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ABSTRACT Recently, we and others have shown that natural killer (NK) cells exhibit
memory-like recall responses against cytomegalovirus (CMV) and human immunode-
ficiency/virus simian immunodeficiency virus (HIV/SIV) infections. Although the mecha-
nism(s) have not been fully delineated, several groups have shown that the activat-
ing receptor NKG2C is elevated on NK cells in the context of rhesus CMV (rhCMV) or
human CMV (hCMV) infections. CD94, which heterodimerizes with NKG2C is also
linked to adaptive NK cell responses. Because nonhuman primates (NHP) play a cru-
cial role in modeling HIV (SIV) infections, it is crucial to be able to assess and charac-
terize the NKG2 family in NHP. Unfortunately, it is not possible to detect CD94 using
commercially available antibodies in NHP. Our work, a first for NHP, has focused on
developing RNA flow cytometry using mRNA transcripts as proxies distinguishing
NKG2C from NKG2A. We have expanded the application of this technology and here
we show the first characterization of CD94� (KLRD1�) NK cells in NHP using mul-
tiparametric RNA flow cytometry. Peripheral blood mononuclear cells from naive and
matched acutely (n � 4) or chronically (n � 12) SIV-infected rhesus macaques were
analyzed by flow cytometry using commercially available antibodies, determining ex-
pression of transcripts for NKG2A, NKG2C, and CD94 (KLRC1, KLRC2, and KLRD1, re-
spectively) on NK cells using RNA flow cytometry. Our data show that KLRC1�/�

KLRC2� KLRD1� NK cells decrease following chronic, but not acute, infection with
SIV. This approach will allow us to investigate the kinetics of infection and NK mem-
ory formation and will further improve our understanding of basic NK cell biology,
especially in the context of SIV infection.

IMPORTANCE Nonhuman primates play a crucial role in approximating human biol-
ogy and many diseases that are difficult, if not impossible, to achieve in other ani-
mal models, notably HIV. Current advances in adaptive NK cell research positions us
to address fundamental deficiencies in our fight against infection and disease at the
earliest moments after infection or substantially earlier in disease progression. We
show here that we can identify specific NK cell subpopulations that are modulated
following chronic, but not acute, SIV infection. The ability to identify these subsets
more precisely will inform therapeutic and vaccine strategies targeting an optimized
NK cell response.

KEYWORDS human immunodeficiency virus, natural killer cells, simian
immunodeficiency virus

While there have been substantial developments in vaccine strategies targeting
HIV, most of the effort has been directed toward humoral and T-cell-mediated

vaccine design (1). The recent advancement of research on adaptive responses in
natural killer (NK) cells provides a novel approach to complement established vaccine
modalities and may provide a crucial component to a highly effective HIV vaccine via
enhanced innate immune engagement (2). Adaptive NK cells are currently grouped into
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three major categories, including cytokine-induced, memory-like, and true antigen-
specific NK cells (3). Cytokine-induced memory NK cells respond to specific cytokine
profiles and seem to retain “memory” of a previous activation (4–6); memory-like NK
cells are potent effector cells via antibody-dependent cellular cytotoxicity (ADCC) and
may or may not utilize NKG2 family members (7, 8), and true antigen-specific NK cells
have been shown to respond to cytomegalovirus (CMV) and adenoviral vaccine vectors
in a peptide-specific manner and may utilize the NKG2C-CD94 heterodimer in order to
identify its specific target cells (9, 10).

CD94 is a member of the C-type lectin receptor family, which forms heterodimers
with several members of the NKG2 family, including NKG2 (NKG2A, NKG2B, NKG2C, and
NKG2E) (11). The resulting heterodimer functions to either elicit inhibitory or activating
signals through the recruitment of several cytoplasmic adaptor proteins such as SHP-1
or DAP12, which propagate signaling following receptor engagement (12, 13). HLA-E is
reported to preferentially bind NKG2A-CD94 heterodimers, though it is also able to
engage NKG2C-CD94 heterodimers (14, 15). Through the recruitment of the phospha-
tase SHP-1, NKG2A-CD94 heterodimers initiate a potent inhibitory signaling response.
NKG2C-CD94 heterodimers recruit DAP12 and Syk, which activate several downstream
signaling events, leading to enhanced cellular activation (16, 17).

In nonhuman primates (NHP), NK cells have traditionally been classified as CD14�

CD20� CD3� NKG2A� lymphocytes using antibodies that cross-react with both inhib-
itory NKG2A and activating NKG2C in NHP (18, 19). Consequently, we and others have
adopted the nomenclature to define conventional NHP NK cells as CD14� CD20� CD3�

NKG2AC�. To distinguish between NK cells that are truly NKG2C� or NKG2A�, we
helped develop RNA flow cytometry methods that use probe sets to specifically detect
the gene transcripts of NKG2A (KLRC1) and NKG2C (KLRC2) (20) (Table 1). Our group has
shown that RNA flow cytometry is a valid means of identifying members of the NKG2
family, NKG2A (CD159a) and NKG2C (CD159c), in rhesus macaques in order to over-
come the reagent limitation problem in NHP (20). This approach was necessary since,
prior to our work, the NHP field was unable to distinguish between the activating
receptor NKG2C and its inhibitory counterpart, NKG2A, using commercially available
antibodies. Similarly, there are currently no commercially available antibodies that can
identify CD94 in macaques. In human studies, CD94 has been linked to improved
antiviral responses (21, 22) and is also associated with adaptive NK cell responses, likely
because of its physical interaction/formation of a heterodimer with NKG2C. CD94
expression on NK cells has also been shown to directly correlate with plasma HIV
viremia (23). Despite these findings, CD94 may be dispensable for NK cell development
and functional state, as has been shown in mice (24). However, though NKG2C
expression alone does not define adaptive NK cell responses in humans (8, 25, 26),
CD94� NKG2C� NK cells have been shown to expand in the context of CMV infection
(27, 28) and modulate peptide-specific responses (10, 22). Further, recent findings
suggest that NK cell expression of the CD94 gene transcript, KLRD1 (Table 1), negatively
correlates with susceptibility to infection with influenza virus (29). In this study, we
applied RNA flow technology to identify and characterize CD94� NK cells by assessing
expression of its transcript, KLRD1, in NK cells. In combination with our previous assays
for KLRC1 and KLRC2, this is the first time that this has been possible to monitor
coexpression of the heterodimeric components in NHP.

TABLE 1 Key terms for gene products and proteins

Gene product or protein Description

KLRC1 Gene encoding NKG2A protein
KLRC2 Gene encoding NKG2C protein
KLRD1 Gene encoding CD94 protein
NKG2AC� Rhesus macaque cell populations positively identified using

mouse anti-human NKG2A (clone Z199), which cross-reacts
with NKG2A and NKG2C in rhesus macaques
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RESULTS AND DISCUSSION
Frequency of KLRD1 expression is reduced in KLRC1�/� KLRC2� NK subpopu-

lations in chronic SIV infection. Identification of memory-like NK cells in NHP has
been difficult, in part, due to limited cross-reactive antibodies that do not distinguish
NKG2A from NKG2C, or fail to identify CD94 in NHP. Since the currently commercially
available anti-NKG2A antibody clones recognize both NKG2A and NKG2C, for this paper
we consider cell populations as NKG2AC� (Table 1). Using RNA flow cytometry, we were
able to identify multiple subpopulations in classically defined CD3� NKG2AC� rhesus
macaque NK cells by detecting transcript expression of KLRD1 (CD94), KLRC1 (NKG2A),
and KLRC2 (NKG2C) (Fig. 1A). This was achieve via specific probe sets that utilized
branched DNA technology designed for individual gene targets (20). SIV infection does
not seem to alter NK cell frequencies as defined by CD3� NKG2AC� KLRD1� in samples
from chronic (Fig. 1B) or acute (Fig. 1C) SIV-infected animals. However, we observed a
significant reduction in the frequencies of KLRD1� NK cells in CD3� NKG2AC� KLRC1�

KLRC2�, CD3� NKG2AC� KLRC1� KLRC2�, and CD3� NKG2AC� KLRC1� KLRC2� NK
subpopulations in chronic (Fig. 1D) but not acute (Fig. 1E) SIV-infected animals. The
reduced frequencies of NK cells expressing KLRD1 within several NK cell subpopulations
following chronic SIV infection may attenuate their ability to respond to stimuli via
NKG2 receptors that require CD94 coexpression and/or dimerization. Interestingly,
when looking at KLRD1� NK cells, we observed an increased frequency of the CD3�

NKG2AC� KLRD1� KLRC1� KLRC2� subset following chronic (but not acute) infection
with SIV (Fig. 2 and 3). This population may represent a less mature state or disparate
activation threshold as defined by the presence of NKG2A (KLRC1) (30, 31), but this is
still unclear in NHP. Previous work in NHP by LaBonte et al. using semiquantitative PCR
has shown decreased levels of NKG2C transcripts, as well as increased levels of NKG2A
transcripts, following infection with SIV in peripheral blood mononuclear cells (PBMCs)
(18). Perhaps the decreased frequencies of KLRD1� NK cells, coupled with the increased
frequency of KLRD1� KLRC1� KLRC2� NK subpopulations, indicate a mechanism through
which the NK cell population loses functionality during SIV/HIV infection (32, 33).

Distributions of CD56�/� CD16�/� NK cell populations are associated with
KLRD1 expression. NK cells in NHP can be broadly characterized by the expression of
CD56 and CD16, where CD56� CD16� and CD56� CD16� cells are analogous to human
CD56dim and CD56bright cells, respectively (34). Characterization of CD3� NKG2AC�

KLRD1�/� NK cells using CD56 and CD16 revealed significant heterogeneity between
cell populations (Fig. 2A and B; Fig. 3). Specifically, we observed an increased frequency
of CD56� CD16� NK cells among total KLRD1� NK cells, compared to KLRD1� NK cells
(Fig. 2B). In NHP, CD56� NK cells are generally thought to have a greater cytokine
production than cytotoxic phenotype, while CD16� NK cells are more cytotoxic and
also execute ADCC (35). It is possible that NK cell subpopulations that utilize ADCC
preferentially have reduced levels of CD94, regardless of NKG2 molecules (Fig. 3),
leading to preferential activation through Fc receptors, like CD16, as suggested by our
data.

NK coculture with HLA-E-expressing K562 cells reveals functional differences
between the dominant KLRC1� KLRC2� and KLRC1� KLRC2� NK cells. In order to
assess whether the quadrant populations responded differently in the context of
chronic SIV infection, we set up a coculture assay with NK cells and K562 that either
expressed high or low levels of HLA-E. Because CMV peptides have been shown to
stabilize HLA-E (10, 22), we pulsed K562 with the CMV LIL peptide and designated a
sample with �70% HLA-E surface expression as HLA-Ehigh. After this, enriched splenic
NK cells were cocultured with K562 that expressed either high or low levels of HLA-E,
as outlined in Fig. 4A. We observed higher expression of CD107a in NKG2AC� KLRD1�

KLRC1� KLRC2� NK cells cocultured with HLA-Elow K562 (mean � 42.9%) versus
HLA-Ehigh K562 (mean � 32.7%, Fig. 4B). Further studies are required to investigate
whether CD107a levels correspond to changes in granzyme or perforin production.
Differences in levels of tumor necrosis factor alpha (TNF-�) and gamma interferon
(IFN-�) were less clear, though they appear to follow similar trends (Fig. 4C and D).
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Strikingly, the levels of CD107a, TNF-�, and IFN-� were unchanged in NKG2AC�

KLRD1� KLRC1� KLRC2� NK cells. Even though we posited that HLA-E should have
bound to both NKG2A and NKG2C, our observations fall in line with work done by other
groups, where it appears that CMV utilizes several types of peptides to fine-tune
whether HLA-E will interact preferentially with NKG2A or NKG2C (10, 36). Regardless,
these data indicate that functional analyses can now be performed in cells that have
been accurately defined by KLRD1, KLRC1, and KLRC2 expression.

CD20
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0

FIG 1 Gating strategy showing identification of KLRD1� NK cells. (A) NK cells were defined as CD20� CD14� CD3� NKG2AC�. This population was
further subdivided into either KLRD1� and KLRD1� populations (a representative FMO control is shown in purple) or first subdivided into KLRC1
and KLRC2 and then into KLRD1� and KLRD1� populations (a representative FMO control is shown in blue). (B) Plots showing matched KLRD1�

NK cells in NKG2AC� NK cells from naive and chronically (B) or acutely (C) SIV-infected rhesus macaques. Quantification of matched naive and
chronically SIV-infected (D) or acute-infected (E) cohorts showing distribution of KLRD1� NK cells after being subdivided into KLRC1�/� KLRC2�/�

NK cell subsets. Naive samples are shown in blue, chronic SIV samples are shown in red, and acute SIV samples are shown in orange. KLRC1 was
represented as K1, KLRC2 is represented as K2, and quadrant populations are represented as combinations of K1 and K2. A Wilcoxon test was used
to compare different quadrant populations (*, P � 0.05).
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Selection of KLRD1� NK cells may enhance identification of NKG2C� (KLRC2�)
adaptive NK cell populations. A representative dot plot showing the expression of
KLRC1 and KLRC2 in an overlay of KLRD1� NK cells and KLRD1� NK cells (Fig. 3A)
illustrates that KLRD1� NK cells are mostly KLRC1� KLRC2� NK cells. Interestingly, we
observed a reduction in the KLRC1� KLRC2� population upon using KLRD1 as a NK cell
marker (Fig. 3B and C) relative to when KLRD1 is not used as a NK marker (20). This
reduction suggests that, expectedly, KLRC1 and KLRC2 expression occurs predomi-
nantly in cells that also coexpress KLRD1, since NKG2A and NKG2C exist as het-
erodimers with CD94. Further, this observation supports using KLRD1 transcript as a
proxy for its protein product, CD94. The identity of the small proportion of KLRC1�

KLRC2� NK cells in the KLRD1� NK cell population is still unclear but may result from
either nonspecific cross-reactivity of the NKG2A antibody to another NKG2 family
member, or perhaps these cells are simply not expressing KLRC1 and KLRC2 transcripts
at detectable levels. Nevertheless, we anticipate that RNA flow analyses will continue to
aid the characterization of adaptive NK cells.

Already through this work we are able to identify subsets of NK cells that are
modulated after SIV infection. These findings now provide the NHP field with the ability
to accurately identify NKG2A�, NKG2C�, and CD94� NK cells via their transcript
expression. Further studies characterizing the expansion of KLRD1� KLRC1� KLRC2� NK
cells, as well as understanding whether KLRD1� KLRC1� KLRC2� cells play a role in
disease progression, as has been suggested in human HIV infection (37, 38), may allow
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FIG 2 KLRD1�/� cells exhibit phenotypic differences. (A) Representative gating strategies showing the
identification of CD56�/� CD16�/� NK cells in CD20� CD14� CD3� NKG2AC� KLRD1�/� NK cells (as in
Fig. 1B) from chronically SIV-infected rhesus macaques (n � 12). The data are quantified in panel B. A
Wilcoxon test was used to compare different quadrant populations (*, P � 0.05; **, P � 0.01; ***, P �
0.005).

A B C

FIG 3 The frequency of KLRD1� KLRC1� KLRC2� NK cells is elevated in chronic, but not acute, infection with SIV. (A) Representative gating
strategy showing superimposed distribution of KLRC1 and KLRC2 in NKG2AC� KLRD1� NK cells (black) and NKG2AC� KLRD1� NK cells (gray).
(B and C) Graphs summarize the frequencies of KLRC1�/� KLRC2�/� populations from matched naive and SIV chronically infected (n � 12) (B)
or acutely infected (n � 4) (C) rhesus macaques. Samples from naive animals are shown in blue, samples from chronic SIV-infected animals are
shown in red, and samples from acute SIV-infected animals are shown in orange. KLRC1 was represented as K1, KLRC2 is represented as K2,
and quadrant populations are represented as combinations of K1 and K2. A Wilcoxon test was used to compare different quadrant populations
(*, P � 0.05; **, P � 0.01).
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us to design better, targeted vaccine candidates that may better engage the NK
response in SIV and HIV.

MATERIALS AND METHODS
Animals. Sixteen Indian origin rhesus macaques (Macaca mulatta) were analyzed in this study: four

animals were infected with SIVmac251 for 7 or 14 days, and twelve were chronically infected with SIVmac251.
All macaques were housed at Biomere, Inc. (Worcester, MA), and all experiments were performed with
approval from the local Institutional Animal Care and Use Committee. All animals were group housed
until study, and then infected animals were housed under BSL2 conditions.

Macaque samples. PBMCs and spleen mononuclear cells were isolated using standard isolation
protocols. PBMCs were isolated by density gradient centrifugation layered over 100% Ficoll. Splenic
mononuclear cells were isolated by mechanical disruption. Contaminating red blood cells were lysed
using an ACK lysis buffer (Gibco, catalog no. A1049201). Cell aliquots were immediately cryopreserved in
90% fetal bovine serum (FBS)–10% dimethyl sulfoxide (Sigma) and stored in liquid nitrogen vapor.

RNA flow. PBMCs were thawed and rested for 12 h in R10 media at 37°C prior to surface and
intracellular staining. Next, RNA hybridization was carried out according to the manufacturer’s recom-
mended protocol (PrimeFlow; Affymetrix, Santa Clara, CA) with the antibodies detailed in the flow
cytometry section below and with rhesus macaque-specific KLRC1, KLRC2, and KLRD1 probe sets. Target
probe sequences for KLRC1 and KLRC2 have been previously reported (20). The KLRD1 target probe
sequences are detailed in Table S1 in the supplemental material. The probe sets were labeled with Alexa
488 (KLRC2), Alexa 647 (KLRC1), and Alexa 568 (KLRD1) fluorophores (Affymetrix). All KLRC1, KLRC2, and
KLRD1 gates were determined for each sample using fluorescence minus one (FMO) controls.

Flow cytometry. All antibodies were purchased from BD Biosciences unless specified otherwise, and
clone information is given in parentheses. For the phenotypic panel, antibodies against the following cell
antigens were used: CD159a-PE Cy7 (Z199; Beckman Coulter), CD3-BV450 (SP34.2), CD56-BV570
(NCAM16.2), CD14-BV711 (M�P9), CD20-BUV395 (L27), and CD16-BUV496 (3G8). For the coculture
functional panel, antibodies against the following cell antigens were used: CD159a-PE Cy7 (Z199;
Beckman Coulter), CD3-BV450 (SP34.2), TNF-�-BV650 (MAb11), IFN-�-BV711 (B27), CD107a-BV786 (H4A3),
CD20-BUV395 (L27), CD16-BUV496 (3G8), CD56-BUV563 (NCAM16.2), CD14-BUV737 (M�P9), HLA-DR-
Alexa700 (G46-6), and CD8�-APC Cy7 (SK1). Flow cytometry data were acquired on a FACSymphony A5
(BD Biosciences, La Jolla, CA) and analyzed with FlowJo software (version 10.2; Tree Star, Ashland, OR).

Coculture experiments. Frozen spleen mononuclear cells were quickly thawed in R10 media at 37°C,
and 0.5 � 106 NK cells were enriched from spleen samples from SIV-infected rhesus macaques using
unlabeled anti-CD3 (SP34.2) and anti-CD20 (L27) antibodies and Dynabeads (Thermo Fisher, catalog no.
11042) using a standard protocol. Briefly bulk spleen mononuclear cells were incubated at room
temperature with appropriate volumes of anti-CD3 and anti-CD20 antibodies for 20 min with constant

A

B C D

FIG 4 High HLA-E expression on K562 induces functional differences between KLRD1� NK cell subsets.
(A) Coculture assay results, wherein 0.5 � 106 NK cells were cocultured with 0.5 � 106 K562 cells that
were either HLA-Ehigh (black) or HLA-Elow (magenta). Ultimately, the frequencies of KLRD1� KLRC1�/�

KLRC2� quadrant-specific NK cells expressing CD107a (B), TNF-� (C), and IFN-� (D) were quantified.
Mann-Whitney U tests were used to compare quadrant populations plus HLA-Elow or HLA-Ehigh cells.
KLRC1 is represented as K1, KLRC2 is represented as K2, and quadrant populations are represented as
combinations of K1 and K2.
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gentle agitation. The cells were pelleted and washed with wash buffer (2% FBS in Dulbecco’s PBS). Cells
were resuspended at 10 � 106 cells/ml in wash buffer. Dynabeads were washed twice in wash buffer and
resuspended in their original volume, and then 10 �l of Dynabeads was added per 1 � 106 cells, followed
by incubation at room temperature for 30 min with constant gentle agitation. CD20� and CD3� cells
were twice negatively selected using a magnet, and the remaining cells were decanted into a separate
tube and counted. We then cocultured 0.5 � 106 NK cells for 1 h at 37°C with 0.5 � 106 K562 cells that
were previously either pulsed with the CMV LIL peptide (VMAPRTLIL) to stabilize HLA-E (10) or mock
pulsed as a control for 16 h at 26°C. HLA-E levels were assessed using standard flow cytometry staining
as described above and with the anti-HLA-E antibody (3D12; BioLegend).

Statistical analyses. Statistical and graphing analyses were performed with Prism 8.0 software
(GraphPad Software, La Jolla, CA). Nonparametric Wilcoxon tests were used where indicated, and a P
value of �0.05 was considered statistically significant.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/JVI

.00731-19.
SUPPLEMENTAL FILE 1, PDF file, 0.04 MB.
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