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Abstract

BACKGROUND: Osteoarthritis (OA) is a highly prevalent degenerative joint disease involving joint cartilage and its

surrounding tissues. OA is the leading cause of pain and disability worldwide. At present, there are no disease-modifying

OA drugs, and the primary therapies include exercise and nonsteroidal anti-inflammatory drugs until total joint replacement

at the end-stage of the disease.

METHODS: In this review, we summarized the current state of knowledge in genetic and epigenetic associations and risk

factors for OA and their potential diagnostic and therapeutic applications.

RESULTS: Genome-wide association studies and analysis of epigenetic modifications (such as miRNA expression, DNA

methylation and histone modifications) conducted across various populations support the notion that there is a genetic basis

for certain subsets of OA pathogenesis.

CONCLUSION: With recent advances in the development of genome editing technologies such as the CRISPR-Cas9

system, these genetic and epigenetic alternations in OA can be used as platforms from which potential biomarkers for the

diagnosis, prognosis, drug response, and development of potential personalized therapeutic targets for OA can be

approached. Furthermore, genome editing has allowed the development of ‘‘designer’’ cells, whereby the receptors, gene

regulatory networks, or transgenes can be modified as a basis for new cell-based therapies.

Keywords Genetics � Gene editing � Personalized medicine � Osteoarthritis

1 Introduction

Osteoarthritis (OA) is the most prevalent rheumatic disease

worldwide, affecting an estimated 10 percent of the world’s

population over the age of 60 [61]. OA is characterized by

pain, stiffness, decreased function, instability, deformity

and swelling due to irreversible pathological changes in the

joint organ system, including articular cartilage, subchon-

dral bone, synovium, and the infrapatellar fat pad [39, 30].

The pathogenesis of OA involves the development of

cartilage degeneration, synovial inflammation, subchondral

bone remodeling and sclerosis, degeneration of ligaments

and meniscus, and hypertrophy of the joint capsule [9]. At

present, there are no disease-modifying OA drugs

(DMOADs), and the primary therapies include exercise
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and nonsteroidal anti-inflammatory drugs until total joint

replacement at the end-stage of the disease. Clinical risk

factors for the development of OA include increasing age,

female sex, obesity, repetitive joint overloading, previous

joint injury, lower limb deformity, smoking history, and

family history of OA [5–18]. This wide array of con-

tributing factors for the initiation and progression of OA

supports the notion that OA is not simply one disease, but

rather a family of conditions that have similar endpoints

that involve a multitude of pathways that lead to joint

failure. This diversity in the mechanisms of the

etiopathogenesis of OA may contribute to the lack of viable

treatment strategies.

While growing evidence suggests a genetic basis for a

large proportion of OA incidence [51], it is often difficult

to separate causative factors from the combined effects of

these environmental contributors, as they frequently hap-

pen in combination with each other [7]. However, it is clear

that both genetic and environmental risk factors contribute

to OA pathogenesis. Epidemiological studies evaluating

twin-pair analyses and family-based segregation studies,

have demonstrated that genetic susceptibility is also one of

key contributors to the development of OA [81, 75, 15–20].

However, while the genetic basis of OA etiology remains

an open and active area of investigation, the characteriza-

tion and analysis of genetic basis of OA pathogenesis

provides an exciting platform from which potential

biomarkers for the diagnosis, prognosis, drug response and

development of potential therapeutic targets for future

personalized biological novel treatment strategies for OA

can be approached. As such, the purpose of this review is to

concisely summarize the state of knowledge in the areas of

genetics and genome editing to postulate opportunities for

genome engineering for OA applications.

2 Genetic variants associated with OA

A number of studies have leveraged the opportunity for

investigating the genetic underpinnings of OA, collectively

reporting over 80 genetic variants subjected to candidate

gene association analysis with the risk of OA [68]

(Table 1). Among them, a single nucleotide polymorphism

(SNP) rs143383 showed consistent and robust associations

with OA after its initial report in 2007 [20–26]. The

rs143383 is located in the 30 untranslated region (30UTR) of
the growth and differentiation factor 5 gene, GDF5, which

is also known as cartilage-derived morphogenetic protein

1, CDMP1, is a member of the transforming growth factor-

b (TGF-b) superfamily and an extracellular signaling

molecule that participates in the development, mainte-

nance, and repair of bone, cartilage, and other tissues of the

synovial joint [65, 44]. The SNP rs143383 is a common C

to T transition which mediates reduced GDF5 transcription

relative to the C allele [56, 74, 25]. GDF5 is an OA-as-

sociated locus from which this SNP is found. Decreased

mRNA and protein levels for Gdf5 in mice can contribute

to OA-like phenotype [19, 59]. More recently, OA sus-

ceptibility has been coded by a comparison of the fre-

quency of DNA polymorphisms in individuals with

osteoarthritis when compared to those without

osteoarthritis (disease-free controls) in the form of candi-

date gene-based analyses or genome-wide association

studies (GWAS). The Arthritis Research UK Osteoarthritis

Genetics (arcOGEN) Consortium Study was the first

GWAS for knee OA with total joint replacement to report

multiple, independent association signals that replicated at

a level considered significant after accounting for the

multiple tests that are performed in a GWAS (p value

\ 5 9 10-8) [85]. This analysis identified five novel loci

at genome-wide significance (GLT8D1/GNL3, ASTN2,

FILIP1/SENP6, KLHDC5/PTHLH, and CHST11) and three

novel loci at near genome-wide significance (TP63, FTO,

and SUPT3H/CDC5L). Subsequently, several other large-

scale GWAS of hand, hip, and knee OA have been pub-

lished in European Caucasians, providing a dozen genome-

wide significant loci that include ALDH1A2 for hand OA

[78], DOT1L, NCOA3, BOP1, LRCH1, STT3B, GADL1,

TGFA, PIK3R1, FGFR3, TREH, COMP, and CHADL for

hip OA [31–14], and LSP1P3, GDF5, FTO, mitochondrial

DNA variants for knee OA [84, 33].

3 Epigenetics and the pathogenesis of OA

Epigenetics refers to heritable changes in gene expression

or phenotype without changes in the DNA sequence [24].

Three primary mechanisms of epigenetic changes have

been documented in OA pathogenesis: DNA methylation,

histone modification and noncoding RNAs such as micro-

RNAs [71]. Epigenetic changes regulate gene expression

either by affecting gene transcription or by acting post-

transcriptionally, leading to changes in the levels of the

encoded protein. Normally functioning somatic cells,

including articular chondrocytes, are subjected to epige-

netic mechanisms that aid in stabilizing their phenotype

[63]. These epigenetic changes can occur in chondrocytes

in response to environmental factors, including diet or

aging, which lead to the loss of normal epigenetic control

[60]. Epigenetically modified chondrocytes can change

their phenotype and function to overexpress cartilage-de-

generating proteases and pro-inflammatory mediators. This

phenotypic shift is thought to disrupt the homeostatic bal-

ance and contribute to the progression of OA through the

changes in gene expression of transcription factors

(RUNX2, NFAT1, and SOX9), pro- or anti-inflammatory
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cytokines (tumor necrosis factor-alpha [TNF-a], inter-

leukin-1 beta [IL-1b], IL-6, inducible nitric oxide synthase
[NOS2] and IL-8, matrix-degrading proteinases (matrix

metalloproteinase-3 [MMP-3], MMP-9, MMP-13,

ADAMTS-4, and ADAMTS-5) and extracellular matrix

proteins (COL2A1, COL9A1, and ACAN) in articular

cartilage [9, 65, 66, 6].

DNA methylation, the best characterized epigenetic

mechanism, is defined by the addition of a methyl group

(CH3) to a cystosine of CpG sites to form methylated

cystosine by DNA methyltransferases. Studies assessing

DNA methylation arrays have shown that OA and non-OA

cartilage have differentially methylated genes which typi-

cally harbor CpG sites suggesting that the epigenetic reg-

ulation of gene expression via DNA methylation

contributes on the pathogenesis of OA [67, 34].

Furthermore, a direct, functional relationship has been

demonstrated between epigenetics and genetics at alleles

implicated in OA-risk. GDF5 and DIO2 (iodothyronine

deiodinase 2) has been reported to be subject to epigenetic

regulation related to genotype and gene transcription. As

described earlier, the GDF5 functional SNP, rs143383, is a

particular risk factor for knee osteoarthritis, and also is

thought to effect OA when differentially methylated [26].

Functional analyses using human normal and OA cartilage

have showed that differential DNA methylation of

rs143383 modulates the binding of SP1, SP3, and DEAF1

repressor proteins and therefore alters the expression dif-

ferences between the C and T alleles [64]. Furthermore, a

CpG site located 4 base pairs upstream of rs143383 showed

highly significant demethylation in osteoarthritis knee

cartilage compared with osteoarthritis hip cartilage, which

correlates with reduced expression of the gene and may be

responsible for the specific effect of rs143383 on knee OA

[64]. DIO2 transcribes iodothyronine deiodinase 2 that

catalyzes the conversion of intracellular inactive thyroxine

(T4) to the bioactive thyroid hormone (T3). A com-

mon DIO2 haplotype composed of the C-allele of SNP

rs225014, and the C-allele of SNP rs12885300 has been

known to be associated with OA [54]. A recent functional

analysis of DIO2, including DNA methylation studies,

reported that differential methylation of CpGs located

upstream of the gene correlated with DIO2 expression

changes, and that these effects were particularly striking for

individuals harboring the risk-conferring allele of rs225014

[10].

4 Genome and epigenome engineering tools

Genome engineering has at least two roles in elucidating

the natural history of disease states: (1) identify the

responsible genes for a particular disease and (2) to

facilitate the functional validation of the identified genes

and the development and study of disease models. The

ability to precision-edit the genome of mammalian cells

allows for a deeper mechanistic understanding while min-

imizing off-target effects [80, 35]. The era of genome

editing began in the late 1970s with the successful

exchange of pieces of yeast DNA via the homologous

recombination system [38, 70]. With this technique, single

and multiple knockouts were generated for applications in

functional characterization [38, 70]. In the late 1980s,

gene-targeting technologies using embryonic stem cells

were created that were proficient in homologous recombi-

nation (HR) [53]. However, gene targeting was only

applicable to homologous recombination-proficient cells

and therefore the application to other cell types and

eukaryotic systems was limited. The efficacy of homolo-

gous recombination is improved by the discovery of

engineered nucleases, such as zinc finger nucleases (ZFNs)

and transcription activator-like effector nucleases

(TALENs), that can generate site-specific double-strand

breaks (Fig. 1) [16].

There are two major repair pathways for double strand

breaks; non-homologous end-joining and homologous

recombination (Fig. 2) [15]. The non-homologous end-

joining pathways are active throughout the cell cycle and

are therefore the most predominant repair mechanism in

mammalian cells, despite being error-prone and resulting in

insertions or deletions of nucleotides (indels), which may

cause a frameshift and, effectively, a functional gene

knockout when occurring in the coding region [17]. The

homologous recombination pathways are highly precise

because they utilize a DNA template with ends that are

homologous to the break site. These techniques have been

Fig. 1 A Zinc finger nucleases (ZFNs) and B transcription activator-

like effector nucleases (TALENs) genome engineering platform. The

ZFNs and TALENs are engineered to bind a desired sequence, and

then fused to the FokI endonuclease to create targeted double strand

breaks
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used mainly in genome editing to rewrite the DNA

sequence and generate gene or protein variants.

Researchers generated hybrid proteins by fusion of a DNA-

binding module by altering the DNA-binding domains of

transcription factors (TFs), zinc finger proteins (ZFPs) or

TAL effectors with the DNA-cleaving module from the

restriction endonuclease, Fok1 [45, 55]. In those nuclease

platforms, a pair of ZFNs or TALENs must target adjacent

sites in the genome to bring the two Fok1 domains together

because the endonucleolytic domain of Fok1 acts like a

dimer [45, 55]. However, protein engineering is required to

obtain site specificity. The process of engineering and

optimizing specific combinations of ZFNs or TALENs

modules for new sequences is not trivial and is an extensive

process [57].

5 CRISPR-Cas9 genome editing platform

One of the most recently discovered nuclease platforms is

the clustered regularly interspaced short palindromic repeat

(CRISPR)-CRISPR-associated (Cas) endonuclease system.

The CRISPR-Cas9 genome editing platform has allowed

for rapid and efficient precision edits in mammalian gen-

omes [23, 46]. The CRISPR-Cas systems are essential in

the prokaryote adaptive immune system. CRISPR is a

family of DNA sequences in prokaryotes which contain

short segments of DNA from viruses which are used to

detect and destroy DNA from similar viruses at subsequent

attacks as a defense mechanism. The CRISPR-Cas system

has six different major types (type I–VI) based on their

genetic content and structural differences of their effector

proteins. Among them, type II is the most studied and

consists of two main components of the system: an operon

(codes for Cas9 protein) and CRISPR, which provide a

template for synthesizing CRISPR RNA (crRNA) to direct

nuclease activity [21]. To achieve site-specific DNA

recognition and cleavage, crRNA has to bind directly to

Cas9 through an accessary trans-activating CRISPR RNA

(tracrRNA) [41]. To use this mechanism in genome edit-

ing, a single synthetic guide RNA was developed by

combining crRNA and tracrRNA to direct the Cas9

endonuclease to its specific site in the genome in a

sequence-specific manner (Fig. 1) [63–52]. Once the

sgRNA hybridize to the target DNA, Cas9 is activated and

cleave the targeted site [52]. A protospacer adjacent motif

(PAM) which is a 50-NGG-30 trinucleotide sequence at the

target sequence is essential for Cas9 binding to DNA [76].

While off-target effects are one key concern of Cas9

binding [5], there have been efforts to reduce off-target

activity of Cas9 using gene-engineering [3]. There are two

groups of gene-engineered Cas9, mutant proteins and split

Cas9 proteins. Catalytically inactive, nuclease-deficient

Cas9 (dCas9) is a form of mutant Cas9 and various fusions

Fig. 2 CRISPR-Cas9 Genome

Engineering Platform. Cas9 is

guided by a guide RNA

(sgRNA) to induce double-

strand DNA breaks at a desired

genomic locus, the damaged

DNA can be repaired by non-

homologous end-joining or

homologous recombination,

which results in controlled

editing of the genome
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with transcriptional activator, repressor and recruitment

domains have been used to modulate gene expression at

targeted loci without introducing irreversible mutations to

the genome [29, 62].

6 Applications of genome-engineering
technologies to osteoarthritis treatments

One potential therapeutic application of genome editing

technology is the engineering of cell-based anti-cytokine

therapies under endogenous promoter sequences by editing

in key transcripts for anti-inflammatory molecules. Using

the successful framework of biologics in rheumatoid

arthritis (RA), where a variety of protein therapies have

been developed and applied, key receptors for inflamma-

tory mediators can be inserted into cells under endogenous

promoters [72]. While advancements have led to the

development of several effective RA treatment modalities

for RA pathogenesis, which is understood to be a systemic

inflammatory disease, treatments fail or cease to benefit

patients up to 50% of the time [72]. With growing appre-

ciation that both systemic and local inflammatory media-

tors may also play a role in the pathogenesis of OA, there

has been increasing investigation into therapeutics that may

be beneficial in this context [49, 37], such as a cell-based

anti-cytokine therapy that senses and responds to endoge-

nous levels of inflammatory mediators in OA, i.e., TNF-a
or IL-1 [47, 48]. However, while it is important to note that

a better understanding of the individual roles for IL-1,

TNF-a, and other cytokines is required in OA [42], eval-

uating new approaches to delivering these therapies could

fill a meaningful gap in treatment for the prevention of

other inflammatory conditions. A comprehensive review of

genome editing for personalized arthritis therapies can be

found here [1].

Genome-edited cell-based anti-cytokine therapy also

may overcome several important limitations of existing

biologic drugs. Continuous use of conventional disease-

modifying anti-rheumatic drugs (DMARDs) and the newer

biologics can lead to significant adverse effects for RA

patients due to continued high-level delivery of DMARDS

[79]. As the severity of symptomatic arthritic diseases and

pain can fluctuate over time [39], development of specific

therapeutic strategies that can sense and respond to varying

degrees of endogenous inflammatory mediators in OA may

mitigate unwanted adverse effects. In recent studies,

CRISPR-Cas9 gene editing was used to develop an

autoregulated anti-cytokine stem cell system in mouse

induced pluripotent stem cells (iPSCs), which provides the

opportunity to theoretically differentiate them into a variety

of cell types [11, 12]. These cells were designed to tran-

scribe the soluble receptor for TNF-a (sTNFR1), inter-

leukin-1 receptor antagonist (IL1Ra), or luciferase

(control) in a feedback-controlled manner driven by the

endogenous macrophage chemoattractant protein-1 (Ccl2)

promoter (Fig. 3). Given that Ccl2 and NF-kB signalling

are implicated in the onset and progression of pain and

structural damage OA [40], this genome-edited artificial

gene circuit is an attractive therapeutic approach for eval-

uation in both in vitro and in vivo OA model systems. In

vitro characterization of Ccl2-based genome-edited cells

reveals that these cells can reduce RA-relevant inflamma-

tory mediators when challenged with an inflammatory

stimulus. Ongoing work is characterizing these cells in vivo

in reponse to supra-physiological levels of inflammation,

and to disease-relevent stimuli in murine models of both

RA and OA.

7 Disease modeling and drug discovery

Despite the discovery of multiple risk alleles for OA

through GWAS and twin studies (as described earlier), it is

difficult to separate the influence of environmental factors

from genetics on OA predisposition in vivo. The use of

genome-editing in iPSCs now opens up the possibility for

functional interrogation of causative genetic elements, such

as coding/noncoding SNPs, as the basis for more tar-

geted—even ‘‘personalized’’—drug discovery for OA. For

example, recent studies have developed in vitro tissue-

engineered models of human and mouse iPSC chondro-

genesis that show responsiveness to OA-associated

cytokines such as IL1 and TNF-a similar to native cartilage

[82–83]. These in vitro modeling platforms demonstrate

the potential application of iPSCs and gene editing systems

Table 1 Summary of genetic variants in OA-related GWAS studies

Involved

joint

Genetic variants References

Hip GLT8D1/GNL3, ASTN2, FILIP1/SENP6, KLHDC5/PTHLH, CHST11, DOT1L, NCOA3, BOP1, LRCH1, STT3B,

GADL1, TGFA, PIK3R1, FGFR3, TREH, COMP, and CHADL

[85, 31–14]

Hand ALDH1A2 [78]

Knee LSP1P3, GDF5, FTO, mitochondrial DNA variants [84, 33]
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such as CRISPR-Cas9 to high-throughput screening of

novel DMOADs that account for various genetic back-

grounds and risk alleles [50, 73].

8 Conclusions and applications

Due to fundamental developments in the field of genome

engineering, an array of novel therapeutic options for OA

are now accessible and available to explore. Specifically,

the development of targeted and safe cell-based therapies

that can sense and respond to endogenous levels of

inflammation may provide a tremendous opportunity for

the development of new therapies for OA. These cells can

be differentiated into chondrocytes, tested in in vitro, and

delivered in vivo for characterization and testing. Evalu-

ating, refining and translating this potentially highly

responsive therapeutic strategy for OA treatment could

overcome the limitations of current anti-cytokine therapies

or biologic drugs more broadly, ultimately posing less risk

of adverse events to patients when compared to conven-

tional pharmacological or biologic therapy. This approach

may increase the effectiveness for OA compared to pre-

vious efforts to use biologics in this context. In addition to

OA, many chronic diseases (rheumatoid arthritis, psoriatic

arthritis, psoriasis, metabolic disease, diabetes) involve

increased fluctuating levels of TNF-a and IL-1-mediated

signaling. Long term, the scale up and applicability of this

approach to other musculoskeletal disease models that

could benefit from anti-cytokine therapy can be tested. The

ability to deliver an auto-regulated anti-cytokine system

with tunable sensitivity will allow for a range of applica-

tions in a wide variety of inflammatory conditions.
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