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Abstract

Background & Aims: Epidemiology studies of circulating concentrations of 25 hydroxy 

vitamin D (25(OH)D) and risk of esophageal adenocarcinoma (EAC) have produced conflicting 

results. We conducted a Mendelian randomization study to determine the associations between 

circulating concentrations of 25(OH)D and risks of EAC and its precursor, Barrett’s esophagus 

(BE).

Methods: We conducted a Mendelian randomization study using a 2-sample (summary data) 

approach. Six single-nucleotide polymorphisms (SNPs; rs3755967, rs10741657, rs12785878, 

rs10745742, rs8018720, and rs17216707) associated with circulating concentrations of 25(OH)D 

were used as instrumental variables. We collected data from 6167 patients with BE, 4112 patients 

with EAC, and 17,159 individuals without BE or EAC (controls) participating in the Barrett’s and 

Esophageal Adenocarcinoma Consortium, as well as studies from Bonn, Germany and Cambridge 

and Oxford, United Kingdom. Analyses were performed separately for BE and EAC.

Results: Overall, we found no evidence for an association between genetically estimated 

25(OH)D concentration and risk of BE or EAC. The odds ratio (OR) per 20 nmol/L increase in 

genetically estimated 25(OH)D concentration for BE risk estimated by combining the individual 

SNP association using inverse variance weighting was 1.21 (95% CI, 0.77–1.92; P=.41). The OR 

for EAC risk, estimated by combining the individual SNP association using inverse variance 

weighting, was 0.68 (95% CI, 0.39–1.19; P=.18).

Conclusions.—In a Mendelian randomization study, we found that low genetically estimated 

25(OH)D concentrations were not associated with risk of BE or EAC.
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INTRODUCTION

The incidence of esophageal adenocarcinoma (EAC) has increased rapidly during the last 

four decades (1), and despite advances in early detection and treatment, the 5-year survival 

in EAC remains less than 20% (2). Barrett’s esophagus (BE), metaplastic columnar 

epithelial overgrowth of the distal esophagus, is the precursor for EAC (3). Established risk 

factors for EAC and BE include gastro-esophageal reflux disease (4, 5), obesity (6), and 

tobacco smoking (7, 8). Epidemiological studies have examined the association between 

vitamin D and risk of EAC, with conflicting results (9–11). However, these studies have 

been limited by relatively small sample sizes (< 500 EAC patients) and by potential biases, 

including reverse causation that may arise if serum vitamin D levels are measured at or close 

to the date of cancer diagnosis.

In the absence of convincing evidence from epidemiologic studies, Mendelian 

randomization is an alternative approach for exploring possible associations between 

25(OH)D concentration and risks of BE and EAC (12). This approach uses instrumental 

variables (e.g., genetic variants as proxy markers of directly measured risk factors) to make 

inferences about the relation between an exposure (e.g., low 25(OH)D concentration) and 

outcome (e.g., BE and EAC) (12–14). If 25(OH)D is related to risk of BE or EAC, then the 

variability in 25(OH)D that is due to genotype should confer differences in BE or EAC risk 

directly attributable to 25(OH)D. Since alleles are randomly allocated from parents to 

offspring at conception, the association between genotype and outcome is not confounded 

by other factors. Furthermore, genetic variants are measured reliably and are not affected by 

disease status, thus avoiding recall bias. However, a strong instrumental variable and large 

sample size are required for an unbiased Mendelian randomization study. The availability of 

large collections of genome-wide data on phenotypes, such as 25(OH)D concentration, and 

disease traits within international consortia represents an opportunity to use this approach. 

Here, we report the findings of a Mendelian randomization study examining associations 

between genetically estimated circulating 25(OH)D concentration and risks of BE and EAC. 

The selected six 25(OH)D-associated SNPs explained ~3% of the variance of 25(OH)D 

concentration.

METHODS

In the absence of a dataset with complete individual-level genetic data, 25(OH)D 

concentration levels, and BE/EAC status we applied a standard two-sample approach that 

uses GWAS summary-level data to assess indirect associations (15). That is, we first 

estimated the single nucleotide polymorphism (SNP)-disease associations from one study 

sample and the SNP-exposure associations in another study sample. Second, we used the 

Wald-type ratio estimator to calculate the Mendelian randomization estimate for the 

association between genetically estimated 25(OH)D concentration and risks of BE and EAC.
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SNP-25(OH)D associations

A study involving 79,366 participants of European descent from 31 epidemiological studies 

conducted in Europe and North America, identified six SNPs associated with 25(OH)D 

levels at genome-wide significance (i.e., P < 5 ×10−8) (16). These six SNPs are uncorrelated 

and are located in or close to the following genes: GC (rs3755967), CYP2R1 (rs10741657), 

DHCR7 (rs12785878), AMDHD1 (rs10745742), SEC23A (rs8018720) and CYP24A1 
(rs17216707). These genes have been shown to encode enzymes and carrier proteins 

involved in vitamin D synthesis or metabolism (16). As serum 25(OH)D concentration levels 

were not measured in cases and controls included in our BE/EAC studies, we instead 

retrieved summary-level data for the associations between these six SNPs and 25(OH)D 

directly from the published paper (16). In brief, that study estimated the associations 

between each individual SNP and natural log-transformed 25(OH)D concentration using 

linear regression models adjusted for month of sample collection, age, sex, body mass index, 

principal components of ancestry, and laboratory batch, where relevant. The analyses were 

conducted separately for each cohort, and the results were summarized using fixed-effects 

inverse variance weighted meta-analysis (16). The estimated magnitudes of association (i.e., 

β coefficients) for the six SNP-25(OH)D associations and their standard errors are shown in 

Table 1.

SNP-BE and SNP-EAC associations

We obtained individual-level epidemiologic and genetic data from 6,167 BE patients, 4,112 

EAC patients, and 17,159 control participants from 15 epidemiologic studies from North 

America, Europe, and Australia included in the Barrett’s and Esophageal Adenocarcinoma 

Consortium (BEACON; http://beacon.tlvnet.net/), as well as from studies from Bonn, 

Germany; Cambridge, United Kingdom; and Oxford, United Kingdom (17–20). The 

numbers of participants in each study are shown in Table 2. We have reported detailed 

information on study participants, genotyping, and imputation previously (17). Briefly, all 

participants were of European ancestry, and DNA samples extracted from blood or saliva 

were genotyped on high-density SNP arrays (Illumina, San Diego, CA, USA). BE patients 

were identified by histopathological diagnosis of intestinal metaplasia, and patients with 

EAC had a histopathologically confirmed diagnosis of adenocarcinoma. Each contributing 

study was performed under institutional review board approval and all participants gave 

informed consent. Standard quality control and imputation were performed for each study.

We used a two-stage analytic approach to estimate SNP-BE and SNP-EAC associations. 

Analyses were performed separately for each of the six SNPs, as well as separately for BE 

and EAC. First, study-specific (i.e., for BEACON, Bonn, Cambridge, and Oxford) odds 

ratios (OR) and corresponding 95% confidence intervals (95% CI) were estimated fitting 

unconditional logistic regression models which adjusted for age, sex and study-specific top 

principal components of ancestry, under an additive genetic model using allelic dosage. 

Second, for each SNP, the study-specific adjusted ORs were pooled to create a summary 

OR, using a fixed-effects inverse variance-weighting approach.
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Mendelian randomization estimate for the association with genetically estimated 25(OH)D

We used a two-stage analytic approach to estimate the instrumental variable association 

between genetically estimated 25(OH)D concentration and risks of BE and EAC. In the first 

stage, for each instrumental variable (i.e., separately for the six SNPs), we used the Wald-

type ratio estimator to compute the Mendelian randomization weighted estimates for any 

influence of genetically estimated 25(OH)D on risks of BE and EAC (21), and the Delta 

method to estimate the standard errors (22). In the second stage, the six Mendelian 

randomization estimates were pooled to create a summary instrumental variable OR, using 

an inverse-variance weighted meta-analysis approach (23). We scaled estimates to a 20-

nmol/L change in 25(OH)D concentration, which is approximately the inter-tertile range 

(66th percentile to 33rd percentile) observed in a large European study.(24) We evaluated the 

presence and magnitude of heterogeneity across the six Mendelian randomization estimates 

with the Cochran Q and I2 statistics (25). All statistics were two sided and all analyses were 

conducted using Stata 14.1 (StataCorp, College Station, TX).

Assessment of pleiotropy

In order to have a valid interpretation for the Mendelian randomization analysis, our 

instrumental variable (the SNPs) must be independently associated with circulating 

25(OH)D concentration and associated with BE or EAC only through its association with 

circulating 25(OH)D concentration (26, 27). To assess and account for pleiotropy (where a 

SNP may affect more than one phenotypic characteristic), we employed the MR-Egger 

regression method (an adaptation of the Egger regression in a meta-analysis) (28). The 

intercept statistically significantly away from zero is a valid test of directional horizontal 

pleiotropy, whereas the slope of the MR-Egger regression is the horizontal pleiotropy-

adjusted estimated magnitude of association. We used a weighted median method to 

diagnose and protect against invalid genetic instruments (29), and searched the literature and 

publicly available GWAS databases for associations between the SNPs and other phenotypes 

(30).

Power

Assuming the 6 SNPs above explain 3% of the variance in 25(OH)D and with α=0.05, our 

study had 80% power to detect an OR of 1.25 or higher.

RESULTS

SNP-BE and SNP-EAC associations

The associations between each of the six 25(OH)D-associated SNPs and the risks of BE and 

EAC are shown in Table 3. Only the SNP rs12785878 was nominally associated with the 

risk of BE (per copy of the T allele, summary OR, 1.07; 95% CI, 1.02–1.13; P = 0.008) and 

none were associated with the risk of EAC (all P values > 0.1). The magnitude and direction 

of the individual SNP-BE or SNP-EAC associations were consistent across the 4 datasets, 

with no evidence of between-study heterogeneity (all I2 < 42%).
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Mendelian randomization estimate for the association with genetically estimated 25(OH)D

The results of the instrumental variables analyses are shown in Figure 1. They show no 

associations between genetically estimated 25(OH)D concentration and the risk of BE (per 

20 nmol/L increase in 25(OH)D, summary instrumental variable OR, 1.21; 95% CI, 0.77–

1.92). We found little heterogeneity in the estimated magnitudes of association between the 

six individual SNP variables (I2 = 46.8%, Pheterogeneity = 0.09). Likewise, in the instrumental 

variables analysis of EAC, there were no associations with genetically estimated 25(OH)D 

concentration (per 20 nmol/L increase in 25(OH)D, summary instrumental variable OR, 

0.68; 95% CI, 0.39–1.19; I2 = 0%, Pheterogeneity = 0.99).

Assumptions of Mendelian randomization

To satisfy the first assumption that the instrumental variable is associated with the exposure 

of interest, we selected only SNPs with genome-wide statistically significant association 

with 25(OH)D concentration. We found no evidence for pleiotropy, with an MR-Egger 

intercept of −0.005 (P = 0.79) for BE and 0.007 (P = 0.75) for EAC. The weighted median 

method also yielded no statistically significant estimates (Supplementary Table 1). Finally, 

we evaluated whether the SNPs that we used as instrumental variables for 25(OH)D were 

associated with various other phenotypes. As shown in Supplementary Table 2, we did not 

find any associations at genome-wide significance (P < 5 ×10−8), other than rs17216707 

with eGFR creatinine (P = 6 ×10−13).

DISCUSSION

In this Mendelian randomization study, we used genetic variants as instrumental variables 

for 25(OH)D and examined associations between 25(OH)D and risks of BE and EAC. We 

found no evidence that 25(OH)D concentration, as predicted by genotype, was associated 

with risks of BE or EAC. Thus, the study provides little evidence that 25(OH)D 

concentration is associated with risk of BE or EAC.

Observational studies have examined the association between 25(OH)D concentration and 

the risk of various cancers. A large number of case-control studies have reported conflicting 

results; however, these studies are susceptible to reverse causation. Likewise, results from 

prospective cohort studies have been inconclusive as a result of measuring 25(OH)D 

concentration at relatively unspecified times (anywhere from 0 to 20+ years) in the past 

before diagnosis. Given the limitations of these observational studies, it remains difficult to 

draw causal inferences, especially when inconsistent results are observed. Therefore, several 

Mendelian randomization studies have been recently conducted to examine associations 

between genetically predicted 25(OH)D concentration and risk of specific cancers. The 

advantage of Mendelian randomization studies is that the estimated magnitudes of 

associations are less likely to be affected by confounding and recall bias. A Mendelian 

randomization study involving data from 70,563 cancer patients and 84,418 control 

participants found that 25(OH)D concentration, as predicted by genotype, was not associated 

with the risks of prostate, breast, lung, colorectal, ovarian, pancreatic cancers or 

neuroblastoma (31). Likewise, a Mendelian randomization study found no association 

between genetically predicted 25(OH)D concentration and risks of oral or oropharyngeal 
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cancer (32). Another Mendelian randomization study indicated an increased risk of ovarian 

cancer (OR, 1.27; 95% CI, 1.06–1.51) per 20nmol/L decrease in genetically predicted 

25(OH)D concentrations in 10,065 ovarian cancer and 21,654 controls (33), but this 

association was not confirmed in a subsequent Mendelian randomization study of ovarian 

cancer.(31)

Few studies, and no Mendelian randomization studies, have examined associations between 

25(OH)D and risks of BE and EAC (9, 11, 34). A nested case-control study from the Cohort 

Consortium Vitamin D Pooling Project of Rarer Cancers reported no association between 

circulating 25(OH)D and the risk of EAC (N=104) (34). A recent meta-analysis 

investigating associations between makers of vitamin D exposure (i.e., ultraviolet B 

exposure, vitamin D intake and vitamin D status) and risk of BE or EAC also found no 

association (11). Conversely, a case-control study in Australia reported a decreased risk of 

EAC with higher ultraviolet B exposure although, even if a true finding, this is not 

necessarily due to vitamin D (9). While there is some evidence that BE patients are often 

vitamin D insufficient (35, 36), studies to date have found no association between vitamin D 

intake and the risk of BE (10), and vitamin D supplementation has been shown to have no 

effect on risk of neoplastic progression in BE patients (35). Finally, a BE registry cohort 

study found no association between circulating 25(OH)D concentration and risk of prevalent 

or incident dysplasia or EAC in BE patients (36). The findings from the present Mendelian 

randomization study provide further evidence that 25(OH)D concentration is not associated 

with the risk of BE or EAC. Interestingly, the point estimates (i.e., ORs) for BE and EAC 

show opposite direction of effect for some of these SNPs, with evidence of moderate 

heterogeneity in the associations with BE but no heterogeneity for associations with EAC. 

Nonetheless, the point estimates are not significantly different from zero. Thus, a chance 

finding may explain the opposite directions.

Strengths of the current study include the high quality of the case-control and cohort studies 

used. The majority of the studies were population-based in design. Compared to results from 

traditional analyses of observational studies, the risk estimates using instrumental variables 

are less likely to be affected by confounding and other types of bias. We used six SNPs 

known to be associated with 25(OH)D concentration, all located in or near genes encoding 

enzymes and carrier proteins involved in vitamin D synthesis or metabolism, which provided 

a strong and valid instrumental variable for 25(OH)D concentration. Furthermore, through 

various statistical tests and database searches, we found little evidence of pleiotropic effects.

Our study also has limitations. Although we used a large worldwide consortial sample of 

patients, our study population was relatively small compared to other Mendelian 

randomization studies of vitamin D. However, few additional BE and EAC patients with 

non-genetic and genetic data are currently available, so such work may require additional 

time for study patients to accrue. While our findings are consistent with vitamin D not 

having a large causal effect on BE/EAC risk, as the six 25(OH)D-associated SNPs explain 

only ~3% of the variance of 25(OH)D concentration our study may have nonetheless been 

underpowered to detect medium to small effects. We are unable to evaluate whether the 

associations between 25(OH)D concentration and the risks of BE and EAC are nonlinear. It 

is possible that in populations with low 25(OH)D due to limited sun exposure, genetically 
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determined variation in 25(OH)D may be associated with BE or EAC. Finally, we used 

summary-level data, which did not allow us to stratify analyses by covariates of interest, 

such as age, sex, smoking, body mass index, and gastroesophageal reflux symptoms.

In conclusion, this Mendelian randomization study provides little evidence that genetically 

estimated circulating 25(OH)D concentration is associated with the risk of BE and EAC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Need to Know

Background:

Epidemiology studies on 25(OH)D and the risk of EAC have produced conflicting 

results. We conducted a Mendelian randomization study to evaluate the association 

between 25(OH)D and risks of BE and EAC.

Findings:

In this Mendelian randomization study, genetically estimated 25(OH)D concentration 

was not associated with risk of BE or EAC.

Implications for patient care:

Together with data from prior studies of BE and EAC risk, our findings do not support 

screening for vitamin D deficiency for primary prevention of EAC.
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Figure 1A. Mendelian randomization estimates of the association between increased 25(OH)D 
concentration and risk of Barrett’s esophagus.
The OR estimates are per 20 nmol/L increase in 25(OH)D concentration. The hollow 

diamond represents the overall IV estimate with its 95% CI.
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Figure 1B. Mendelian randomization estimates of the association between increased 25(OH)D 
concentration and risk of esophageal adenocarcinoma.
The OR estimates are per 20 nmol/L increase in 25(OH)D concentration. The hollow 

diamond represents the overall IV estimate with its 95% CI.
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Table 1.

Characteristics of genetic variants associated with 25(OH)D concentration in published genome-wide 

association studies (ref.16)

SNP Chr Gene Effect/Reference Allele Effect Allele Frequency β estimate* s.e. P value

rs10741657 11 CYP2R1 A/G 0.40 0.031 0.0022 2.1 × 1−46

rs10745742 12 AMDHD1 T/C 0.40 0.017 0.0022 1.9 × 10−14

rsl2785878 11 DHCR7 T/G 0.75 0.036 0.0022 3.8 × 10−62

rs17216707 20 CYP24A1 T/C 0.79 0.026 0.0027 8.1 × 10−23

rs3755967 4 GC C/T 0.62 0.089 0.0023 4.7 × 10−343

rs8018720 14 SEC23A G/C 0.18 0.017 0.0029 4.7 × 10−9

*
25(OH)D level was reported SD increases in nmol/L in natural-log scale per copy of the effect alleles.
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Table 2.

Characteristics of the studies included for the gene-25(OH)D and gene-BE/EAC associations

Data Source n studies Sample size

Gene-Vitamin D association

SUNLIGHT Consortium (ref.16) 31 79,366

Gene-BE/EAC associations

BEACON (ref. 17, 18) 15 2,406 BE, 1,508 EAC, 6,718 controls

 • United States 9 1,718 BE, 668 EAC, 1,021 controls

 • United Kingdom 1 167 BE, 102 EAC

 • Sweden 1 63 EAC, 116 controls

 • Canada 1 246 EAC, 256 controls

 • Australia 2 324 BE, 236 EAC, 567 controls

 • Ireland 1 197 BE, 193 EAC, 217 controls

 • dbGap 1 4,541 controls

Bonn (Germany) (ref. 17, 19) 1 1,037 BE, 1,609 EAC, 3,537 controls

Cambridge (UK) (ref.17) 1 873 BE, 995 EAC, 3,408 controls

Oxford (UK) (ref.17, 20) 7 1,851 BE, 3,496 controls
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Table 3.

Characteristics of genetic variants associated with Barrett’s esophagus and esophageal adenocarcinoma

SNP Chr Gene Effect/Reference Allele BE EAC

OR (95% CI) P OR (95% CI) P

rs10741657 11 CYP2R1 A/G 1.01 (0.97–1.06) 0.577 0.98 (0.93–1.04) 0.465

rs10745742 12 AMDHD1 T/C 0.97 (0.92–1.01) 0.122 1.01 (0.95–1.06) 0.811

rsl2785878 11 DHCR7 T/G 1.07 (1.02–1.13) 0.008 0.99 (0.93–1.05) 0.785

rs17216707 20 CYP24A1 T/C 0.98 (0.92–1.04) 0.495 1.00 (0.93–1.08) 0.920

rs3755967 4 GC C/T 1.00 (0.96–1.05) 0.844 0.96 (0.91–1.02) 0.213

rs8018720 14 SEC23A G/C 1.01 (0.95–1.06) 0.841 0.99 (0.92–1.06) 0.778
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