian 

cerebellum40. Consistent with this, re-clustering of murine cerebellar cells in the UBC 

lineage revealed two distinct types of UBCs (Extended Figure-9c). Grp4 MB is 

predominantly similar to only one of these subtypes (CR+ve UBCs – Extended Figure-9h). 

Individual cells from the UBC/GCP progenitor cluster simultaneously express both GCP and 

UBC marker genes, which is not observed in cells committed to a GCP or a UBC fate 

(Extended Figure-10), but is observed in Grp4-MB cells. These data are consistent with a 
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model in which Grp4-MB arises from a bipotential progenitor cell population (likely in 

cluster #8) that is capable of giving rise to cells in both the GCP, and the UBC lineages. 

Cumulatively, across the medulloblastoma subgroups our scRNA-seq data demonstrates high 

levels of single cell heterogeneity, with evidence of multiple lines of differentiation, and 

cells at different time-points in the differentiation hierarchy.

Single cell RNA-seq of PFA ependymomas revealed single cell heterogeneity, with each 

tumor containing clusters that best matched sub-clusters of the gliogenic progenitor cell 

population or roof plate-like stem cells (Figure-6a, Extended Figure-7). Of note, we did not 

observe clusters of more differentiated cell types such as Bergmann glia or astrocytes within 

the PFA ependymomas, but only observed less differentiated cell types. This lack of 

differentiated cell types within the tumor is unique to PFA among the childhood cerebellar 

tumors examined in this study. Some single cell transcriptional clusters of human PFA 

tumors are more similar to single cell clusters from another patient’s tumor than they are to 

other clusters from within the same individual (Extended Figure-7d). C-PA scRNA-seq also 

demonstrated clusters with transcriptional similarity to the relatively undifferentiated roof 

plate-like stem cell cluster and the gliogenic progenitors (Figure-6b). Unlike PFA 

ependymoma, some C-PA tumor cell clusters demonstrate similarity to more differentiated 

cell types, such as astrocytes, Bergmann glia, and oligodendrocytes (Figure-6b).

Discussion

Cumulatively, across the medulloblastoma subgroups (Shh, Grp3-MB, and Group 4), as well 

as PFA ependymoma and C-PA, our scRNA-seq data demonstrated high levels of single cell 

heterogeneity, with evidence of multiple lineages of differentiation, and tumor cells 

matching different time-points in the differentiation hierarchy. Childhood cerebellar tumor 

transcriptomes demonstrate high levels of similarity to discrete cell populations within the 

developing cerebellum, supporting a model in which discrete cells of origin have a profound 

influence on the transcriptome and biology of the observed mature tumors. While the use of 

cell cycle genes is essential in defining developmental stages of cell populations in the 

cerebellum (i.e., progenitor cell versus differentiated cell), we excluded cell cycle genes 

when comparing human tumor cells to murine developmental clusters to avoid spurious 

comparisons based largely on cell cycle phenotypes (Supplementary Table 3); however cell 

cycle content and genomic alterations were quantified independently in the human single 

cell data sets (Extended Figure-10, Supplementary Table 7). The relative biological 

significance of well separated clusters in the t-SNE plots, versus those that are spread out 

and partially overlapping is uncertain, and a well-known issue in single cell sequence 

analysis that will require future exploration.

Many of the normal murine cerebellar cell populations, which are transcriptionally most 

similar to human cerebellar tumors are only present for a restricted time period during fetal 

development, or are found only in the very early postnatal period. It is certainly possible that 

each of the cerebellar tumor types discussed above arises in a particular cell type indicated 

by the cluster and developmental time point identified by transcriptional matching. However 

extensive cell lineage tracing using in vivo models of these diseases will be necessary to 

exclude the possibility that tumors arise in other cell lineages and undergo trans-

Vladoiu et al. Page 8

Nature. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



differentiation during transformation, or arise in cerebellar cells at later time points and then 

undergo dedifferentiation.

Our data does not reveal substantial populations of differentiated cells within PFA 

ependymomas, differentiated glia within the medulloblastomas, nor differentiated neuronal 

cell types in the C-PAs. Distinguishing infiltrating normal cells within pediatric cerebellar 

tumors is difficult as these tumor types contain very few somatic genetic events that would 

allow us to discern transformed from non-transformed cells. The normal, non-transformed 

cell populations that best transcriptionally match cerebellar tumors are only present in utero, 

or immediately postnatally, and are therefore not present in the brains of children at the time 

of presentation, and likely could not contaminate their tumors. However, we cannot exclude 

the possibility that some of our single cell tumor clusters also contain small populations of 

infiltrating non-transformed differentiated cells.

The ability of these different progenitor cell populations restricted to specific time points to 

give rise to different types of cerebellar tumors should ideally be tested functionally in vivo, 

as previously demonstrated8,12,18–19. While there would be great value in comparing human 

cerebellar tumors to single cell transcriptomes from normal human cerebellar cells from 

various time points in development, these types of samples are not readily available. The 

presence of multiple lineages and stages of differentiation within bulk medulloblastoma 

samples illustrates the difficulty of using the bulk tumor population as a tool to decipher 

tumor biology, or to develop tumor diagnostics. The absence of differentiated cell types in 

PFA ependymoma, but not other tumor types, suggests the presence of a differentiation 

block in PFA ependymomas. Due to space limitations, the current manuscript has focused on 

the relationship of posterior fossa tumors to cell types in the developing cerebellum. The 

current single cell RNA-seq datasets from posterior fossa tumors should allow further 

analyses and insights into both tumor cell autonomous, and infiltrating non-tumor cell 

biology from these entities. A more complete understanding of the biology and 

transcriptomes of the specific cerebellar hierarchies identified above, and their 

developmental timing may allow a better comprehension of cerebellar tumor biology, and 

promote the subsequent development of novel mouse models, improved tumor diagnostics, 

and eventually the development of novel rational therapeutics based on the differences 

between tumor cells and their normal cells of origin.

Methods

Patient recruitment.

Participants recruitment was in compliance with Hospital for Sick Children and McGill 

University Health Centre ethical regulations. Sample size of participants was determined 

based on consent availability and diagnosis. Available patient characteristic information is 

described in Supplementary Table 2. All tumor patient sample collection and experiments 

were approved by McGill University Health Centre (Montreal) and by The Arthur and Sonia 

Labatt Brain Tumour Research/Hospital for Sick Children (Toronto).
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Animal experiments.

All mouse breeding and procedures were approved by The Centre for Phenogenomics 

(Toronto). Mated C57BL/6J female mice were dissected in order to collect embryos from the 

following gestational time points: 10, 12, 14, 16 and 18. C57BL/6J pups were dissected to 

collect tissue from the following postnatal time points: 0, 5, 7 and 14.

Tissue handling and dissociation.

Fresh tumor tissue was collected at the time of resection. The tumor tissue was mechanically 

and enzymatically dissociated using a collagenase-based dissociation method as previously 

reported41. Early embryonic hindbrain structures were dissected from the gestational time 

points E10 and E12. An incision was made between the midbrain and hindbrain boundary, as 

well as between the prepontine hindbrain and pontine hindbrain, in order to isolate the 

isthmus, and rhombomeres −1 and −2 at these early time points in development. Late 

embryonic cerebellar primordia were collected at embryonic time points 14, 16 and 18. All 

embryonic mouse dissections were performed under a Leica stereoscope with a pair of 

Moria ultra fine forceps (Fine Science Tools). The tissue was transferred into ice cold 

Leibovitz’s medium, followed by single cell dissociation with the Papain Dissociation 

System (Worthington Biochemical Corporation). Postnatal cerebella were dissected from the 

following time points: day 0, 5, 7 and 14. The central nervous system was fully dissected, 

then embedded in 2% Low melting point agarose. One mid sagittal slice of 300 um was 

generated using the Leica vibratome42. Under the stereoscope the cerebellum was isolated 

from the slice, followed by immediate single cell dissociation as described above.

RT, amplification and sequencing.

The concentration of the single cell suspension was assessed with a Trypan blue count. 

Approximately 10,000–14,000 cells per time point were loaded on the Chromium Controller 

and generated single cell GEMs. GEM-RT, DynaBeads cleanup, PCR amplification and 

SPRIselect beads cleanup were performed using Chromium Single Cell 3’ Gel Bead kit. 

Indexed single cell libraries were generated using the Chromium Single Cell 3’ Library kit 

and the Chromium i7 Multiplex kit. Size, quality, concentration and purity of the cDNAs and 

the corresponding 10× library was evaluated by the Agilent 2100 Bioanalyzer system. The 

10× libraries were sequenced in the Illumina 2500 sequencing platform.

Alignment of raw reads.

Through 10× CellRanger’s pipeline43, the raw base call (BCL) files were demultiplexed into 

FASTQ files. The FASTQ files were aligned to the reference mouse genome GRCm38 

(mm10) to generate raw gene-barcode count matrices. When clustering of multiple samples, 

we aggregated the multiple runs together to normalize on sequencing depth, and re-

computed the gene-barcode matrices. Alignment quality control metrics are found in 

Supplementary Table 1- tab 1.

QC and normalization.

Low-quality cells were identified and removed from the datasets. We considered low-quality 

cells as cells with <200–300 genes expressed, and cells with high mitochondrial gene 
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content (4 S.D.s above median). We predicted doublets to be cells with relatively high 

library sizes (4–5 S.D.s above median), and removed them from the analysis. Low-

abundance genes were also removed from the datasets (genes expressed in less than 3 cells). 

The human single cell datasets were normalized using methods adapted from Scran’s 

pipeline44. Size factors were computed, and were applied to normalize gene expression 

across the cells, to produce normalized log-expression values to each dataset individually. 

Mouse single cell datasets were processed using CellRanger aggregation in order to account 

for sequencing depth variation, followed by QC and normalization as described above.

Clustering analysis and visualization.

Clustering analysis was performed with both the presence (Figure-1) and absence (Extended 

Figure-1) of cell cycle related genes obtained from Ensembl’s biomart49. When 

implemented, cell cycle genes removal was done prior to highly variable genes (HGVs) 

detection. HGVs were detected using Seurat’s pipeline45,46, calculating average expression 

and dispersion for each gene, diving genes into bins, and computing a z-score for dispersion 

within each bin. We used a z-score of 0.5 as the cutoff of dispersion, and a bottom cutoff of 

0.0125 and a high cutoff of 3.0 for average expression. Linear dimensionality reduction was 

performed using principal component analysis (PCA), and statistically significant principal 

components were selected using the elbow and jackstraw methods from Seurat. The clusters 

of cells were identified by a shared nearest neighbor (SNN) modularity optimization based 

clustering algorithm from Seurat. We then visualized these clusters using t-SNE, t-

distributed stochastic neighbor embedding.

Pseudo-time trajectory analysis.

The barcodes of selected clusters were normalized using Monocle’s dPFeature to remove 

lowly expressed genes and perform PCA analysis on the remaining genes, for significant PC 

selection47. Cells are then grouped using ‘density peak’ clustering algorithm. Differential 

gene expression analysis was performed using a generalized linear model (GLM), and the 

top 1000 genes per cluster were selected. Reverse graph embedding (RGE) was then used to 

reduce the high-dimensionality data into lower dimensional space and build the trajectory48. 

The structure of the trajectory was plotted into two dimensional space using the DRTree 

dimensionality reduction algorithm and order the cells in pseudo-time.

Creation of cell-type-specific signatures.

For each cluster identified, the average expression of each gene was calculated. Differential 

gene expression was performed using Seurat’s likelihood ratio test (LRT) method, and we 

filtered out genes expressed in less than 25% of the cells. The top differentially expressed 

genes were used as markers to build a signature gene expression matrix. Genes involved in 

cell proliferation and ribosome biogenesis were obtained from Ensembl’s biomart49, and 

omitted from the matrix. Human orthologues of mouse genes were identified, and used to 

create the final matrix. Complete gene signatures and inputs can be found in Supplementary 

Table 5 and 6.
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Deconvolution analysis.

CIBERSORT was used to perform the deconvolution analysis of the bulk and single-cell 

RNA-seq tumor data against the mouse clusters50. The full transcriptomes of the tumor data 

were used as the input mixture, and the signature gene input was the mouse cluster 

expression matrix after removal of all genes that can introduce bias in the deconvolution 

process including 1400 cell cycle genes, 300 genes associated with ribosome biogenesis, and 

~100 mitochondrial and apoptosis-related genes. Quantile normalization was disabled and 

100–500 permutations were run. To test CIBERSORT on our datasets, we created synthetic 

bulk mixtures from the mouse clusters, and we selected known amount of reads from various 

clusters. CIBERSORT roughly yielded the expected relative abundances. In order to 

generate reliable input expression profiles, tumor clusters with very low number of cells 

were discarded from the analysis. To validate our mouse cluster signatures, we obtained 

human and mouse data of brain cell types from published datasets (Saunders et al. 2018, and 

Zhang et al. 2016) (Supplementary Table 1- tab 2), and deconvoluted them against our 

mouse signatures in order to ensure that our expected abundances had similar values to our 

cell of origin matches.

Bulk RNA-seq human tumor samples.

60 Shh, 40 Group 3, and 45 Group 4 human medulloblastoma bulk RNA-seq samples were 

obtained from MAGIC, Medulloblastoma Advanced Genomics International Consortium. 

The raw data was aligned to the reference human genome GRChg38 using STAR to generate 

raw counts51. FPKMs were then obtained from DESeq252. We performed bulk RNA-

sequencing on 22 PFA, 4 PFB, and 10 C-PA patient samples, and obtained FPKMs using the 

same strategy. Microarray expression data was obtained from 17 PFB samples.

Relative gene expression panels.

Relative expression of genes within selected clusters was measured by calculating the 

average of the gene count from the log normalized matrix in each cluster. The averages of 

specific genes were then scaled between the values of −1.0 – 1.0 among the selected clusters 

in order to reflect higher versus lower expression levels.

Cell cycle analysis of human scRNA-seq tumor samples.

Cell cycle phase specific annotations were acquired from Whitfield et al. 2002 and used to 

quantify the percentage of phase specific cell cycle genes in each individual cell. The 

percentages was then normalized from a scale 0–1, after which the ratio between G1/S and 

G2/M was calculated. Cells with a low ratio values for the G2/M and G1/S ratios were 

labelled to be in G0 phase, whereas cells with increasing values for G1/S but low ratio 

values were labelled as cells progressing into G1 phase. Cell with high ratio values for G2/M 

were labelled to be progressing into S, G2 and M phase respectively.

Data availability statement.

The datasets generated and analysed during the current study are available in the following 

repositories: BAMs and filtered gene matrices of mouse developmental time points scRNA-

seq (GSE118068), FASTQs of PFB bulk RNA-seq and microarray expression 
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(EGAS00001002696, GSE64415), BAMs of human tumor scRNA-seq and either BAMs or 

FASTQs of bulk PFA/C-PA RNA-seq (EGAS00001003170) and FASTQs of MB bulk RNA-

seq (EGAD00001004435).

Code availability statement.

The following packages were used for the data analysis: Cell Ranger v1.2.1, R v3.4.4, Seurat 

v1.4.0, v2.3.0 and v2.3.4, Monocle v2.6.3, CIBERSORT (absolute mode beta).

Extended Data
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Extended Figure 1. Characterization of cell types in the mouse developing cerebellum.
t-SNE visualization demonstrating 34 unique clusters of 62,040 single cells (a). Bar chart 

displaying the number of cells collected during each developmental time point (n=9) (b). 
Bar plot displaying the number of cells within each identified cluster belonging to specific 

developmental time points (c). Circles showing the normalized average expression as 

indicated by the scale at the bottom right of established developmental lineage marker genes 

(n=24) specific to each cell cluster (d).

Vladoiu et al. Page 14

Nature. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Figure 2. Clustering analysis of scRNA-seq data of mouse developing cerebellum of 7 
time points used for generating CIBERSORT expression signature.
Seurat’s t-SNE visualization of transcriptionally distinct cell populations from 44,461 single 

cells from seven developmental time points annotated by cluster identity (n=31) (a) and by 

time point (n=7) (b).
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Extended Figure 3. Re-construction of cerebellar developmental lineages through pseudo-
temporal ordering of cells.
t-SNE visualization and two-dimensional embedding showing constructed pseudo-time 

trajectories of different lineages in the developing cerebellum: Early germinal zones (n= 

6,096 cells) (a), GABA Interneurons lineage (n= 13,432 cells) (b), Purkinje cells (n=6,048 

cells) (c), Granule cells (n=15,011 cells) (d) and Oligodendrocytes (n= 1, 433 cells) (e). 
Cells within specific lineage clusters were selected, visualized using Seurat’s t-SNE 

visualization and then ordered based on Monocle 2’s reverse-graph embedding (RGE) 

method. Heatmaps demonstrate gene normalized expression levels of cluster-specific 

markers, red being highest and blue being lowest.
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Extended Figure 4. Diagram of developing cerebellar lineages showing relative abundance of cell 
type clusters across time.
Line plot showing the number of cells of each glutamatergic lineage cluster at each collected 

time point (a). Line plot showing the number of glial population clusters at each collected 

time point (b). Line plot showing the number of GABAergic cells at each collected time 

point (c). Cartoon of individual cell clusters identified through unsupervised hierarchical 

clustering of single cell transcriptomes from the developing mouse cerebellum (d). Cell 

clusters were arranged in their respective developmental hierarchies based on the expression 

of known marker genes as well as the results of pseudo-time analyses. Cluster annotations 

are found on the bottom right.
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Extended Figure 5. Deconvolution analyses of bulk human PFA, PFB ependymoma and 
cerebellar pilocytic astrocytoma tumor transcriptomes.
Hierarchical clustering of patient samples of known molecular subgroups based on 

calculated relative abundance values of the mouse cell-type clusters in each sample, obtained 

from CIBERSORT. Expression signatures from 26 mouse cell clusters were selected to 

deconvolute bulk RNA-seq of human PFA (n=22) and PFB (n=25) ependymomas, and C-

PAs (n=10).
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Extended Figure 6. Clustering analysis and t-SNE visualization of human scRNA-seq data.
t-SNE visualization of scRNA-seq data used as input for the CIBERSORT deconvolution 

analysis of Shh MB (n=2) (a), Group 3 MB (n=2) (b), and Group 4 MB (n=4) (c), PFA 

(n=4) (d) and C-PA (n=3) (e) patient samples. Cluster annotations were established by 

expression of known marker genes unique to tumor and cell type and are defined as follows: 

SHH-1 Tumor clusters: 1,2,3,4,5 (cell cycle cluster: 5); Monocyte/Microglia: 6. SHH-2 
Tumor clusters: 1,2,3,4,7 (cell cycle cluster: 4); Monocyte/Microglia: 5,6; T-cells:8. G3–1 
Tumor clusters:1,2,3,5,6; Monocyte/Microglia:4. G3–2 Tumor clusters: 1,2,3,5,6,7 (cell 

cycle cluster: 2); Monocyte/Microglia:4. G4–1 Tumor clusters: 1,2,3,4,5,6 (cell cycle 
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cluster: 4); Microglia/Monocytes: 8; T-cells:7. G4–2 Tumor clusters:1,2,3,4,5,7 (cell cycle 

cluster: 5); Microglia/Monocytes:6. G4–3 Tumor clusters: 1,2,3,4,5,6,7,8,9 (cell cycle 

cluster: 4); Monocytes/Microglia:10. G4–4 Tumor clusters: 1,2. PFA-1 Tumor clusters: 4,6; 

Monocytes/Microglia: 1,3,5; T-cells:2; B-cells:7. PFA-2 Tumor clusters: 1,2; Monocytes/

Microglia: 3. PFA-3 Tumor clusters: 1,4,6,7; Microglia/Monocytes:2,3,5. PFA-4 Tumor 

clusters: 1,3,6,7; Monocytes/Microglia:2,4,5; T-cells:9; Pericytes:8; Endothelial cells:10. C-
PA-1 Tumor cluster: 3; Monocytes/Microglia: 1,2,4,5,6,7,9,10,11; T-cells: 8. C-PA-2 Tumor 

clusters: 4,5,7; Monocytes/Microglia:1,2,3,6,8,10,11,12; T-cells:9. C-PA-3 Tumor clusters:

2,4,5,7; Monocytes/Microglia:1,3,8; T-cells:6.
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Extended Figure 7. Re-clustering of the gliogenic progenitors and ‘roof plate like stem’ cells with 
comparison to PF ependymomas and C-PAs.
t-SNE visualization of the 8 sub-clusters obtained from combined re-clustering of ‘roof 

plate-like stem’ cells and gliogenic progenitor clusters (n= 2,525 cells) (a). Gene expression 

of gliogenic progenitor and ‘roof plate like stem’ cell marker genes onto t-SNE of sub-

clusters (n= 2,525 cells) (b). Pseudo-time trajectory analysis of the 8 sub-clusters annotated 

by sub-cluster (above) and developmental time point (below) (n= 2,525 cells) (c). 
Deconvolution analysis heatmap of tumor cell single-cell PFA clusters (n = 9) (above) and 

tumor single-cell C-PA clusters (n = 6) (below) against expression signatures of the 8 murine 
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developmental sub-clusters (d). t-SNE visualizations of clustered populations of PFA (n=4) 

(e) and C-PA (n=3) (f) scRNA-seq patient samples used for CIBERSORT’s deconvolution 

analysis. t-SNE visualization of the 6 sub-clusters obtained from re-clustering of only the 

gliogenic progenitor cluster (n= 1,709 cells) (g). Pseudo-time trajectory analysis of the 

gliogenic progenitor sub-clusters (n= 1,709 cells) annotated by sub-cluster (above) and 

developmental time point (below) (h). Deconvolution analysis heatmap of bulk PFA (n=22), 

PFB (n=25), and C-PA (n=10) patient samples against expression signatures of the 6 

gliogenic progenitor sub-clusters (i).
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Extended Figure 8. Re-clustering of the granule cell lineage with comparison to Shh 
medulloblastomas.
t-SNE visualization showing 7 distinct sub-clusters from re-clustering of the granule cell 

lineage (n=15,011 cells) (a). Pseudo-time trajectory analysis of the 7 granule cell sub-

clusters annotated by sub-cluster (above) and developmental time point (below) (n= 15,011 

cells) (b). Deconvolution analysis heat-map of bulk Shh MB (n=60) patient sample 

transcriptomes against expression signatures of the 7 granule cell sub-clusters (c). 
Deconvolution analysis heatmap of Shh MB scRNA-seq tumor specific clusters (n=10) 

against signatures of the 7 granule sub-clusters (d). t-SNE plot of clustered populations of 
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Shh MB scRNA-seq samples (n=2) (e). Comparison of clinical characteristics based on 

clustering by similarity to different points in GCP lineage of SHH-1 (n=15) and SHH-2 

(n=45) comparing age at diagnosis (f). Boxplot center lines show data media; box limits 

indicate 25th and 75th percentiles; lower and upper whiskers extend 1.5 times the 

interquartile range (IQR) from the 25th and 75th percentiles respectively; outliers are 

represented by individual points; p value (p=0.07) was determined by Wilcoxon test. 

Survival curve, corrected for metastatic dissemination and molecular subtype, of SHH-1 

(n=15) and SHH-2 (n=45) identified through matching to a re-clustered granule cell lineage 

(g). p value (p=0.00442) was determined by log rank test and + indicates censored cases. 

Comparison of additional clinical characteristics including histology (h), sex (i), molecular 

subtype affiliation (j), and metastatic status (k) of SHH-1 (n=15) and SHH-2 (n=45) patient 

samples. p values were determined using Fisher exact test.
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Extended Figure 9. Re-clustering of the unipolar brush cell lineage with comparison to Group 4 
medulloblastomas.
t-SNE visualization of 6 distinct sub-clusters obtained from re-clustering of the unipolar 

brush cell (UBC) lineage (n= 9,605 cells) (a). Gene expression of unipolar brush cell lineage 

marker genes onto t-SNE of sub-clusters (n= 9,605 cells) (b). Pseudo-time trajectory 

analysis of the 6 sub-clusters, showing clear branching of the GCP and UBC lineage 

annotated by sub-clusters (above) and developmental time point (below) (n= 9,605 cells) (c). 
t-SNE visualization of the scRNA-seq clustered populations of Grp 4 MB human tumor 

samples (n=4) (d). t-SNE visualization of scRNA-seq clustering analysis of four Group 4 

MB patient sample tumors colored by transcriptional match to both UBC and GCP gene 

expression signatures (9895 cells positive out of n= 12,129 cells) (e). Pie charts showing the 
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percentage of cells at various states of differentiation in three G4 tumor samples based on 

their matches to UBC precursors, UBCs or postnatal GCPs (f). Deconvolution analysis 

heatmap of Group 4 MB (n=45) bulk patient sample transcriptomes against expression 

signatures of the 6 UBC sub-clusters (g). Deconvolution analysis heatmap of Group 4 MB 

scRNA-seq tumor cell clusters (n=15) against signatures of the 6 UBC sub-clusters (h). t-
SNE visualization of re-clustered UBC and GCP progenitor cluster colored by the number of 

cells expressing UBCs transcriptional signature genes (573 cells positive out of n=2,866 

cells) (i), the number of cells expressing GCP transcriptional signature genes (159 cells 

positive out of n= 4607 cells) (j), the number of cells expressing both UBC and GCP gene 

signatures (75 cells positive out of n=4607 cells) (k). Venn diagram showing Group 4 GCP-

like clusters express 308/600 GCP signatures and 149/500 UBC signatures (n=3050 genes) 

(top) compared to Group 4 UBC-like clusters which express 136/600 GCP signatures and 

182/500 UBC signatures (n=3177 genes) (bottom) (l). Comparison of clinical characteristics 

based on clustering by similarity to different points in UBC lineage of Group 4 E16 (n=17) 

and Group 4 E18 (n=28) comparing age at diagnosis (m). Boxplot center lines show data 

media; box limits indicate 25th and 75th percentiles; lower and upper whiskers extend 1.5 

times the interquartile range (IQR) from the 25th and 75th percentiles respectively; outliers 

are represented by individual points; p value (p=0.45) was determined by Wilcoxon test. 

Survival curve, corrected for metastatic dissemination and molecular subtype, of Group 4 

E16 (n=17) and Group 4 E18 (n=28) identified through matching to a re-clustered granule 

cell lineage (n). p value (p=0.168) was determined by log rank test and + indicates censored 

cases. Comparison of additional clinical characteristics including sex (o), histology (p), 
metastatic status (q), and molecular subtype affiliation (r) of Group 4 E16 (n=17) and Group 

4 E18 (n=28) patient samples. p values were determined using Fisher exact test.
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Extended Figure 10. 
Cell cycle analysis of human scRNA-seq data. Dot plot showing the normalized ratio values 

of G1/S against G2/M ratios within each cell annotated by cluster identity (left) for Shh 

(n=2) (a-b), Group 3 MB (n=2) (c-d), Group 4 (n=4) (e-h) MBs and PFA (n=4) (i-l), C-PA 

(n=3) (m-o). Re-clustering t-SNE visualization of the single cell human tumors displaying 

cluster annotations (middle). Re-clustering t-SNE visualization with cell cycle phase ratios 

(G1/S, G2/M) projections (right).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements:

M.D.T. is supported by the NIH (R01CA148699 and R01CA159859), The Pediatric Brain Tumor Foundation, The 
Terry Fox Research Institute, The Canadian Institutes of Health Research, The Cure Search Foundation, 
b.r.a.i.n.child, Meagan’s Walk, SWIFTY foundation, Genome Canada, Genome BC, Genome Quebec, the Ontario 
Research Fund, Worldwide Cancer Research, V-Foundation for Cancer Research, and the Ontario Institute for 
Cancer Research through funding provided by the Government of Ontario. M.D.T. is also supported by a Canadian 
Cancer Society Research Institute Impact grant and by a Stand Up To Cancer (SU2C) St. Baldrick’s Pediatric 
Dream Team Translational Research Grant (SU2C-AACR-DT1113) and SU2C Canada Cancer Stem Cell Dream 
Team Research Funding (SU2C-AACR-DT-19–15) provided by the Government of Canada through Genome 
Canada and the Canadian Institutes of Health Research, with supplementary support from the Ontario Institute for 
Cancer Research through funding provided by the Government of Ontario. Stand Up To Cancer is a program of the 
Entertainment Industry Foundation administered by the American Association for Cancer Research. M.D.T. is also 
supported by the Garron Family Chair in Childhood Cancer Research at the Hospital for Sick Children and the 
University of Toronto. L.S. and I.E.H. were supported by funding provided by the Government of Ontario. M.C.V is 
supported by The Canadian Institutes of Health Research Doctoral scholarship. A.L.J. was supported by NIMH-
R37MH085726, NCI-CA192176 and NINDS-R01NS092096 and a National Cancer Institute Cancer Center 
Support Grant [P30 CA008748–48]. This study was conducted with the support of the Ontario Institute for Cancer 
Research’s Genomics & Bioinformatics platform (genomics.oicr.on.ca) through funding provided by the 
Government of Ontario.

References

1. Cavalli FMG et al. Intertumoral Heterogeneity within Medulloblastoma Subgroups. Cancer Cell 31, 
737–754 e736, doi:10.1016/j.ccell.2017.05.005 (2017). [PubMed: 28609654] 

2. Northcott PA et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. 
Nature 488, 49–56, doi:10.1038/nature11327 (2012). [PubMed: 22832581] 

3. Dubuc AM, Mack S, Unterberger A, Northcott PA & Taylor MD The epigenetics of brain tumors. 
Methods in molecular biology 863, 139–153, doi:10.1007/978-1-61779-612-8_8 (2012). [PubMed: 
22359291] 

4. Dubuc AM et al. Subgroup-specific alternative splicing in medulloblastoma. Acta neuropathologica 
123, 485–499, doi:10.1007/s00401-012-0959-7 (2012). [PubMed: 22358458] 

5. Northcott PA et al. Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 29, 
1408–1414, doi:10.1200/JCO.2009.27.4324 (2011). [PubMed: 20823417] 

6. Wechsler-Reya RJ & Scott MP Control of neuronal precursor proliferation in the cerebellum by 
Sonic Hedgehog. Neuron 22, 103–114 (1999). [PubMed: 10027293] 

7. Wallace VA Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell 
proliferation in the developing mouse cerebellum. Curr Biol 9, 445–448 (1999). [PubMed: 
10226030] 

8. Li P et al. A population of Nestin-expressing progenitors in the cerebellum exhibits increased 
tumorigenicity. Nat Neurosci 16, 1737–1744, doi:10.1038/nn.3553 (2013). [PubMed: 24141309] 

9. Kawauchi D et al. A mouse model of the most aggressive subgroup of human medulloblastoma. 
Cancer Cell 21, 168–180, doi:10.1016/j.ccr.2011.12.023 (2012). [PubMed: 22340591] 

10. Pei Y et al. An animal model of MYC-driven medulloblastoma. Cancer Cell 21, 155–167, doi:
10.1016/j.ccr.2011.12.021 (2012). [PubMed: 22340590] 

11. Swartling FJ et al. Pleiotropic role for MYCN in medulloblastoma. Genes Dev 24, 1059–1072, doi:
10.1101/gad.1907510 (2010). [PubMed: 20478998] 

12. Gibson P et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 468, 
1095–1099, doi:10.1038/nature09587 (2010). [PubMed: 21150899] 

13. Vanner RJ et al. Quiescent sox2(+) cells drive hierarchical growth and relapse in sonic hedgehog 
subgroup medulloblastoma. Cancer Cell 26, 33–47, doi:10.1016/j.ccr.2014.05.005 (2014). 
[PubMed: 24954133] 

Vladoiu et al. Page 28

Nature. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://genomics.oicr.on.ca/


14. Pajtler KW et al. The current consensus on the clinical management of intracranial ependymoma 
and its distinct molecular variants. Acta Neuropathol 133, 5–12, doi:10.1007/s00401-016-1643-0 
(2017). [PubMed: 27858204] 

15. Pajtler KW et al. Molecular Classification of Ependymal Tumors across All CNS Compartments, 
Histopathological Grades, and Age Groups. Cancer Cell 27, 728–743, doi:10.1016/j.ccell.
2015.04.002 (2015). [PubMed: 25965575] 

16. Witt H et al. Delineation of two clinically and molecularly distinct subgroups of posterior fossa 
ependymoma. Cancer Cell 20, 143–157, doi:10.1016/j.ccr.2011.07.007 (2011). [PubMed: 
21840481] 

17. Mack SC et al. Therapeutic targeting of ependymoma as informed by oncogenic enhancer 
profiling. Nature 553, 101–105, doi:10.1038/nature25169 (2018). [PubMed: 29258295] 

18. Johnson RA et al. Cross-species genomics matches driver mutations and cell compartments to 
model ependymoma. Nature 466, 632–636, doi:10.1038/nature09173 (2010). [PubMed: 
20639864] 

19. Taylor MD et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8, 323–
335, doi:10.1016/j.ccr.2005.09.001 (2005). [PubMed: 16226707] 

20. Pomeroy SL et al. Prediction of central nervous system embryonal tumor outcome based on gene 
expression. Nature 415, 436–442, doi:10.1038/415436a (2002). [PubMed: 11807556] 

21. Capper D et al. DNA methylation-based classification of central nervous system tumors. Nature 
555, 469–474, doi:10.1038/nature26000 (2018). [PubMed: 29539639] 

22. Jones DT et al. Dissecting the genomic complexity underlying medulloblastoma. Nature 488, 100–
105, doi:10.1038/nature11284 (2012). [PubMed: 22832583] 

23. Pugh TJ et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. 
Nature 488, 106–110, doi:10.1038/nature11329 (2012). [PubMed: 22820256] 

24. Northcott PA et al. The whole-genome landscape of medulloblastoma subtypes. Nature 547, 311–
317, doi:10.1038/nature22973 (2017). [PubMed: 28726821] 

25. Jones DT et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat 
Genet 45, 927–932, doi:10.1038/ng.2682 (2013). [PubMed: 23817572] 

26. Mack SC et al. Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. 
Nature 506, 445–450, doi:10.1038/nature13108 (2014). [PubMed: 24553142] 

27. Goldowitz D & Hamre K The cells and molecules that make a cerebellum. Trends Neurosci 21, 
375–382 (1998). [PubMed: 9735945] 

28. Leto K et al. Consensus Paper: Cerebellar Development. Cerebellum 15, 789–828, doi:10.1007/
s12311-015-0724-2 (2016). [PubMed: 26439486] 

29. Sillitoe RV & Joyner AL Morphology, molecular codes, and circuitry produce the three-
dimensional complexity of the cerebellum. Annu Rev Cell Dev Biol 23, 549–577, doi:10.1146/
annurev.cellbio.23.090506.123237 (2007). [PubMed: 17506688] 

30. Fleming JT et al. The Purkinje neuron acts as a central regulator of spatially and functionally 
distinct cerebellar precursors. Dev Cell 27, 278–292, doi:10.1016/j.devcel.2013.10.008 (2013). 
[PubMed: 24229643] 

31. Parmigiani E et al. Heterogeneity and Bipotency of Astroglial-Like Cerebellar Progenitors along 
the Interneuron and Glial Lineages. J Neurosci 35, 7388–7402, doi:10.1523/JNEUROSCI.
5255-14.2015 (2015). [PubMed: 25972168] 

32. Wojcinski A et al. Cerebellar granule cell replenishment postinjury by adaptive reprogramming of 
Nestin(+) progenitors. Nat Neurosci 20, 1361–1370, doi:10.1038/nn.4621 (2017). [PubMed: 
28805814] 

33. Yeung J & Goldowitz D Wls expression in the rhombic lip orchestrates the embryonic development 
of the mouse cerebellum. Neuroscience 354, 30–42, doi:10.1016/j.neuroscience.2017.04.020 
(2017). [PubMed: 28450263] 

34. Yeung J et al. Wls provides a new compartmental view of the rhombic lip in mouse cerebellar 
development. J Neurosci 34, 12527–12537, doi:10.1523/JNEUROSCI.1330-14.2014 (2014). 
[PubMed: 25209290] 

35. Garzia L et al. A Hematogenous Route for Medulloblastoma Leptomeningeal Metastases. Cell 173, 
1549, doi:10.1016/j.cell.2018.05.033 (2018).

Vladoiu et al. Page 29

Nature. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



36. Morrissy AS et al. Spatial heterogeneity in medulloblastoma. Nat Genet 49, 780–788, doi:
10.1038/ng.3838 (2017). [PubMed: 28394352] 

37. Morrissy AS et al. Divergent clonal selection dominates medulloblastoma at recurrence. Nature 
529, 351–357, doi:10.1038/nature16478 (2016). [PubMed: 26760213] 

38. Wu X et al. Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature 482, 
529–533, doi:10.1038/nature10825 (2012). [PubMed: 22343890] 

39. Tan IL et al. Lateral cerebellum is preferentially sensitive to high sonic hedgehog signaling and 
medulloblastoma formation. Proc Natl Acad Sci U S A 115, 3392–3397, doi:10.1073/pnas.
1717815115 (2018). [PubMed: 29531057] 

40. Kim JA, Sekerkova G, Mugnaini E & Martina M Electrophysiological, morphological, and 
topological properties of two histochemically distinct subpopulations of cerebellar unipolar brush 
cells. Cerebellum 11, 1012–1025, doi:10.1007/s12311-012-0380-8 (2012). [PubMed: 22528965] 

Methods References

41. Nguyen QH et al. Profiling human breast epithelial cells using single cell RNA sequencing 
identifies cell diversity. Nat Commun 9, 2028, doi:10.1038/s41467-018-04334-1 (2018). [PubMed: 
29795293] 

42. De Simoni A & Yu LM Preparation of organotypic hippocampal slice cultures: interface method. 
Nat Protoc 1, 1439–1445, doi:10.1038/nprot.2006.228 (2006). [PubMed: 17406432] 

43. Zheng GX et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun 8, 
14049, doi:10.1038/ncomms14049 (2017). [PubMed: 28091601] 

44. Lun AT, Bach K & Marioni JC Pooling across cells to normalize single-cell RNA sequencing data 
with many zero counts. Genome Biol 17, 75, doi:10.1186/s13059-016-0947-7 (2016). [PubMed: 
27122128] 

45. Satija R, Farrell JA, Gennert D, Schier AF & Regev A Spatial reconstruction of single-cell gene 
expression data. Nat Biotechnol 33, 495–502, doi:10.1038/nbt.3192 (2015). [PubMed: 25867923] 

46. Butler A, Hoffman P, Smibert P, Papalexi E & Satija R Integrating single-cell transcriptomic data 
across different conditions, technologies, and species. Nat Biotechnol 36, 411–420, doi:10.1038/
nbt.4096 (2018). [PubMed: 29608179] 

47. Trapnell C et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal 
ordering of single cells. Nat Biotechnol 32, 381–386, doi:10.1038/nbt.2859 (2014). [PubMed: 
24658644] 

48. Qiu X et al. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods 14, 
979–982, doi:10.1038/nmeth.4402 (2017). [PubMed: 28825705] 

49. Zerbino DR et al. Ensembl 2018. Nucleic Acids Res 46, D754–D761, doi:10.1093/nar/gkx1098 
(2018). [PubMed: 29155950] 

50. Newman AM et al. Robust enumeration of cell subsets from tissue expression profiles. Nat 
Methods 12, 453–457, doi:10.1038/nmeth.3337 (2015). [PubMed: 25822800] 

51. Dobin A et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21, doi:10.1093/
bioinformatics/bts635 (2013). [PubMed: 23104886] 

52. Love MI, Huber W & Anders S Moderated estimation of fold change and dispersion for RNA-seq 
data with DESeq2. Genome Biol 15, 550, doi:10.1186/s13059-014-0550-8 (2014). [PubMed: 
25516281] 

53. Saunders A et al. Molecular Diversity and Specialization among the Cells of the Adult Mouse 
Brain. Cell 174, 1015–1030 e1016, doi:10.1016/j.cell.2018.07.028 (2018). [PubMed: 30096299] 

54. Zeisel Al et al. Molecular Architecture of the Mouse Nervous System. Cell 174, 999–1014 e1022, 
doi:10.1016/j.cell.2018.06.021 (2018). [PubMed: 30096314] 

Vladoiu et al. Page 30

Nature. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Identification of cell types in the developing mouse cerebellum.
t-SNE visualization of transcriptionally distinct cell populations from 62,040 single cells 

from nine developmental time points. Clusters of cells were identified using a shared nearest 

neighbour (SNN) modularity optimization based clustering algorithm implemented by 

Seurat. The cells are color-coded by time point as indicated by the legend on the right.
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Figure 2. Re-construction of cerebellar developmental lineages through pseudo-temporal 
ordering of cells.
t-SNE visualization and two-dimensional embedding showing constructed pseudo-time 

trajectories of different lineages in the developing cerebellum: Astrocyte/Bergmann glia 

lineage (n=12,304 cells) (a), Early glutamatergic lineage (n=14,358 cells) (b), Late 

glutamatergic lineage (n=14,662 cells) (c). Cells within specific lineage clusters were 

selected, visualized using Seurat’s t-SNE visualization and then ordered based on Monocle 

2’s reverse-graph embedding (RGE) method. Heatmaps demonstrate gene normalized 

expression levels of cluster-specific markers, red being highest and blue being lowest.
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Figure 3. Deconvolution analyses of bulk human medulloblastoma tumor transcriptomes.
Hierarchical clustering of patient samples of known molecular subgroups based on 

calculated relative abundance values of the mouse cell-type clusters in each sample, obtained 

from CIBERSORT. Expression signatures from 26 mouse cell clusters were selected to 

deconvolute bulk RNA-seq of human cerebellar tumors including: Shh, Group 3 and Group 

4 MBs (n=145).
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Figure 4. Temporal transcriptional matching of normal cerebellar cell clusters with bulk human 
tumors.
Deconvolution analysis of PFA (n=22) (a), PFB (n=21) (b), C-PA (n=10) (c) patient samples 

against different developmental time points of the gliogenic progenitor cell cluster. In situ 
hybridization staining of medial sagittal slices of marker genes Lmx1a, Ascl1, and Tnc 
during mouse cerebellar development (d). Deconvolution analysis of 45 Group 4 MB patient 

samples against different developmental stages of the UBC cluster (e). In situ hybridization 

staining of medial sagittal slice of marker genes Eomes during mouse cerebellar 

development (E15.5 and E18.5) (f). Deconvolution analysis of Shh MB (n=60) patient 

samples against P0, P5, and P7 developmental stages of the post-natal GCP-1 cell cluster 

(g). Expression of the post-natal GCP-1 cell cluster marker Math1 and Mfap4 in the 

developing P4 mouse cerebellum (h). All in situ hybridization data were obtained from 

Allen Brain Map: Developing Mouse Brain Atlas (http://developingmouse.brain-map.org).
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Figure 5. Cell-type deconvolution analysis of tumor-cell specific clusters from human 
medulloblastoma scRNA-seq.
Clustering analysis and t-SNE visualization of scRNA-seq data of Shh MB (n=2) (a), Group 

3 MB (n=2) (b), and Group 4 MB (n=4) (c) patient samples. Each patient’s sample is shown 

as a different color. Each individual tumor cell cluster was subjected to a deconvolution 

analysis against 26 previously identified mouse cell populations using CIBERSORT, with 

each individual tumor cluster identified in the far left hand column of each heatmap.
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Figure 6. Cell-type deconvolution analysis of tumor-cell specific clusters from human PFA and 
cerebellar pilocytic astrocytoma scRNA-seq.
Clustering analysis and t-SNE visualization of scRNA-seq of PFA (n=4) (a) and C-PA (n=3) 

(b) human samples. Each patient’s sample is shown as a different color. Each individual 

tumor cell cluster was subjected to a deconvolution analysis against 26 previously identified 

mouse cell populations using CIBERSORT, with each individual tumor cluster identified in 

the far left hand column of each heatmap.
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