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A B S T R A C T

The functional organization of the brain can be represented as a low-dimensional space that reflects its mac-
roscale hierarchy. The dimensions of this space, described as connectivity gradients, capture the similarity of
areas' connections along a continuous space. Studying how pathological perturbations with known effects on
functional connectivity affect these connectivity gradients provides support for their biological relevance.
Previous work has shown that localized lesions cause widespread functional connectivity alterations in struc-
turally intact areas, affecting a network of interconnected regions. By using acute stroke as a model of the effects
of focal lesions on the connectome, we apply the connectivity gradient framework to depict how functional
reorganization occurs throughout the brain, unrestricted by traditional definitions of functional network
boundaries. We define a three-dimensional connectivity space template based on functional connectivity data
from healthy controls. By projecting lesion locations into this space, we demonstrate that ischemic strokes result
in dimension-specific alterations in functional connectivity over the first week after symptom onset. Specifically,
changes in functional connectivity were captured along connectivity Gradients 1 and 3. The degree of functional
connectivity change was associated with the distance from the lesion along these connectivity gradients (a
measure of functional similarity) regardless of the anatomical distance from the lesion. Together, these results
provide support for the biological validity of connectivity gradients and suggest a novel framework to char-
acterize connectivity alterations after stroke.

1. Introduction

The assessment of functional connectivity based on the temporal
correlation of ongoing blood-oxygen-level-dependent (BOLD) fluctua-
tions (resting-state functional magnetic resonance imaging; rs-fMRI)
has transformed our understanding of the brain's reorganization and
recovery after injury (Carter et al., 2012; Fornito and Bullmore, 2010,
2015; Fox, 2010; Gillebert and Mantini, 2013; Zhang and Raichle,
2010). Functional networks are usually defined as discrete entities
comprised of brain regions sharing similar features and being strongly
connected with each other. Such an approach assumes that there are
sharp boundaries between areas representing different functional do-
mains and that connectivity within a given network is homogenous.

These assumptions are useful for understanding the brain's functional
organization. However, recent advances take us further, enabling us to
capture additional key characteristics of how these functional domains
are organized, namely as topographical or hierarchical processing gra-
dients (Atasoy et al., 2016; Cerliani et al., 2012; Haak et al., 2018).

Recently, non-linear decomposition of rs-fMRI data was introduced
as a method to capture these features by representing whole-brain
connectivity in a continuous, low-dimensional space. This data-driven
analysis results in connectivity gradients that provide a description of the
connectome where each voxel is located along a connectivity gradient
according to its connectivity pattern (Langs et al., 2014, 2016;
Margulies et al., 2016). Voxels that are similar in terms of connectivity
patterns are situated close to one another along a given connectivity
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gradient (Huntenburg et al., 2018). Different functional modules are
thus distributed along these gradients (Krienen and Sherwood, 2017) in
a manner that reflects the hierarchical organization of brain function at
the macroscale level (Margulies et al., 2016). This provides a novel
framework for describing multiple large-scale networks in a continuous
and biologically plausible manner (Mesulam, 2012). In order to support
the use of gradients to study brain organization, investigating the ef-
fects of perturbations on gradients is essential.

Stroke is a powerful model for studying the influence of localized
changes on the brain's functional organization (de Haan and Karnath,
2018; Karnath et al., 2018). Although the initiating event is a localized
injury to the central nervous system, areas outside (but functionally
connected to) this lesion undergo functional alterations that are im-
plicated in stroke symptomology and the recovery from neurological
deficits (Corbetta, 2010; Ovadia-Caro et al., 2014; Ward, 2005). This
phenomenon is known as diaschisis (Andrews, 1991; Carrera and
Tononi, 2014) and provides a theoretical and empirical motivation to
study brain connectivity following stroke. In addition, stroke can in-
duce a localized injury virtually anywhere in the brain, allowing the
effects of damage to different brain regions on the brain's functional
organization to be investigated in the search for a mutual basis for re-
organization mechanisms.

By studying discrete networks, functional connectivity has been
used to detect functional reorganization after stroke within the affected
domain. Reduction in functional connectivity is associated with the
severity of the clinical deficit (Baldassarre et al., 2014; Carter et al.,
2010; He et al., 2007; Ovadia-Caro et al., 2013; Siegel et al., 2016a,
2016b; Wang et al., 2010; Warren et al., 2009) and normalization of
functional connectivity patterns was found following both spontaneous
post-stroke recovery (He et al., 2007; Park et al., 2011; Ramsey et al.,
2016; van Meer et al., 2010) and interventions using non-invasive brain
stimulation (Volz et al., 2016).

While previous studies demonstrate the role of the affected network
in stroke pathology, several lines of evidence suggest that the impact of
a lesion is not limited by discrete network definitions. It is well known
that the effects of stroke within a given network are not necessarily
uniformly or homogenously distributed (Grefkes and Fink, 2014;
Rehme and Grefkes, 2013). In addition, computational models of brain
connectivity demonstrate that the disruption of a single node extends
beyond the affected network and impacts, to varying degrees, the whole
graph (Aerts et al., 2016). Lastly, the extent and nature of the resulting
disturbance to functional organization depends on the topological role
of the lesioned area. Damage to connector hubs, which connect dif-
ferent sub-networks, results in more severe disturbance to network
organization (Gratton et al., 2012) and more severe cognitive deficits
(Warren et al., 2014) compared with damage to other regions. Con-
nector hub damage results in reduction in modularity (Gratton et al.,
2012), defined as the degree to which the connectome is organized into
highly clustered local modules. Importantly, the recovery of modularity
has been associated with clinical improvement after stroke (Siegel
et al., 2017) thereby emphasizing the importance of hubs to the re-
organization process. Methods that discretize functional networks ne-
cessarily allocate connector hubs to a single sub-network, thereby
misrepresenting their integrative role. These limitations, which are a
necessary by-product of discrete approaches to functional connectivity,
can be overcome using continuous approaches (Fig. 1).

Here, we study the impact of stroke on a continuous template re-
presenting functional connectivity at the voxel-level. Data from healthy
subjects were used to create a template of three connectivity gradients
representing all possible connections in a continuous manner (con-
nectivity space). The effects of stroke on this continuous template were
quantified using longitudinal rs-fMRI data from patients starting within
24 h of symptom onset.

Based on previous findings in discrete networks (Baldassarre et al.,
2014; Carter et al., 2010; He et al., 2007; Nomura et al., 2010; Ovadia-
Caro et al., 2013; Siegel et al., 2016a, 2016b; Wang et al., 2010; Warren

et al., 2009) and computational models (Alstott et al., 2009; Honey and
Sporns, 2008; van Dellen et al., 2013; Young et al., 2000), we hy-
pothesized that a lesion in continuous connectivity space would induce
a gradual impact on the whole connectome and that this would be most
pronounced in areas that share a similar functional connectivity pattern
with the lesion.

2. Materials and methods

2.1. Participants

Fifty-four stroke patients (20 females, age: 63.78± 12.03 years,
mean± SD) and 31 healthy controls (13 females, age:
64.90±8.49 years) were initially recruited for the study. Inclusion
criteria for patients were: age > 18 years, first ever ischemic stroke –
small cortical (≤1.5 cm) or subcortical, which was evident in imaging,
Wahlund score ≤ 10 (Wahlund et al., 2001) to limit the extent of white
matter lesions. Exclusion criteria included: history of previous stroke
(n=3), fewer than 3 resting-state scans post-stroke (n=10), lesions
located solely within white matter (n= 3 patients), corrupted MRI raw
data or distorted images (n=1 control, n=4 patients), high degree of
head motion (n=1 control, n=6 patients), and poor registration
quality (n=1 control). For further details on quality assessment, see
Supplementary Material M1.

Following the exclusion procedure, 28 stroke patients (11 females,
age: 65.04± 13.27 years, mean± SD), and 28 healthy controls (13
females, age: 65.21± 8.84 years) were included in the analysis. No
significant differences between the groups were found for age and sex
(age: Welch's t-test, P= .95; sex: Kruskal-Wallis H-test, P= .59). For
further details on patients' information, see Supplementary Table 1. The
study was approved by the ethics committee of the Charité -
Universitätsmedizin Berlin, Germany (EA 1/200/13). Written informed
consent was obtained from all participants.

2.2. Neuroimaging data

The MRI protocol included T1-weighted structural scans and T2*-
weighted resting-state fMRI scans (continuous fMRI scan with no overt
task) for all participants. In addition, diffusion weighted images (DWI;
TR=8.2 s, TE=0.1 s, 50 volumes, voxel size: 2× 2×2.5mm, flip
angle 90°) and fluid attenuated inversion recovery images (FLAIR;
TR=8.0 s, TE= 0.1 s, 54 volumes, voxel size: 0.5× 0.5× 5mm) were
acquired from the stroke patients as part of a standard MRI protocol
(Hotter et al., 2009). All MRI data were acquired on a Siemens Tim Trio
3 T scanner. Healthy control participants were scanned at a single time
point, whereas stroke patients were scanned at three consecutive time
points relative to stroke symptom onset: day 0 (within 24 h), day 1
(24–48 h), and day 5 (range: day 4–6, mean 4.93±0.38 SD). Structural
scans were acquired using a three-dimensional magnetization prepared
rapid gradient-echo (MPRAGE) sequence (TR=1.9 s, TE= 2.52 s,
TI= 0.9 s, 192 slices, voxel size: 1× 1×1mm, flip angle 9°). Resting-
state functional scans for each participant and session were acquired
using blood-oxygenation-level-dependent (BOLD) contrast with an EPI
sequence (TR=2.3 s, TE=0.03 s, 34 slices, 150 volumes, voxel size:
3× 3×3mm, flip angle 90°, total duration=5.75min).

2.3. Data preprocessing

All image processing and statistical analysis scripts used in this
study are available at https://github.com/sheyma/stroke_preprop.

T1-weighted structural images were preprocessed using FreeSurfer's
recon-all pipeline (v6.0.0, (Dale et al., 1999)). The pipeline generated
segmentations for grey matter, white matter and cerebrospinal fluid.
Individual grey matter masks were registered to standard MNI space
(3mm3).

Preprocessing of functional images included: i) removal of the first 5
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EPI volumes to avoid signal saturation, ii) slice timing and motion
correction (Nipype v0.14.0, (Gorgolewski et al., 2011; Roche, 2011)),
iii) CompCor denoising approach for time series at the voxel-level
(Nilearn v0.4.0, (Behzadi et al., 2007)), iv) temporal normalization, v)
band-pass filtering in the range of 0.01–0.1 Hz, and vi) spatial
smoothing (applied after registration) with a 6mm full-width-half
maximum Gaussian kernel using FSL (v5.0.9, (Woolrich et al., 2009)).
Confounds removed from the time series at the denoising step were
defined as i) six head motion parameters, including 1st and 2nd order
derivatives, ii) motion and intensity outliers (Nipype's rapidart algo-
rithm; thresholds: > 1mm framewise head displacement, and signal
intensity> 3 SD of global brain signal accordingly) and iii) signal from
white matter and cerebrospinal fluid.

The transformation of functional images to MNI152 (3mm3) space
included a linear transformation from EPI to the high-resolution T1-
weighted image using FreeSurfer's boundary-based register tool with 6
degrees of freedom (Greve and Fischl, 2009) and a nonlinear transfor-
mation using ANTs (v2.1.0, (Avants et al., 2011)). The transformation
matrices obtained from both steps were concatenated and applied to the
functional image using a single interpolation step.

2.4. Lesion delineation

Lesions were manually delineated by identifying areas of localized
hyperintensity on day 0 DWI images using the ITK-SNAP software
(v3.4.0, (Yushkevich et al., 2006)). Delineations were done by the first
author (Ş.B.) and checked by a researcher with 6 years' experience in
stroke imaging (A.K.). All lesion masks were normalized to MNI152
(3mm3) space (ANTs, nearest-neighbor interpolation). Individual le-
sion masks were smoothed in the atlas space using FSL's dilation tool
with 3×3×3 kernel, extending the mask by one voxel-size (v5.0.9,
(Jenkinson et al., 2012)).

2.5. Computing connectivity gradients by applying nonlinear decomposition
to functional connectivity data from healthy controls

To create a mutual grey matter template to be used for decom-
position analysis, individual grey matter masks and resting-state func-
tional masks were averaged for all healthy controls to create a group
mask (for a detailed description, see Supplementary material M2). In
brief, averaged group maps were multiplied to create a mutual mask
such that only grey matter voxels would be included. The resulting
template (33,327 voxels) was used to generate functional connectivity
matrices from individual healthy controls.

Functional connectivity matrices (33,327×33,327 voxels) were
computed using Pearson's correlation coefficient and were normalized
using Fisher's z-transformation. An average functional connectivity

matrix was computed across healthy controls and the averaged z-scores
were transformed back to r-scores (Fig. 2A). Each row of the group-level
functional connectivity matrix was thresholded at 90% of its r-scores.
This yielded an asymmetric, sparse matrix. The pairwise cosine simi-
larities of all rows were computed. By doing this, we obtained a non-
negative and symmetric similarity matrix, L (values in [0, 1] range).

We implemented the diffusion embedding approach on the simi-
larity matrix to obtain a low-dimensional representation of the whole-
brain functional connectivity matrix (Coifman and Lafon, 2006; Langs
et al., 2016), as done in Margulies et al., 2016. This approach resulted
in gradients of functional connectivity (Fig. 2B). Voxels along each
gradient are assigned unitless embedding values. Along each gradient,
voxels that share similar connectivity pattern have similar embedding
values.

2.6. Mapping individual stroke lesions onto connectivity gradients from
healthy controls

Individual lesion masks were projected onto the individual gra-
dients obtained in healthy controls. Lesioned voxels were marked ac-
cording to their location along a specific gradient. The lesion site along
each gradient was defined as the minimum embedding value of all le-
sioned voxels.

To quantify the similarity between non-lesioned voxels and the le-
sion site in terms of connectivity patterns, distance-to-lesion maps were
computed for each non-lesioned voxel (Fig. 2C). Values in these maps
reflect the mutual difference between embedding values of non-le-
sioned and lesioned voxels. Low distance values reflect voxels that
share similar functional connectivity pattern with the lesion site.

2.7. Quantifying longitudinal changes in functional connectivity matrices
for stroke patients

For each patient, a functional mask was obtained from each of the
three consecutive functional scans. These masks were multiplied with
the grey matter template of the healthy cohort. The dilated lesion
segmentations were then excluded from the patient-specific grey matter
template. This approach ensured that functional images of patients
included only identical grey matter voxels as healthy controls, except
for the lesion site. The patient-specific grey matter templates varied
slightly in number of voxels included (ranging from 32,659 to 33,212
voxels).

To control for the slight variation in the number of voxels in patient-
specific grey matter templates, a control analysis was applied such that
the grey matter template used for the analysis contained 30,314 voxels
in all patients prior to lesion removal. Using this more restricted mask
had no influence on our main results (see Supplementary Material M3

Fig. 1. Two complementary views on brain organization and the corresponding representation of distal effects of focal lesions. (A) A focal lesion (yellow node) on the
brain anatomical surface. (B) A schematic description of discrete network parcellation superimposed on a functional connectivity graph-space with nodes and edges.
Using this approach to study the effects of focal lesions (yellow node) restricts us to singular networks and assigns connector hubs to one network only. Additionally,
distal effects of the lesion are assumed to be equally disruptive for all nodes in the affected network (red nodes). (C) Representing functional connectivity in a
continuous manner without sharply defined borders using connectivity gradients. The lesioned node affects all other nodes in the system as a function of the distance
from the lesion in connectivity space (dark red to light red). Using this approach does not assume sharp boundaries between functional networks and provides a more
realistic model of distant effects of localized lesions.
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and Supplementary Fig. S1).
Functional connectivity matrices were computed using Pearson's

correlation coefficient at each of the three time points for individual
patients (Fig. 2D). The concordance map was computed using the
concordance correlation coefficient (concordance) (Lin, 2016) at the
voxel-level across the three time points (Lohmann et al., 2012). Con-
cordance values range between −1 and 1, such that lower concordance
reflects larger alterations in the functional connectivity pattern over
time.

2.8. The relationship between lesion location along connectivity gradients
and changes in functional connectivity after stroke

Concordance values were correlated with distance-to-lesion values
using Spearman's rank-order correlation coefficient (Fig. 2E). This
analysis was repeated for each connectivity gradient separately. Posi-
tive correlations suggest that changes in functional connectivity are
more pronounced in voxels that share similar connectivity patterns with
the lesion.

Fig. 2. A schematic description of the analysis steps. (A) Averaged functional connectivity matrix (< FC>) based on the resting-state fMRI data of 28 healthy
subjects. As an alternative to parcellation approaches, the functional connectivity matrix was decomposed into a low dimensional representation using the diffusion
embedding algorithm. The scatter plot shows the first 3 eigenvectors (i.e., gradients) used for further analysis: Gradient 1 (x-axis), 2 (y-axis) and 3 (z-axis). Values on
each axis depict the embedding values. Voxels are arranged along each dimension based on the similarity of their connectivity pattern, with voxels sharing similar
connectivity patterns sharing similar embedding values. (B) Embedding values along single gradients are overlaid on the brain surface to visualize the dissociation
they capture. Along Gradient 1, transmodal areas (default-mode network, red) share similar embedding values. At the other extreme of Gradient 1, unimodal sensory
areas (blue) share similar embedding values. Gradient 1 therefore represents a dissociation between transmodal and unimodal areas on its two extremes. Gradient 2
depicts the dissociation between the visual network (red), and sensorimotor networks (green-blue). Gradient 3 depicts the dissociation between attention/memory
networks (red) and default-mode network as well as sensorimotor network (green-blue). (C) Individual lesions were delineated and located along gradients. An
example of a lesion located in the left occipital lobe is shown here (black circle). The distance from each voxel and the lesioned site was computed to create a
voxelwise map reflecting the similarity of each voxel's connectivity pattern with that of the lesion for each gradient (“distance-to-lesion” map). This was done by
subtracting the embedding values between each voxel and the mean embedding value of the lesioned voxels. Voxels with lower values on the distance map (dark
copper) share similar functional connectivity patterns with the lesioned site as characterized in healthy controls. (D) Voxelwise functional connectivity matrices (FC
matrices) were computed for the three-consecutive resting-state fMRI scans following stroke onset. Concordance was used to quantify changes in functional con-
nectivity patterns over time. Lower concordance values (dark purple) reflect a larger change in functional connectivity patterns over time. (E) For each gradient and
each individual patient, Spearman's rank correlation coefficient (rs) was used to test the relationship between the voxel's connectivity similarity with the lesion and
degree of change in functional connectivity over time. The lesioned voxels were excluded from this analysis to capture indirect, rather than local, effects of the lesion.
A positive correlation reflects a larger change in functional connectivity over time for voxels that were closer to the lesion site along the corresponding connectivity
gradient.
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2.9. The relationship between changes in functional connectivity over time
and anatomical lesion location

Euclidean distances from each voxel to the infarct area in MNI152
(3mm3) space using three-dimensional voxel coordinates were com-
puted for each patient. The resulting anatomical distance values were
correlated with concordance values (using Pearson's correlation coef-
ficient). A regression analysis was applied to remove the contribution of
this factor from concordance values. Residuals were correlated with
gradient-based distance-to-lesion values (using Spearman's rank-order
correlation coefficient).

2.10. The relationship between changes in functional connectivity over time
and lesion size

Individual lesion size was computed for each patient based on the
lesion masks obtained at the day of admission (see Section 2.5). The
number of voxels in each mask was multiplied by the volume of a single
voxel to obtain lesion volume. The resulting values were correlated
with Spearman's correlation values obtained along each of the three
gradients using Pearson's correlation coefficient.

2.11. The relationship between changes in functional connectivity along
connectivity gradients and clinical scores

Two analyses were performed using the clinical scores data; an
analysis testing for the link between changes in functional connectivity
and changes in clinical scores (analysis 1), and an analysis to test
whether individual differences between distance-to-lesion and changes
in functional connectivity over time along individual gradients are as-
sociated with clinical status at admission and discharge separately
(analysis 2). Given the exploratory nature of these analyses, the results
are interpreted descriptively. P-values are reported, but we refrain from
making statements about statistical significance because of the known
issues with interpreting p-values in this way in exploratory analyses
(Gelman and Loken, 2014).

Analysis 1: Individual gradients were divided into uniform parcels
(bins). We varied the number of bins used for the parcellation from 5 to
3000 in order to classify parts of the gradients as affected by the lesion.
At each bin number and for each stroke patient, bins that overlapped
with lesioned-voxels were identified as “lesion-affected”, whereas the
remaining bins were defined as “lesion-unaffected”. An overall delta-
concordance measure was computed as the difference between average
concordances in lesion-unaffected and lesion-affected bins, such that
delta− concordance= μunaffected− μaffected. A positive delta-concordance
value reflects a higher change in functional connectivity over time in
affected bins. Of note is that lesioned voxels were removed from this
computation, thereby the difference in concordance reflects the degree
of preferential change in functional connectivity in affected yet struc-
turally intact areas.

To explore the link between changes in clinical scores and the
overall delta-concordance measure detected along gradients, the
National Institute of Health Stroke Scale (NIHSS) was used. The NIHSS
values were assessed at the day of admission (day 0) and discharge (day
5). Twenty-seven patients out of 28 completed the NIHSS assessment at
both time points. Patients were divided into two groups; those whose
clinical scores changed from day 0 to day 5 (“clinical change”, n=16),
and those who did not change (“no clinical change”, n=11).

Permutation testing (with 10,000 iterations) was used to examine
the significance of the difference in mean delta-concordance values for
the two groups of patients (“clinical change” versus “no clinical
change”). The test was repeated for each variation of bin numbers as
well as for each of the three connectivity gradients. Positive values
reflect that a preferential change in concordance over affected bins is
more pronounced in patients who changed their clinical score from day
0 to day 5.

Analysis 2: To test if individual differences in the relationship be-
tween distance-to-lesion and changes in functional connectivity over
time along individual gradients are associated with clinical status, we
used a linear regression model. The slope and the intercept were ob-
tained for the above relationship for each gradient in each patient. The
slope reflects the degree of dependence between changes in functional
connectivity over time and similarity with the lesion in terms of con-
nectivity patterns - positive slopes indicate that changes in functional
connectivity over time are higher (i.e. concordance lower) in areas that
share similar connectivity patterns with the lesion (i.e. smaller distance
to lesioned voxels in connectivity space). The intercept reflects the level
of changes in functional connectivity over time in the areas functionally
most similar to the lesion, with lower intercepts representing greater
degrees of alteration.

The slope and the intercept values were then used to test for cor-
relation with clinical status at admission and at discharge separately,
using Kendall's Tau correlation coefficient. Clinical status was de-
termined using two clinical scores: NIHSS and modified Ranking Scale
(mRS). Although these two measures are correlated (Saver and Altman,
2012) the NIHSS measures the overall severity of the neurological
deficit, while the mRS is a disability scale that measures functional
impairment.

3. Results

3.1. Mapping stroke lesions onto connectivity gradients

To map heterogeneous lesions across our sample of patients, in-
dividualized lesion masks were delineated and projected onto a stan-
dard MNI brain (Fig. 3A), as well as onto the first three connectivity
gradients (Fig. 3B). Lesions were heterogeneous in both location and
size (mean volume=4.11 cm3, SD=2.80 cm3), and distributed in
subcortical (n=13), cortical (n=14), and brainstem (n=1) regions.
For further details on individual lesion location and affected vascular
territories, see Supplementary Table 1.

Projecting lesion locations onto the connectivity gradients enabled
us to assess which portions of connectivity space were affected by the
stroke. The template connectivity space was based on a decomposition
of voxelwise functional connectivity data from healthy controls. Voxels
that share functional connectivity patterns are situated closer to one
another along a given connectivity gradient. For example, voxels that
are part of the default-mode network are clustered at the high end of
Gradient 1, and those that are part of primary sensory areas at the low
end (Margulies et al., 2016). Here, we used the first three gradients that
account for a total variance of 50.84% in the healthy control con-
nectivity data (see Supplementary Fig. S2).

Fig. 3B demonstrates the distribution of lesioned voxels within the
three-dimensional connectivity space. We found that although the
anatomical location of lesions was heterogeneous (Fig. 3A), within the
connectivity space lesions were predominantly clustered at the ex-
tremes of each gradient, especially those of Gradients 1 and 3 (Fig. 3B).

3.2. The impact of lesion location along specific connectivity gradients on
reorganization

To determine if the location of lesions along specific gradients is
associated with changes in functional connectivity after stroke, we
computed for each voxel: 1) concordance, which reflected the degree of
change in the functional connectivity pattern over time. Concordance
values range between −1 and 1 such that lower values reflect a larger
change in functional connectivity pattern over time; and, 2) distance-to-
lesion along each connectivity gradient., which reflects the similarity of
a given voxel with the lesion in terms of connectivity patterns. Low
distance values reflect voxels that share similar functional connectivity
pattern with the lesion site. Importantly, the lesioned voxels were ex-
cluded from both these analyses such that only the indirect effects of
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the lesion (i.e., diaschisis) were assessed. Concordance and distance-to-
lesion were correlated for individual patients, and individual con-
nectivity gradients.

We found a significant relationship between the degree of change in
functional connectivity over time and similarity between non-lesioned
and lesioned voxels in terms of connectivity patterns along Gradient 1
and Gradient 3. No significant relationship was found for Gradient 2
(Fig. 4A, Table 1).

Fig. 4B demonstrates the correspondence between the connectivity
space described by Gradients 1 and 3, and a canonical set of seven
resting-state networks (Thomas Yeo et al., 2011). Gradient 1 captures
the dissociation between the default-mode network (DMN) and the
sensorimotor/visual networks, while Gradient 3 captures the dissocia-
tion between dorsal attention/fronto-parietal networks and sensor-
imotor/visual/DMN networks. For a descriptive analysis of the re-
lationship between connectivity gradients and cognitive functions see
Supplementary Material M4 and Supplementary Fig. S3.

Given the expected partial correlation between distance-to-lesion in
connectivity space and anatomical distance, we further assessed whe-
ther anatomical location contributed to the relationship with con-
nectivity space. We found a significant relationship between distance
from the lesion in anatomical space and changes in functional con-
nectivity over time (P= .0042, one-tailed Wilcoxon signed-rank test).
However, using anatomical distance as a regressor of no interest did not
alter the significance of our main result (see Supplementary Fig. S4).
Functional connectivity therefore preferentially changes after stroke in
voxels that share similar connectivity patterns to those of lesioned
voxels along Gradients 1 and 3. This relationship cannot be solely

explained by the anatomical distance from the lesion. Furthermore, the
potential impact of lesion size on the relationship between distance-to-
lesion and changes in functional connectivity over time was examined
using a correlation analysis. We found no significant relationship be-
tween these two measures (see Supplementary Fig. S5).

3.3. Clinical relevance of functional connectivity alterations detected along
connectivity gradients

Previous studies have linked alterations in functional connectivity
with clinical trajectory (He et al., 2007; Ovadia-Caro et al., 2013; Park
et al., 2011; Ramsey et al., 2016; van Meer et al., 2010), thereby sup-
porting the functional significance of connectivity changes after stroke.
We thus explored the relationship between changes in functional con-
nectivity and patients' clinical trajectory for each connectivity gradient.

We tested for a group difference in concordance in affected yet
structurally intact areas between patients who demonstrated a change
in clinical scores from day 0 to day 5 and those who did not. A positive
difference in the mean of the two groups reflects an association between
preferential changes in functional connectivity in affected areas and a
change in clinical scores over the first week after stroke. To assess the
impact of binning on our results, we varied the number of bins used to
divide the gradients into parcels of equal size (bin numbers ranged from
5 to 3000). We found no substantial difference between patients who
changed in clinical scores and those who did not for any of the con-
nectivity gradients, across different bin numbers. The averaged differ-
ence in mean for the two groups was 0.0014 (range: −0.004 to 0.015)
for Gradient 1, 0.0095 (range: 0.003 to 0.015) for Gradient 2, and 0.011

Fig. 3. Lesion location across patients shown in anatomical space and along connectivity gradients (A) Anatomical lesion distribution in individual stroke patients
(n=28) projected onto an MNI brain. The red-to-yellow color bar indicates the percentage of patients with lesions in that voxel. (B) Location of lesions projected
onto the first three connectivity gradients. The three connectivity gradients represent a low-dimensional description of the whole-brain connectivity matrix obtained
using healthy controls' data (n= 28). Corresponding spatial maps of each connectivity gradient are projected on brain surface mesh near respective axes. Colors
represent positive (sienna) and negative (dark blue) embedding values, in accordance with values along the axes. Along each gradient, voxels that share similar
connectivity patterns are situated close to one another and have similar embedding values. Grey scatter plots depict a two-dimensional connectivity space created as a
combination of any two given gradients. Lesion location along each gradient is projected onto the two-dimensional space as an alternative approach to anatomical
lesion mapping. The red-to-yellow color bars indicates the percentage of patients with lesions in that voxel. Lesioned voxels are mostly clustered around the edges of
the connectivity gradients such that they affect sensorimotor areas and ventral and dorsal areas associated with attention.
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(range: 0.0012–0.019) for Gradient 3. The range of corresponding p-
values was .15 to .61 for Gradient 1, .12 to .4 for Gradient 2, and .03 to
.46 for Gradient 3 (see Supplementary Fig. S6).

In an additional analysis, we examined if individual differences in
the relationship between changes in functional connectivity over time
along gradients are associated with the clinical status. To achieve this,
we tested whether slopes and intercept values from the linear regres-
sion between distance-to-lesion and concordance correlate with clinical
status at admission and discharge. We found a positive correlation be-
tween the slope and clinical status (using both scores) at discharge for
Gradients 1 and 3, but not for Gradient 2. This positive relationship
indicates that the bigger the difference between functional connectivity
alterations in areas maximally similar and dissimilar (in terms of con-
nectivity pattern) to the lesion in connectivity space, the worse the
clinical status at discharge. A relatively high negative correlation was
found between slope and NIHSS at discharge in Gradient 2, but this was
much lower when the mRS was used. In addition, we found a negative
correlation between the intercept and clinical status (using both scores)
at discharge for Gradients 1 and 3, but not for Gradient 2. This negative
relationship indicates that the lower the functional connectivity

alterations in areas with connectivity patterns similar to the lesion, the
better the clinical status at discharge. The linear correlation between
slope/intercept and clinical score was stronger for clinical status at
discharge than for clinical status at admission for all the performed tests
(see Table 2, all results available here: https://doi.org/10.6084/m9.
figshare.7680485).

4. Discussion

In this study, we found that stroke induces a gradual change in
functional connectivity that follows specific connectivity gradients.
Beginning with data acquired on the day of symptom onset, we showed

Fig. 4. The relationship between voxelwise similarity to the connectivity patterns of lesioned areas and the degree of changes in functional connectivity in non-
lesioned voxels over time. (A) Correlation values between distance-to-lesion and concordance (y-axis) are shown for individual patients and the three connectivity
gradients (x-axis). The spatial map of each connectivity gradient is shown below the respective location on the x-axis. Correlations were significantly positive for
Gradient 1 (P= .0027, W=71.0, one-tailed Wilcoxon signed-rank test) and Gradient 3 (P= .0001, W=35.0), but not for Gradient 2 (P= .76, W=189.0). The
more similar a voxel's connectivity pattern is to that of lesioned voxels on connectivity Gradients 1 and 3, the more pronounced its functional connectivity changes
over time. (B) Continuous connectivity gradients and corresponding seven canonical resting-state networks (Thomas Yeo et al., 2011). Voxels are situated based on
their embedding values along Gradient 1 (x-axis) and 3 (y-axis) and colored according to their network assignment. Gradient 1 captures the dissociation between the
default-mode network (DMN) and the sensorimotor networks on its two edges, while Gradient 3 captures the dissociation between dorsal attention/fronto-parietal
networks and sensorimotor/DMN networks on its two edges. Lesion distributions along connectivity gradients are overlaid on the individual gradient axes. Lesions
overlap most frequently with the lowest ends of Gradients 1 and 3.

Table 1
Summary of statistical results.

Gradient 1 Gradient 2 Gradient 3

r-values [−0.22, 0.34] [−0.30, 0.39] [−0.23, 0.32]
median 0.11 −0.01 0.16
W 71.00 189.00 35.00
p-values .0027* .76 .0001*

W; Wilcoxon signed-rank test. * Statistically significant (p< 0.05)

Table 2
Kendall's Tau correlation coefficient values for the relationship between re-
organization along connectivity gradients and clinical status.

Gradient Admission Discharge

mRS NIHSS mRS NIHSS

1 Slope 0.08 0.06 0.33 0.44
p-value .60 .67 .04 .004
Intercept −0.09 −0.08 −0.24 −0.29
p-value .57 .58 .12 .05

2 Slope −0.08 −0.14 −0.07 −0.23
p-value .60 .31 .68 .14
Intercept −0.03 −0.06 −0.13 −0.10
p-value .84 .67 .40 .49

3 Slope 0.05 0.09 0.28 0.30
p-value .73 .55 .07 .05
Intercept 0.08 0.05 −0.23 −0.21
p-value .60 .73 .15 .17
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that the degree of reorganization over the first week is influenced by the
lesion location along connectivity Gradients 1 and 3. Voxels that have
connectivity patterns similar to those of the lesion demonstrate a pre-
ferential change in functional connectivity over time (as measured by
concordance), regardless of their anatomical distance from the lesion.
We have implemented a decomposition approach that overcomes the
necessity to parcellate the brain into discrete networks, retains in-
formation from single voxels and provides a data-driven template for
studying reorganization at the connectome-level. This study therefore
supports the biological rationale for gradients by showing that func-
tional reorganization following stroke can be captured along specific
dimensions of this continuous connectivity space.

Our results are in line with previous stroke studies that have used a
priori defined networks. Diaschisis preferentially affects functional
connectivity in affected networks, as has been shown for the sensor-
imotor, language and attention networks (Baldassarre et al., 2014;
Carter et al., 2010; He et al., 2007; Ovadia-Caro et al., 2013; Siegel
et al., 2016a, 2016b; Wang et al., 2010; Warren et al., 2009). Here, we
extend these findings to the continuous representation of the con-
nectome. We demonstrate that reorganization, as reflected in functional
connectivity alterations, changes as a function of the distance from the
lesion along specific connectivity gradients. However, it is not ex-
clusively restricted to the affected network. Thus, while the most pro-
nounced changes take place in areas with connectivity patterns similar
to the lesion, the effects of stroke gradually spread along specific di-
mensions of the connectome.

We found that connectivity Gradients 1 and 3 better predicted the
impact of a lesion on functional connectivity than Gradient 2. The three
connectivity gradients capture distinct connectivity axes, with different
functional domains on their extremes. One crucial difference between
these gradients is that Gradient 2, in contrast to the others, represents a
spectrum of relatively local patterns of connectivity, spanning sensory
and motor systems (see Supplementary Fig. S7). In Gradient 2, changes
in functional connectivity over time were not related to the similarity
between connectivity patterns in non-lesioned voxels and lesioned
voxels. Interestingly, previous studies have shown that the value of
functional connectivity for predicting deficits is domain-specific and
that for motor and visual deficits, lesion topography is of higher pre-
dictive value than functional connectivity (Siegel et al., 2016a, 2016b).
Widespread effects of diaschisis could therefore be more pronounced in
domains that involve multiple, higher-order regions to begin with, like
attention and memory. Such a distinction between unimodal and het-
eromodal/multimodal regions is represented in Gradients 1 and 3 and
could potentially explain why reorganization is captured only along
these two dimensions. In general, it remains to be determined which
types of post-stroke deficits are likely to benefit from the application of
such a continuous approach to functional connectivity.

Our study demonstrates the importance of lesion location within
connectivity space for understanding the reorganization of functional
connectivity. However, the similarity in terms of connectivity patterns
between non-lesioned and lesioned voxels is partially captured by
anatomical distance, as areas close to one another are highly inter-
connected (Ercsey-Ravasz et al., 2013). In addition, local physiological
changes in areas directly surrounding the lesion (Dirnagl et al., 1999)
can also contribute to changes in functional connectivity (Khalil et al.,
2017; Siegel et al., 2016a, 2016b). We therefore calculated in a control
analysis the Euclidian distances from each voxel to the infarct area
using a three-dimensional anatomical space. We found a significant
relationship between distance based on anatomy and changes in func-
tional connectivity as measured by concordance. However, when re-
gressing the contribution of this factor from our main analysis, the re-
sults remained consistent (see Supplementary Fig. S4). Consequently,
changes in functional connectivity detected along connectivity Gra-
dients 1 and 3 could not be solely explained by lesion topography or
physiological processes occurring in the vicinity of the lesion site. This
analysis emphasizes the significant contribution of functional

connectivity changes in distant yet connected areas to the global pro-
cess of reorganization.

Although the individual lesion area was removed from the main
analysis, the potential impact of lesion size on changes in functional
connectivity was additionally explored using a correlation analysis. No
significant relationship was found for any of the three gradients be-
tween lesion volume and the magnitude of correlation between dis-
tance-to-lesion and changes in connectivity over time (See
Supplementary Fig. S5). However, this lack of relationship can be ex-
plained by the homogeneity in lesion size in our specific cohort
(4.11 ± 2.75 cm3, mean ± standard deviation). This analysis there-
fore does not exclude the possibility that such a relationship can be
found in samples with a wider range of lesion sizes.

The conceptual shift from mapping localized brain regions to net-
works has provided a substantial improvement to how we understand
the organization of functional and cognitive systems. Connectivity
gradients are a further conceptual advance as they represent con-
nectivity beyond segregated networks, thereby providing a macro-scale
fingerprint of whole-brain connections (Mars et al., 2018). This ap-
proach is potentially useful for pathological states associated with
widespread connectivity changes, or those in which localization of the
pathology is ill-defined. Promising results have recently been reported
in a large cohort of individuals with autism spectrum disorder (ASD),
where alterations in the global hierarchy were captured along the first
dimension of connectivity space (Gradient 1) (Hong et al., 2019).
Specifically, individuals with ASD demonstrate divergent transition
between sensory and higher order default-mode regions along Gradient
1, as compared with controls. Alterations in the hierarchical con-
nectivity pattern captured along this dimension was associated with
deficits in social cognition as well as low-level behavioral symptoms,
thereby providing a unified framework for mitigating the diverse be-
havioral effects associated with this pathology (Hong et al., 2019).

Here we used stroke as a perturbation model to support the validity
of connectivity gradients. While more studies are necessary to under-
stand better the utility of this framework for stroke prognosis, the
current findings provide support for conceptualizing brain connectivity
within a continuous connectivity-defined space. In stroke, assessing
reorganization using this approach has an important potential ad-
vantage; compared to discrete connectivity approaches, gradients pre-
serve the role of connector hubs, which connect between sub-networks.
These hubs are essential for intact modular topology (Gratton et al.,
2012), have been linked to cognitive performance (Bertolero et al.,
2018), and play an important role in post-stroke recovery (Siegel et al.,
2017).

Ultimately, measures of network disruption or reorganization after
stroke are expected to be associated with clinical deficits or clinical
recovery. This has been shown for various measures of functional
connectivity in previous studies (He et al., 2007; Ovadia-Caro et al.,
2013; Park et al., 2011; Ramsey et al., 2016; van Meer et al., 2010). In
an exploratory analysis that was beyond the primary aim of this study,
we found no difference between patients with clinical change and pa-
tients without clinical change over the first week post-stroke (defined
by the NIHSS) in terms of the changes in connectivity over time in af-
fected as compared to non-affected parts of the continuous connectivity
space. Of interest nevertheless is that for Gradient 2 and Gradient 3,
group differences in these changes were not randomly distributed and
were positive in value (see Supplementary Fig. S6).

In another exploratory analysis, we found that the relationship be-
tween changes in a voxel's functional connectivity and its similarity to
the lesion in terms of connectivity was associated with the clinical
scores at discharge (but not at admission). This result was more evident
for Gradients 1 and 3 than for Gradient 2 (see https://doi.org/10.6084/
m9.figshare.7680485). These results provide us with a starting point for
investigating the clinical significance of functional connectivity al-
terations in the connectivity gradients framework. However, due to the
exploratory nature of these analyses, as well as the lack of detail offered
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by the NIHSS and mRS in terms of assessment of functional deficits,
these results should be verified in independent future studies. By using
detailed clinical outcome measures as benchmarks, future studies could
directly compare the value of discrete and continuous functional con-
nectivity approaches. Given previous findings (Gratton et al., 2012;
Siegel et al., 2017; Siegel et al., 2016a, 2016b), it can be hypothesized
that continuous approaches may be more predictive of outcome in
patients with either functional deficits of a distributed nature (e.g.,
attention deficits) or those with lesions in hub areas.

Connectivity gradients can provide a framework to develop detailed
models of whole-brain reorganization after stroke, either spontaneously
or in response to interventions such as non-invasive brain stimulation.
Currently, our models of reorganization after stroke are in many aspects
network-limited, and the optimal way to deal with lesion heterogeneity
across patients, or with deficits in multiple domains in an individual
patient, remains unclear. In addition, current protocols for non-invasive
brain imaging techniques are based on single network models (Di Pino
et al., 2014; Morishita and Hummel, 2017; Ovadia-Caro et al., 2019)
although widespread effects of stimulation have been reported in
healthy controls (Antonenko et al., 2017; Dijkhuizen et al., 2014; Sehm
et al., 2012). Connectivity gradients could be potentially used to refine
our models of reorganization in response to a lesion, extending our
description of diaschisis effects to the connectome level.

5. Conclusions

Connectivity gradients offer a methodological advancement in the
representation of whole-brain connectivity patterns. By demonstrating
that widespread effects of localized lesions follow the architecture
captured along specific dimensions of this space, we provide empirical
evidence supporting the biological validity of this approach, and sug-
gest a novel framework to characterize stroke reorganization and re-
covery.
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