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Polycystic ovary syndrome (PCOS) is a heterogeneous disorder characterized by hyperandrogenism and
chronic anovulation. Depending on diagnostic criteria, 6% to 20% of reproductive aged women are
affected. Symptoms of PCOS arise during the early pubertal years. Both normal female pubertal
development and PCOS are characterized by irregular menstrual cycles, anovulation, and acne. Owing
to the complicated interwoven pathophysiology, discerning the inciting causes is challenging. Most
available clinical data communicate findings and outcomes in adult women. Whereas the Rotterdam
criteria are accepted for adult women, different diagnostic criteria for PCOS in adolescent girls have
been delineated. Diagnostic features for adolescent girls are menstrual irregularity, clinical hyper-
androgenism, and/or hyperandrogenemia. Pelvic ultrasound findings are not needed for the diagnosis of
PCOS in adolescent girls. Even before definitive diagnosis of PCOS, adolescents with clinical signs of
androgen excess and oligomenorrhea/amenorrhea, features of PCOS, can be regarded as being “at risk
for PCOS.” Management of both those at risk for PCOS and those with a confirmed PCOS diagnosis
includes education, healthy lifestyle interventions, and therapeutic interventions targeting their
symptoms. Interventions can include metformin, combined oral contraceptive pills, spironolactone, and
local treatments for hirsutism and acne. In addition to ascertaining for associated comorbidities,
management should also include regular follow-up visits and planned transition to adult care providers.
Comprehensive knowledge regarding the pathogenesis of PCOSwill enable earlier identification of girls
with high propensity to develop PCOS. Timely implementation of individualized therapeutic in-
terventions will improve overall management of PCOS during adolescence, prevent associated
comorbidities, and improve quality of life.
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The female hypothalamic–pituitary–ovarian (HPO) axis is a meticulously synchronized and
tightly regulated network ultimately responsible for reproductive competence and survival of
the species. The HPO axis responds to internal signals (i.e., hormonal and neuronal) and
external factors (i.e., environment influences). Beginning during gestation, these factors
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impact future generations through epigenetic factors affecting the brain and the developing
germ cells [1].

Polycystic ovary syndrome (PCOS), a disorder primarily characterized by signs and
symptoms of androgen excess and ovulatory dysfunction, disrupts HPO axis function.
Depending on diagnostic criteria, this disorder affects ;6% to 20% of reproductive aged
women [2, 3]. Typical clinical features include hirsutism, irregular menses, chronic anov-
ulation, and infertility. The persistent hyperandrogenism is associated with impaired
hypothalamic–pituitary feedback, LH hypersecretion, premature granulosa cell luteiniza-
tion, aberrant oocyte maturation, and premature arrest of activated primary follicles [4].

1. Pathophysiology

By the time the diagnosis is established, PCOS presents as a phenotype reflecting a self-
perpetuating vicious cycle involving neuroendocrine, metabolic, and ovarian dysfunction.
Over the years, numerous hypotheses have been proposed regarding the proximate physi-
ologic origins for PCOS. PCOS reflects the interactions among multiple proteins and genes
influenced by epigenetic and environmental factors (Fig. 1) [5]. Specific sections of this article
deconstruct the factors contributing to the development of PCOS in humans and preclinical
models. Clinical and biochemical hyperandrogenism are major features of PCOS.

PCOS develops during the early pubertal years [6]. However, most relevant information
has been accrued through clinical studies involving adult women in which referral bias
focuses on investigation of the more severe phenotypes [7]. Preclinical models involving
animal and in vitro studies supplement clinical investigation and benefit from other ap-
proaches to study this complex disorder. Recent clinical, experimental, and genetic data
emphasize neuroendocrine involvement in the pathophysiology of PCOS.

Figure 1. Factors contributing to PCOS phenotype. PCOS encompasses a woman’s life cycle.
Factors potentially impacting the pathophysiology of PCOS are shown in circles. Not all
factors affect each individual. PCOS epitomizes a biologic network of interacting
neuroendocrine, hormonal, metabolic, genetic, and environmental influences.
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A. Ovary, Adrenal, and Androgen Excess

PCOS is characterized by excessive ovarian and/or adrenal androgen secretion. Intrinsic
ovarian factors such as altered steroidogenesis and factors external to the ovary such as
hyperinsulinemia contribute to the excessive ovarian androgen production. Characteristic
features include more growing follicles in women with PCOS compared with normal controls
with premature growth arrest of antral follicles at 5 to 8mm. The classic ovarian phenotype of
enlarged ovaries with string-of-pearl morphology and theca interstitial hyperplasia reflects
androgen exposure; this morphology has also been observed in women with congenital ad-
renal hyperplasia (CAH) and female-to-male transgender individuals [8]. Distorted in-
teractions among the endocrine, paracrine, and autocrine factors responsible for follicular
maturation may contribute to ovarian dysregulation in PCOS.

The stages of follicular maturation are briefly reviewed (Fig. 2). Developing during ges-
tation, primordial follicles are comprised of meiotically arrested oocytes surrounded by
pregranulosa cells. Hence, a woman’s ovaries have been exposed to the ambient maternal
environment during gestation. Ovaries are relatively quiescent until the onset of puberty.
Detailed knowledge regarding follicular morphology in prepubertal and early pubertal
ovaries is lacking. Ovarian tissue obtained from prepubertal and early pubertal girls shows
differences in follicle morphology and growth potential. Specifically, prepubertal ovaries
contain a high proportion of abnormal nongrowing follicles, which are not found in pubertal
ovaries [9]. The physiologic relevance of this finding is unclear.

The precise signaling mechanisms initiating follicular activation are poorly understood.
Presumably a balance of factors influences the options—continuation in a resting state or
activation. One such factor appears to be follicle density [10]. Following activation from the
resting pool, initial follicular growth is gonadotropin-independent until the antral stage.

Anti-Müllerian hormone (AMH), a glycoprotein secreted by granulosa cells, inhibits initial
follicular recruitment and indicates follicular reserve. In contrast to mice where AMH in-
hibits preantral follicle growth and antral follicle maturation, AMH appears to promote
growth of preantral follicles to the antral stage in nonhuman primate (NHP) ovaries [11, 12].
Peak AMH concentrations are found in antral follicles. Once FSH-stimulated granulosa
cell estradiol concentrations achieve the necessary threshold, estradiol suppresses AMH
expression [13].

Figure 2. Ovarian follicle development. This illustration shows ovarian follicular
development during developmental periods.
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Despite prior assumptions that androgens negatively impact follicles, androgens syn-
thesized in preantral follicle theca cells promote growth of preantral and antral follicles and
induce granulosa cell FSH receptor (FSHR) expression in early antral follicles [14]. An-
drogens promote aromatase expression and, ultimately, LH/chorionic gonadotropin receptor
(LHCGR) expression in granulosa cells. As a follicle matures, androgens appear to inhibit
proliferation and promote apoptosis. This biphasic androgen action was initially demon-
strated in an NHP, the marmoset; androgens augmented FSH action in small antral follicles
but had an inhibitory effect in larger follicles [15].

Androgen actions are mediated by androgen receptors (ARs), which are expressed in theca
cells, granulosa cells, oocytes, and stromal cells [16]. Both canonical androgen signaling
where AR functions as ligand-dependent transcription factor and nongenomic signaling
occur. Peak AR gene expression occurs in small antral follicles (;6 mm in diameter) and
decreases in antral and preovulatory follicles [17].

Typically, one follicle is “selected” as the dominant follicle [18]. With increasing estrogen
secretion, pituitary FSH secretion declines due to negative feedback. The dominant follicle
compensates for this loss of FSH stimulation through increased LHCGR expression and in-
creased responsiveness to LH stimulation. Subordinate follicles undergo atresia, presumably
due to relative FSH deficiency and androgen excess. Upon achieving a sufficient estradiol
concentration, neuroendocrine mechanisms trigger the LH surge to induce ovulation.

Under normal circumstances, the ovarian stroma provides a structural framework un-
dergoing dynamic changes to support follicular growth. However, the ovarian stroma from
women with PCOS tends to be more rigid. The developing oocyte and its surrounding
scaffolding rely on endocrine, paracrine, and autocrine signaling mechanisms to maintain
cell-to-cell communication and assure synchronized developmental progression. Aberrant
development during these earliest stages of follicular growth likely contributes to the ovarian
aspects of PCOS [19]. Another feature of PCOS ovaries is accelerated transition from pri-
mordial to growing follicles with increased numbers of 2- to 3-mm and 3- to 4-mm follicles [20,
21]. AMH concentrations correlate with the number of these small antral follicles [22]. The
growing follicle is exposed to an atypical environment with increased LH, insulin, androgen,
and AMH concentrations accompanied by insufficient FSH concentrations [19]. Additional
differences in PCOS ovaries include factors impacting vascular function and immune
responsiveness [23].

Additionally, intrinsic alterations in ovarian steroidogenesis likely contribute to excessive
ovarian androgen production. Available data document constitutively increased androgen
production and CYP17A1 expression in cultured theca cells isolated from PCOS ovaries
[24–26]. Steroidogenesis in the ovary involves both theca and granulosa cells. The theca cells
produce ovarian androgens, which are converted to estrogens in the granulosa cell due to the
actions of FSH-stimulated aromatase.

One interesting locus identified through genetic studies is DENND1A (see “H. Genetics”
below). Overexpression of the alternative spliced variant, DENND1A.V2, of this gene
recapitulated a PCOS phenotype in cultured theca cells obtained from normal women,
indicating a role for this variant in the excessive theca cell androgen production [27].
Overexpression of DENND1A.V2 in an adrenal cell line led to increased expression of the
mRNAs for CYP17A1 and CYP11A1. However, the mechanisms responsible for increased
expression of this alternatively spliced variant of DENND1A remain to be elucidated [28].

The adrenal zona reticularis is responsible for biosynthesis of the C-19 adrenal androgens,
including dehydroepiandrosterone (DHEA), DHEA sulfate (DHEAS), androstenedione, and
testosterone. At least three distinct adrenal pathways contribute to androgen synthesis: (i)
canonical/classical, (ii) “alternative backdoor,” and (iii) 11-oxo-androgens (Fig. 3). In the
canonical/classical pathway, progesterone is successively transformed by the enzyme 17a-
hydroxylase/17,20-lyase (P450c17) to DHEA, which is subsequently converted by 3b-
hydroxysteroid dehydrogenase type 2 to androstenedione. The alternative backdoor pathway
bypasses the usual steroid hormone intermediates, DHEA, androstenedione, and testos-
terone, to produce dihydrotestosterone [29]. This pathway likely contributes to virilization of
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the external genitalia among girls with classical CAH and normal male external genital
development [30, 31]. The extent of the contribution of the alternative backdoor pathway to
adrenal and ovarian steroid biosynthesis in PCOS is unclear [32].

The adrenal steroidogenic enzyme, 11b-hydroxylase (P450c11B1), encoded byCYP11B1, is
expressed in both zona fasciculata and zona reticularis; this enzyme converts androstenedione
and testosterone to their respective 11b-hydroxyl derivatives, 11b-hydroxy-androstenedione and
11b-hydroxy-testosterone. Both 11b-hydroxy-androstenedione and 11b-hydroxy-testosterone
can be converted to their 11-keto counterparts, 11-ketoandrostenedione and 11-ketotestosterone.
Testosterone, DHT, 11-ketotestosterone, and 11-ketodihydrotestosterone bind to the human
ARand promote AR-regulated gene expression [33]. The concentrations of these 11-oxygenated
steroids were reported to be higher inwomenwith PCOS than among healthy premenopausal
women [34]. Urinary steroid profiling using 24-hour urine collections in a relatively small
number of women with PCOS and controls found androstanediol concentrations to dis-
criminate between PCOS and controls; the overall pattern of steroid hormone excretion
indicated enhanced androgen biosynthesis via canonical/classical, alternative backdoor, and
11-oxygenated steroid pathways rather than a specific steroid enzyme disorder [35].

A-1. Preclinical models

One unresolved conundrum regarding folliculogenesis is the regulation and interrelation-
ships between androgens and AMH. Androgens and AMH are essential for normal cyclic
ovulation. Using short hairpin RNAs to decrease AMH expression in macaques, preantral
follicle growth and survival were reduced. Cotreatment with supplemental AMH overcame
these effects. These results emphasize the important role of AMH as a critical factor to

Figure 3. Androgen biosynthesis. This illustration shows the classical/canonical, alternative
backdoor, and 11-oxo-steroid pathways for androgen biosynthesis.
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promote preantral follicle survival and growth in primates [36]. AMH treatment of cultured
antral stage rhesus macaque follicles decreased estradiol production compared with un-
treated follicles despite similar follicle size [12]. Hence, AMH appears to have a dual role:
whereas AMHpromotes preantral follicle survival, it negatively impacts later stages of antral
follicle maturation [12].

In a series of in vivo and in vitro experiments, a subset of hypothalamic GnRH neurons,
both mouse and human, were shown to express AMR receptors; AMH treatment increased
GnRH-dependent LH pulsatility and secretion [37]. Using a mouse model, AMH treatment of
pregnant mice was associated with diminished placental metabolism of testosterone to es-
tradiol, decreased aromatase expression, masculinization of exposed female offspring, estrus
cycle disturbances, increased LH pulse frequency, brain masculinization, and infertility
compared with unexposed mice; postnatal GnRH antagonist treatment reversed this PCOS-
like phenotype [38]. These data suggest that excessive prenatal AMH exposure could promote
the aberrant neuroendocrine function typical of PCOS and that AMH can modulate GnRH
neuron function [37, 38].

Knockout mice have been used to explore consequences of gene deletions. Using a post-
natal androgen PCOS model, global AR knockout mice were protected from DHT-induced
PCOS-like features. Curiously, neuron-specific AR knockout mice were protected from DHT-
induced ovarian dysfunction and several metabolic traits, reinforcing a role for extraovarian
tissues in the pathophysiology of PCOS [39]. Hence, intricate interrelationships exist be-
tween androgens, AMH, follicle growth, metabolism, and neuroendocrine factors in PCOS.

Recently, a group of naturally hyperandrogenic female rhesus monkeys have been de-
scribed. The high testosterone animals had increased LH, AMH, and androstenedione
concentrations. Additionally, five of the six high-testosterone monkeys had no live offspring
[40]. Future study of these animals will provide insight into the pathogenesis of PCOS.

B. Neuroendocrine Factors

Increased LH pulse frequency, LH pulse amplitude, and increased LH/FSH ratios are de-
scribed in women with PCOS. The initial features of PCOS emerge during the early pubertal
years, concomitant with reactivation of the hypothalamic GnRH pulse generator, increased
gonadotropin secretion, and subsequent increased ovarian estrogen production. Loci iden-
tified in the genome-wide association studies (GWASs) studies include LHCGR, FSHR, and
FSH-b polypeptide (FSHB) genes, emphasizing neuroendocrine contributions to PCOS
pathophysiology (see H. Genetics below).

Hypothalamic neurons in the arcuate nucleus secrete kisspeptin, neurokinin B, and
dynorphin. These neurons, labeled as the KNDy neurons, are the leading contenders for the
hypothalamic GnRH pulse generator because of the colocalization of these three peptides and
their roles in episodic GnRH secretion [41]. Rather than initiating puberty, the GnRH pulse
generator and GnRH neurons represent downstream nodes modulated by other hormones
and neurosecretory factors [42]. In other words, activation of excitatory inputs and in-
activation of inhibitory inputs moderated by multiple influences regulate the output of the
GnRH pulse generator to govern the timing of puberty [43–45]. This process culminates in
increased GnRH and gonadotropin secretion.

The hypothalamic GnRH neurons secrete GnRH in discrete pulses that travel through the
median eminence to the pituitary gonadotrophs, resulting in pulsatile LH and FSH secretion
[46]. LH and FSH pulse frequencies are modulated by GnRH pulse frequency. Increased
GnRH pulse frequency increases LH pulse frequency and decreases FSH pulse frequency
[47]. The GnRH neurons integrate diverse influences, decode metabolic signals, and serve as
the output “managers” of the HPO axis [48, 49].

Increased LH pulse amplitude and pulse frequency observed in PCOS are likely driven
by increased pulsatile GnRH secretion. Manipulation of the hypothalamic kisspeptin–
neurokinin B–GnRH pathway with an NK3 receptor antagonist, AZD4901, reduced serum
LH pulse frequency and, subsequently, serum LH and testosterone concentrations. These
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data suggest the possibility of targeting neuroendocrine pathophysiology to treat HPO axis
dysfunction in PCOS [50].

GnRH neurons express estrogen receptor-b, but they do not express AR, progesterone
receptor, or estrogen receptor-a. Hence, steroid-mediated negative feedback is indirect and is
mediated through the hypothalamic neuronal network upstream of the GnRH neuron. This
negative feedback mechanism is impaired in some women with PCOS who appear to require
higher progesterone and estradiol concentrations. This effect can be abrogated with androgen
antagonist treatment [51].

One conundrum is that LH hypersecretion is less obvious in women with obesity with
PCOS. Although GnRH and LH pulses generally exhibit a 1:1 ratio, preclinical data exist
suggesting that a faster GnRH pulse frequency may be associated with decreased LH se-
cretion [52]. Potential explanations for this mismatch between GnRH and LH pulses include
the longer half-life of LH obscuring pulse detection, exhaustion of the pituitary pool of readily
releasable LH, or lower amplitude GnRH pulses [53]. Measurement of circulating kisspeptin
and LH concentrations showed temporal kisspeptin–LH pulse coupling in eumenorrheic
women with PCOS; however, a greater frequency of kisspeptin pulses was associated with a
loss of temporal coupling in women with oligomenorrhea with PCOS [54]. This study
identified dissociated coupling of kisspeptin and LH pulses in women with oligomenorrhea
with PCOS.

Tanycytes are specialized nonciliated cells lining the floor of the third ventricle. These
polarized cells contribute to regulation of reproduction and metabolism in the median em-
inence. Specifically, tanycytes affect GnRH secretion, generate active forms of thyroid
hormone, and influence exchange of signaling factors such as leptin between the blood and
hypothalamic extracellular fluid [55]. Dynamic structural remodeling of tanycytes modulates
GnRH neuron access to the pituitary portal system. Leptin and ghrelin enter the hypo-
thalamus through the tanycytes [56]. Astrocytes, located at the interface between blood
vessels and neurons, can function as metabolic sensors. This physical location enables them
tomodulate glucose fluxes between the periphery and the central nervous system [57]. Hence,
dynamic tanycyte–neuron interactions and astrocytes orchestrate the ongoing communi-
cation between the neuroendocrine axis and the periphery [58]. Whereas the precise role of
tanycytes in PCOS is indeterminate, these cells likely allow leptin, ghrelin, and AMH access
to GnRH neurons.

B-1. Preclinical models

Numerous studies have described the development of neuroendocrine features reminiscent of
PCOS following prenatal androgen exposure in rodents, sheep, and rhesusmacaques [59–61].
Prenatal androgen exposure during early gestation (late first to second trimester) increased
LH and androgen secretion in female rhesus monkeys [59]. Prenatally androgenized (PNA)
female mice showed increased g-aminobutyric acid (GABA)ergic transmission to GnRH
neurons by 3 weeks of age, suggesting that prenatal androgen treatment affected neuronal
development [62]. Questions regarding prenatal imprinting of the neuroendocrine compo-
nents of the HPO axis persist.

C. Valproate and HPO Axis Function

Valproic acid (VPA), a branched short-chain fatty acid derived from valeric acid, is used to
treat epilepsy, bipolar disorders, and prevent migraine headaches. VPA increases GABA
levels by interfering with GABA degradation pathways [63]. GnRH neurons express both
GABAA and GABAB receptors, implicating GABA signaling in the regulation of GnRH se-
cretion. Signaling through the GABAA receptor can elicit an excitatory effect on GnRH
neurons [64].

Women treated with VPA can develop PCOS-like symptoms. Lean women with PCOS had
significantly higher CSF GABA concentrations compared with eumenorrheic lean control
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women; the women with PCOS also demonstrated increased LH pulse amplitude and LH
pulse frequency on frequent blood sampling [65]. These clinical observations suggest that
GABA signaling could influence the neuroendocrine changes associated with PCOS such as
LH pulse frequency.

C-1. Preclinical models

PNA mice models have enabled investigation regarding the consequences of prenatal an-
drogen exposure. In an elegant series of experiments, Silva et al. [66] demonstrated increased
GABA synaptic input in prepubertal PNA mice. Their observations suggest that prenatal
androgenization is associated with prenatal enhanced GABAergic structural wiring input
onto GnRH neurons, that these changes are reversible with long term antiandrogen
treatment, and that these structural changes precede postpubertal development of PCOS
features [66].

D. Insulin Resistance, Hyperinsulinemia, and the b-Cell

The phenotype of female patients with insulin receptor gene mutations includes insulin
resistance (IR), compensatory hyperinsulinemia, and hyperandrogenism [67]. Although IR
and hyperinsulinemia are commonly detected in women with PCOS, insulin receptor gene
mutations are extremely rare among women with PCOS.

Womenwith PCOS have intrinsic IR independent of the extent of obesity andmagnitude of
androgen concentrations [68]. Even lean women with PCOS manifest IR; increasing body
mass index (BMI) exacerbates IR [69]. Normal-weight adolescent girls with PCOS have
peripheral IR, increased liver fat, and muscle mitochondrial dysfunction compared with
normal-weight girls [70].

Insulin is the hormone primarily responsible for glucose homeostasis and lipogenesis. In
addition to its effects on carbohydrate, fat, and protein metabolism, insulin functions as a
mitogenic hormone. Insulin actions are mediated by insulin receptors, which are found in
numerous tissues of the HPO axis. In steroidogenic tissues such as the ovary and the adrenal
cortex, insulin potentiates the cognate trophic hormones to promote steroidogenesis. The
compensatory hyperinsulinemia associated with IR provokes excessive ovarian/adrenal
androgen secretion and decreases hepatic SHBG synthesis with the net result of increas-
ing circulating testosterone concentrations. This leads to the paradox of insulin signaling in
PCOS; liver, skeletal muscle, and adipose tissue exhibit IR, whereas steroid-producing
tissues and the pituitary retain insulin sensitivity [71, 72]. This paradox is illustrated
by differences in insulin actions in granulosa–lutein cells obtained from women with
anovulation with PCOS; insulin-stimulated glucose uptake is impaired whereas insulin-
stimulated progesterone production is preserved [73].

The central role of compensatory hyperinsulinemia has been established by improved
clinical features with insulin-sensitizing medications and weight loss. The transient IR and
hyperinsulinemia typical of early puberty may kindle the factors associated with develop-
ment of PCOS [74, 75].

The prevalence of the metabolic syndrome defined as obesity, hypertension, dyslipidemia,
and hyperglycemia is approximately threefold higher in women with PCOS [76]. Although
a consensus definition of metabolic syndrome in adolescents is lacking, published pediat-
ric criteria are based on adult criteria and include a combination of elevated triglyceride
concentration, elevated low high-density lipoprotein cholesterol concentration, fasting blood
glucose $110 mg/dL, increased waist circumference, and hypertension for age [77]. A meta-
analysis suggested that although IR is likely a common factor linking the metabolic and
reproductive features of PCOS, the metabolic and reproductive features develop through
independent mechanisms [78]. One relatively consistent finding is that obesity exacerbates
the symptoms of PCOS, especially regarding the risk for development of T2D and the
metabolic syndrome [76].
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Primary hyperinsulinemia can precede the development of peripheral tissue IR. It is
beyond the scope of this review to discuss arguments supporting the opposing viewpoints,
that is, primary IR vs primary hyperinsulinemia [79]. Importantly, numerous genetic and
epigenetic factors, nonheritable prenatal and extrauterine environmental influences, and
varying adaptations to nutrient excess likely contribute to the development of IR
and hyperinsulinemia.

D-1. Preclinical models

Preclinical data show b-cell dysfunction associated with hyperinsulinemia in monkeys and
sheep prenatally exposed to androgens [80, 81].

E. Obesity, the Adipocyte, and Nutrient Excess

Overweight and obesity are common among adolescent girls and adult women with PCOS. In
response to nutrient excess, adipocytes can enlarge (hypertrophy) or form new adipocytes
(hyperplasia). According to the adipose tissue expandability hypothesis, adipocyte hyper-
trophy establishes a microenvironment characterized by hypoxia, proinflammatory cytokine
secretion, free fatty acid “spillover,” macrophage invasion, and IR [82]. IR decreases sup-
pression of adipocyte lipolysis, resulting in increased serum free fatty acids and triglycerides,
ultimately leading to increased hepatic de novo lipogenesis and hyperlipidemia [83]. Another
consequence is increased fat storage in skeletal muscle, liver, and pancreas because the
adipose tissue capacity to store lipid is exceeded. In the liver, ectopic fat storage is labeled
hepatic steatosis, which can develop into nonalcoholic fatty liver disease [84].

White adipose tissue has several distinct locations, that is, visceral and subcutaneous.
Partitioning of fat among different storage sites influences metabolic consequences: in-
creased abdominal fat is associated with greater risk for dysglycemia and cardiovascular
disease. Investigation of normal-weight women with PCOS showed increased total ab-
dominal fat mass due to preferential deposition of intra-abdominal fat with an increased
population of small subcutaneous abdominal adipocytes [85]. In a pilot study involving
normal-weight women with PCOS, subcutaneous adipose IR correlated with serum androgen
concentrations and the percentage of small subcutaneous abdominal adipocytes. These data
support the hypothesis that expansibility of the subcutaneous abdominal adipose depot is
limited and unable to expand sufficiently tomeet themetabolic needs formost normal-weight
women with PCOS [86]. Emerging pilot data in adolescent girls with PCOS showed that
reduction of visceral fat improved menstrual irregularity [87].

In a small cross-sectional study, girls related to women with PCOS showed higher 17-
hydroxyprogesterone concentrations, decreased insulin sensitivity, and decreased insulin-
induced suppression of nonesterified fatty acid concentrations compared with healthy control
girls. These findings suggest onset of adipocyte dysfunction, IR, and possible lipotoxicity
among girls aged ;9 to 15 years [88]. In another small study using frequently sampled IV
glucose tolerance tests, the authors reported early b-cell dysfunction in first-degree female
relatives with overweight/obesity of women with PCOS compared with control girls with
overweight/obesity [89]. Small sample sizes limit the conclusions that can be drawn from
these studies. Nevertheless, the studies hint that b-cell function and insulin sensitivity
may differ beginning in childhood and early adolescent years among girls “destined” to
develop PCOS.

Mismatches between prenatal and postnatal weights have led to the advance of the de-
velopmental origins of disease hypothesis [90]. The longitudinal prospective population-
based study (Northern Finland Birth Cohort Study) found that women with PCOS had lower
birth weights, experienced adiposity rebounds at younger ages, and had higher subsequent
BMI values [91]. These findings are consistent with the concept that a mismatch between
prenatal weight and postnatal weight gain is associated with increased risk for PCOS, ectopic
fat storage, and hepatic steatosis [92–94].
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Adipose tissue expresses enzymes that activate and inactivate androgen precursors. The
enzyme aldo-ketoreductase type 1C, encoded by the AKR1C3 gene, is expressed in adipose
tissue and converts the preandrogen androstenedione to testosterone. Additionally, the
enzyme 5a-reductase type 1, encoded by the SRD5A1 gene, converts testosterone to DHT and
is expressed in adipose tissue. A deep in vivometabolic phenotyping study showed increased
AKR1C3 and decreasedSRD5A1mRNA expression in subcutaneous fat of womenwith PCOS
[95]. Activation appears to regulate adipocyte proliferation and differentiation, insulin
sensitivity, adipokine signaling, and lipid metabolism [96]. Using a human preadipocyte
cell line, both testosterone and DHT increased de novo lipogenesis in the absence of insulin
[95], whereas pharmacologic inhibition of AKR1C3 activity prevented androgen-mediated
adverse effects on adipocyte lipogenesis. Using this model system, insulin increased AKR1C3
expression. Based on these data, O’Reilly et al. [95] proposed the existence of a vicious
cycle linking adipocyte androgen biosynthesis and adipocyte lipid accumulation to IR
and hyperinsulinemia.

Another situation demonstrating androgen effects on lipid metabolism was described in
girls with obesity with andwithout PCOS. Girls with obesity with PCOS compared with those
without PCOS demonstrated decreased lipid mobilization, diminished fat oxidation, and
impaired ability to switch from lipid to carbohydrate oxidation during insulin stimulation
(metabolic inflexibility) [97].

E-1. Preclinical models

In a treatment paradigm comparing a high-fat diet with/or without testosterone treatment in
rhesus monkeys, the combination of a high-fat diet and testosterone treatment accelerated
development of white adipose tissue dysfunction [98].

F. Developmental Hypothesis/Fetal Origins

The developmental theory of PCOS proposes that exposure of the female fetus to elevated
androgen concentrations contributes to the development of PCOS. Potential mechanisms in-
clude effects on steroidogenesis, insulin signaling, pancreatic b-cell function, hypothalamic–
pituitary organization, neuroendocrine secretory patterns, and epigenetic modifications [99].

Fetal, neonatal, prepubertal, and/or pubertal ovaries may be genetically predisposed to
increased androgen secretion [100, 101]. Women with classical CAH often develop a sec-
ondary PCOS phenotype; it is unclear whether this reflects prenatal imprinting of the hy-
pothalamus and GnRH pulse generator or androgen effects on the ovary [102]. Available data
support the hypothesis that prenatal androgen exposure programs the neuroendocrine,
metabolic, and reproductive manifestations of PCOS [103]. Women with PCOS typically have
higher androgen concentrations than do women without PCOS. One report involving 23
mothers self-reporting PCOS and 277 women reporting no PCOS indicated increased ano-
genital differences, a marker of prenatal androgen exposure, in daughters of women with
PCOS [104]. How the fetus is exposed to androgen excess when placental aromatase and
maternal SHBG limit fetal exposure to maternal androgens remains an enigma.

F-1. Preclinical models

Preclinical models involving androgen exposure in rodents, sheep, and NHPs recapitulate
features of PCOS. Impaired adipocyte differentiation has been demonstrated in NHPmodels
[105]. Among prenatally androgenized NHPs, when the capacity of subcutaneous adipocytes
to store fat is exceeded, excess free fatty acids may be deposited in ectopic locations such a
liver andmuscle; consequences of ectopic fat depositionmay include impaired tissue hypoxia,
inflammation, and IR [106]. Curiously, transient pancreatic dysfunction manifested by
hypoglycemia, an increased number of b-cells, small islets, and relative hyperinsulinemia
have been observed in this NHP model of early gestational androgen exposure [80]. Early
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pubertal NHP treated with testosterone and a “Western style diet”with increased fat content
showed increased larger visceral adipocytes, greater IR, and ectopic fat storage [106].

G. Microbiome

Bacteria, archaea, fungi, and viruses comprise the microbial community or microbiome of
the gastrointestinal tract. These organisms play roles in fermentation of dietary fiber, bile
acid metabolism, host defense, and modulation of metabolism. It has been suggested that the
gut microbiome influences development of nonalcoholic fatty liver disease and is associated
with insulin sensitivity [107, 108]. Sex and sex steroids modulate the composition of the
gut microbiome. Women are reported to show greater a-diversity. a-Diversity represents
the number of species, and b-diversity indicates similarity between samples. Decreased
a-diversity has been described in women with PCOS [109, 110]. Numerous questions remain
to be answered regarding the functional relationships, if any, between sex steroids, metabolic
dysregulation, and the gut microbiome [111]. To the best of our knowledge, no data for
adolescents are available.

H. Genetics

Twin studies suggest that the hereditability is ;70% [112]. The few identified genetic loci
explain only a modest proportion of estimated hereditability. GWASs involving women of
Han Chinese and European origins have identified at least 16 susceptibility loci for PCOS
[113–116]. Several genetic variants are similar in both Han Chinese and European pop-
ulations, implying that PCOS is an ancient disease [117]. Several novel loci have recently
been identified [118]. A meta-analysis showed that identified loci are linked to genes
plausibly associated with the metabolic and reproductive characteristics of PCOS [118].
Linkage disequilibrium score regression analysis demonstrated genetic correlations with
metabolic traits, that is, fasting insulin, lipid levels, and PCOS. With the exception of the
GATA4/NEIL2 locus, the genetic architecture did not differ whether National Institutes of
Health or Rotterdam criteria were used to diagnose PCOS [118]. Genes involved in HPO axis
function, that is, LHCGR, FSHR, and FSHB, were identified in these GWASs implicating
gonadotropins in the pathophysiology of PCOS [115]. Using family-based quantitative trait
meta-analysis, rare DENND1A variants were associated with metabolic and reproductive
traits in PCOS families; these data are consistent with the hypothesis that complex disorders
such as PCOS are associated with genetic variations in noncoding regions [119]. Epigenetic
modifications such as changes in methylation and miRNAs offer another level of regulation
affecting the PCOS phenotype. Epigenetic variants have been reported for adipose tissue and
muscle [120, 121].

2. Diagnosis of PCOS

The classic features of PCOS include clinical or biochemical hyperandrogenism, oligome-
norrhea or amenorrhea associated with chronic anovulation, and polycystic ovary syndrome
morphology [122]. The current consensus is that use of the Rotterdam criteria is appropriate
for adult women. For diagnosis of PCOS, women must fulfill two of the three characteristics:
oligo-ovulation or anovulation, clinical and/or biochemical hyperandrogenism, or polycystic
ovary morphology on ultrasound with exclusion of other disorders. The 2012 National In-
stitutes of Health–sponsored Evidence-Based Methodology PCOS Workshop categorized
PCOS into four phenotypes as follows: phenotype A, hyperandrogenism, ovulatory dys-
function, and polycystic ovary morphology; phenotype B, hyperandrogenism and ovulatory
dysfunction; phenotype C, hyperandrogenism and polycystic ovary morphology; and phe-
notype D, ovulatory dysfunction and polycystic ovary morphology [123, 124].

However, delineating appropriate diagnostic criteria for PCOS among adolescent girls
has been problematic because irregular menses, cystic acne, mild hyperandrogenism, and
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multifollicular ovarian morphology occur during normal pubertal maturation. These simi-
larities between normal pubertal development and the clinical features associated with
PCOS confound the diagnosis in adolescent girls (Table 1) [125–127]. Similar to the evaluation
of adult women, other disorders associated with irregular menses and/or hyperandrogenism
need to be excluded. These disorders include CAH, typically nonclassic 21-hydroxylase de-
ficiency, androgen-secreting tumors, thyroid dysfunction, hyperprolactinemia, Cushing syn-
drome, exogenous use of steroid hormones/androgens, or severe IR syndrome [128, 129].

A. Menses

With reactivation of the GnRH pulse generator, increased gonadotropin secretion stimulates
ovarian estrogen secretion and follicular development. Estrogen promotes uterine growth
and endometrial proliferation; endometrial estrogen exposure eventually culminates in
vaginal withdrawal bleeding and menarche. A longitudinal study found that the median age
at menarche for American girls was 12.25 years, with lower menarcheal ages in black and
Hispanic girls compared with white and Asian girls [130]. By age 15 years, 98% of girls will
have experienced menarche [131].

Contemporary understanding is that it takes 3 to 4 years postmenarche for adult men-
strual cyclicity to mature. By the third year after menarche, 10 or more menses occur an-
nually in 90% of adolescent girls [132]. Approximately 41% of girls have achieved ovulatory
cycles by the fourth gynecologic year [133]. Importantly, ovulation may occur despite ir-
regular menses [134].

Currently, evidence-based data regarding the first gynecologic year are limited and are
largely derived from studies published prior to 2000. A 2018 systemic review of menstrual
patterns during the first gynecologic year concluded that menstrual and ovulatory patterns
are diverse during this time period. In 22 studies involving .2000 adolescents, frequent
menstrual bleeding (,21 days) occurred in 23% and prolonged menstrual bleeding (.30
to 45 days) occurred in at least 33% [135]. A pilot study entailing serial hormone concen-
trations and ultrasound studies in ovulatory postmenarcheal girls revealed lower steroid
(estrogen and progesterone) concentrations, slower dominant follicle growth rate, and
longer follicular phases compared with adult women; these data suggest that coordinated
development of all components of the HPO axis may take up to 5 years postmenarche
[136, 137].

Oligomenorrheic adolescents tend to have persistent oligomenorrhea [138, 139]. Sec-
ondary amenorrhea for.90 days is uncommon and warrants additional consideration. Girls
presenting with primary amenorrhea at ages 15 to 16 years merit further evaluation.

B. Hyperandrogenism

Hirsutism, defined as excessive terminal hair growth in male pattern distribution in women,
is the primary clinical sign of hyperandrogenism. The modified semisubjective Ferriman–
Gallwey scoring system is one widely used approach [140, 141]. The extent of the clinical
features of hyperandrogenism represents the interactions between circulating androgen

Table 1. Definition of Irregular Menses in Adolescent Girls

• Normal during the first year postmenarche
• From 1 to 3 y postmenarche, ,21 d or .45 d
• From 3 y postmenarche to perimenopause, ,21 d or .35 d or fewer than eight cycles per year
• From 1 y postmenarche, .90 d for any one cycle
• Primary amenorrhea by age 15 y or .3 y after thelarche

[Adapted from: Teede HJ, Misso ML, Costello MF, Dokras A, Laven J, Moran L, Piltonen T, Norman RJ; In-
ternational PCOS Network. Recommendations from the international evidence-based guideline for the assessment
and management of polycystic ovary syndrome. Fertil Steril 2018;110(3):364–379.].
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concentrations, local androgen concentrations, and sensitivity of the pilosebaceous unit/hair
follicle to androgens. The severity of hirsutism does not correlate with circulating androgen
concentrations. Ethnic and genetic variations influence the development of hirsutism [141].
Depending on ethnicity, a modified Ferriman–Gallwey score $4 to 6 indicates hirsutism
[125]. Other cutaneous signs of androgen excess include severe cystic acne and male
pattern baldness.

Biochemical hyperandrogenism is confirmed by documentation of elevated serum an-
drogen concentrations. One caveat is the importance of measuring androgens using high-
quality assays such as liquid chromatography–tandem mass spectrometry or extraction/
chromatography immunoassays [142]. Calculated free testosterone, free androgen index,
calculated bioavailable testosterone, androstenedione, and DHEAS may provide helpful
information. Testosterone determinations are confounded by several problems, including
inadequate assay sensitivity to accurately measure low concentrations, limited evidence-
based normal ranges, assay interference due to other steroid molecules or SHBG, and
technical aspects of the assay methodology. In view of these constraints, the Canadian
Laboratory Initiative in Pediatric Reference Intervals (CALIPER) project has developed
sensitive and accurate liquid chromatography–tandem mass spectrometry methodology to
simultaneously measure eight steroids [143]. Measuring 11-oxo-androgens shows promise
as a method to assess for hyperandrogenism [144, 145].

C. Polycystic Ovary Morphology

Polycystic ovary morphology (PCOM) is defined as enlarged ovaries with increased stroma
and more small peripheral cysts. The Androgen Excess–PCOS Society Task Force recom-
mended that PCOM is defined as$20 follicles per ovary using a transvaginal probe and high-
resolution technology (transducer frequency$8MHz) [146]. However, assessment of ovarian
morphology is difficult in the adolescent girl because the increased gonadotropin stimulation
leads to increased ovarian volume and follicular growth, giving rise to the appearance of
multifollicular ovaries in adolescent girls. Additionally, use of transvaginal probes are
problematic in adolescent girls. PCOM is an inconsistent finding in adolescent girls and is not
associated with anovulation or metabolic abnormalities [147]. Hence, ovarian ultrasounds
are unnecessary in adolescent girls.

D. Evaluation and Diagnosis

The approach to the evaluation of a girl with signs and symptoms suggestive of PCOS begins
with a thorough history, including detailed family history and complete physical exami-
nation. The individualized laboratory evaluation typically includes thyroid function studies
as well as the determination of prolactin, total testosterone, androstenedione, SHBG,
DHEAS, and 17-hydroxyprogesterone concentrations. Direct free testosterone assays should
be avoided due to inadequate sensitivity, accuracy, and reproducibility of available assays.
Fasting glucose, HbA1c, and lipid concentrations should be determined. Ideally, the blood
sample should be obtained prior to 8:30 AM. If CAH is a diagnostic possibility, an ACTH
stimulation test can be obtained. The cut point of a basal 17-hydroxyprogesterone.200 ng/dL
has been suggested as the threshold for performing ACTH stimulation tests [148]. Never-
theless, when the clinical picture is highly suggestive of a steroidogenic enzyme deficiency, an
ACTH stimulation test might be warranted. Adrenal and pelvic imaging may be considered
depending on the clinical information, physical examination, and initial laboratory data.

AMH concentrations are often elevated in women with PCOS. AMH concentrations reflect
ovarian reserve and are correlated with the number of growing follicles [149]. Although it is
premature to use AMH concentrations to diagnose PCOS, AMH concentrations have been
found to be elevated in nonobese girls with PCOS [150, 151]. AMH concentrations were found
to be higher in girls with obesity with PCOS compared to girls with obesity without PCOS of
comparable age and pubertal status [152].
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Insulin resistance, hyperinsulinemia, and obesity are commonly identified in women with
PCOS. However, with the exception of a single publication, none of the current definitions,
recommendations, or guidelines includes IR and/or hyperinsulinemia as a diagnostic
feature [153].

Hence, the diagnosis of PCOS can be considered for the adolescent girl with persistence of
oligoamenorrhea for 3 to 4 years postmenarche with clinical and/or biochemical hyper-
androgenism after exclusion of other disorders associated with irregular menses or hyper-
androgenism. When oligomenorrhea has not persisted for .2 years, these girls can be
considered to be “at risk” for PCOS and require longitudinal evaluation to assess for ongoing
features of PCOS. Deferred diagnosis attempts to avoid overdiagnosis with its potential for
premature labeling, anxiety, and unnecessary interventions. Nevertheless, diagnostic la-
beling needs to be balanced with the patient’s desire for a diagnosis and specific therapeutic
interventions [125–127, 154, 155].

3. Treatment of Adolescent PCOS

Adolescents presenting with PCOS features, before the diagnosis is confirmed, often require
management of their symptoms [125–127]. The management of adolescents with a clear
diagnosis of PCOS should include education about the condition and lifestyle interventions.
The interventions can be individualized to target the foremost complaints and symptoms.
Interventions include metformin, combined oral contraceptive pills (COCPs), spironolactone,
and local treatments for hirsutism and acne. Management should also include management
of comorbidities, regular follow-up, and a plan for transition to adult care providers.

A. Education and Counseling

Education and counseling about the condition is very important. The explanation and dis-
cussion of PCOS should be culturally sensitive as well as appropriate, comprehensive, and
tailored to the individual [125]. This discussion should use an empathetic approach, promote
self-care, and highlight peer support groups, which are available in multiple countries
(www.pcoschallenge.org/, www.verity-pcos.org.uk/, and www.facebook.com/PCOSAustralia/).
Counseling about fertility concerns is important, as adolescents with PCOS are more con-
cerned than theirs peers about future fertility after diagnosis [156].

B. Lifestyle Interventions

Healthy lifestyle interventions must be incorporated in the management plan of all ado-
lescents with PCOS [125–127] because a large proportion of these adolescents are overweight/
obese or are at risk for gaining excessive weight [157]. Lifestyle interventions comprise
multiple components, including healthy diets, physical activity, decreased sedentary be-
haviors, and behavioral strategies [158]. The interventions should also include the family, as
parents’ involvement and their readiness to change affect adolescent outcomes [159, 160].
Engagement and adherence to lifestyle interventions can be improved by management of
psychological factors such as anxiety, body image concerns, and disordered eating, which are
common in adolescents [125, 161]. Two systematic reviews of lifestyle interventions in women
with PCOS show improvements in weight, hyperandrogenism, and IR [162, 163]. Lifestyle
interventions in adolescents with PCOS have shown additional improvements in quality of
life [160, 164, 165].

Limited data are available regarding the specific type of diet to achieve weight loss in
PCOS [125]. Five randomized controlled trials (RCTs) have evaluated diets in the man-
agement of adolescents with overweight/obesity with PCOS, with only three that evaluated
diet as a single intervention [160, 164, 166–168]. A low-carbohydrate diet (20 to 40 g/d) and a
hypocaloric diet (,40 g of fat per day) during 12 weeks improved weight and menstrual
irregularities with no difference between the diets. Similarly, both low–glycemic load and

1558 | Journal of the Endocrine Society | doi: 10.1210/js.2019-00078

https://www.pcoschallenge.org/
https://www.verity-pcos.org.uk/
https://www.facebook.com/PCOSAustralia/
http://dx.doi.org/10.1210/js.2019-00078


low-fat diets during 6 months improved weight with no difference between diets [168]. A low-
energy diet compared with a healthy diet for 6 months was associated with weight loss, more
regular menses, and decreased hirsutism [167]. Nutrition education in addition to exercise
training and behavioral therapy for 12months resulted inweight loss, aswell as improvement of
menstrual irregularities and androgen levels in adolescents with obesity and PCOS [160].

Physical activity of longer duration, frequency, and intensity results in bettermaintenance
of health. Importantly, moderate to vigorous physical activity for at least 60 minutes per day
is associated with better physical and psychosocial health in children and adolescents [169].
Sixty minutes of moderate to vigorous physical activity at least 3 times a week should be
encouraged for the prevention of weight gain and maintenance of health in PCOS [125, 170].
Exercise interventions can also improve cardiometabolic risk factors in women with PCOS
[171]. Alternative exercise activities such as yoga for 12 weeks can also improve PCOS
symptoms during adolescence [172]. Limiting sedentary behaviors such as watching tele-
vision and the use of tablets, computers, and/or mobile phones to 2 h/d is advised for ado-
lescents and relates to better health [173].

Data regarding behavioral interventions in adolescents with PCOS are limited [125].
However, family therapy in addition to other lifestyle interventions show beneficial effects on
adolescent PCOS symptoms, and a small open trial shows that cognitive behavior therapy
improved depressive symptoms [160, 174].

Prevention of weight gain and effective weight management is important in adolescent
PCOS, as obesity exacerbates metabolic and psychological comorbidities of PCOS [175, 176].
Additionally, weight loss strategies up to 7% of body weight have resulted in improving
menstrual irregularity and testosterone levels [164, 167]. There are limited data for the use of
weight loss medications in adolescents.

C. Metformin

Metformin is the single most studied insulin sensitizer in PCOS. It is commonly used in
adolescents 15 to 19 years of age despite being “off label” for this indication [177]. Addi-
tionally, according to the recent international evidence-based guidelines for assessment and
management of PCOS, “The use of metformin in addition to lifestyle could be considered in
adolescents with a clear diagnosis of PCOS or with symptoms of PCOS before the diagnosis is
made” [125].

A meta-analysis of metformin use with and without lifestyle changes in PCOS (including two
RCTs in adolescents [164, 178]) showed beneficial effects on BMI andmenstrual cycles [164, 178,
179]. There have been multiple observational studies and six RCTs evaluating the effect of
metformin on a total of 275 adolescentswithPCOS. These studies have demonstrated short-term
beneficial effects mostly in adolescents with overweight/obesity [164, 180–183]. Metformin doses
used ranged from 1000 to 2000 mg daily with the major side effect being mild gastrointestinal
distress. Limitations are that the frequency of side effects and adherence tomedications have not
been fully reported. Side effects can be reduced by starting metformin at a lower dose with slow
increments and theuse of extended release preparations. RCTsweremostly of 6-month duration;
only one study lasted 24 months, and no longer-term studies have been reported.

Metformin at a dose of 1700 to 2000 mg/d is associated with greater improvement of BMI,
and COCPs are associated with improvement in menstrual irregularity and acne according
to a meta-analysis of metformin vs oral contraceptives in adolescents with PCOS and in-
cluding four RCTs (170 adolescents) [164, 180–184]. Both metformin and oral contraceptives
had similar beneficial effects on hirsutism, triglycerides, and high-density lipoprotein cho-
lesterol, but the estimates of effect were derived from low-quality evidence involving small
studies [184]. Meta-analyses including larger number of RCTs in women with PCOS showed
limited or no benefit of insulin sensitizers on hirsutism [185, 186].

Metformin also can be used in addition to COCPs, especially in adolescents with PCOS and
BMI $25 kg/m2, as well as high–metabolic risk groups such as certain ethnicities and in-
dividuals at increased risk of type 2 diabetes [125].
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D. COCPs

COCPs (estrogen and progestin preparations) should be considered for management of
menstrual irregularity and/or clinical hyperandrogenism in adolescents with a clear diag-
nosis of PCOS and in adolescents at risk of PCOS before the diagnosis is confirmed according
to the recent international evidence-based guidelines [125]. There are limited evidence-based
data regarding specific types or doses of progestins, estrogens, or combinations of COCPs for
management of PCOS in adolescents and women, but the lowest effective estrogen dose (20 to
30 mg of ethinylestradiol) should be considered [125]. Contraindications such as thrombo-
embolism risk should be assessed when prescribing COCPs by obtaining thorough medical
histories of the patient and her family. In most instances, 35 mg of ethinylestradiol plus
cyproterone acetate preparations should not be considered first line in PCOS [125, 187].
Duration of treatment has not been evaluated beyond 24 months in adolescents with PCOS.
However, COCPs have been used for contraception in longer periods of time.

COCPs improve menstrual irregularity in adolescents with PCOS [164, 180–184]. COCPs
should be also offered when contraception is required and/or medical treatment of hirsutism
or acne is needed [184]. When no contraception is required, menstrual irregularity alone can
also be managed with cyclical medroxyprogesterone acetate (10 mg per day for 10 days) [188,
189]. This can be offered when there is a desire to have fewer menstrual cycles and/or a
preference for not taking daily medications or being on COCPs due to cultural reasons.

E. Management of Hirsutism

Acknowledgment of the significance of the hirsutism, irrespective of the severity, for a particular
adolescent is important when offering treatment options as well as understanding expectations
of the treatment [125]. Long-term commitment is required for any topical and/or medical in-
terventions. More severe hirsutism may require a combination of strategies. Current available
therapies have been mostly evaluated in women and include physical hair removal methods,
topical medications, light-based therapies, COCPs, and antiandrogens [190–192].

Physical hair removal methods include waxing, shaving, chemical epilation, plucking,
bleaching, and electrolysis. All but electrolysis are temporary hair removal methods, easily
available and commonly used by adolescents even before they are evaluated for PCOS. There
have been no RCTs evaluating these methods. Electrolysis is a permanent hair removal
method, as it causes destruction of hair bulb, but it requires an experienced technician and
can cause scaring and pigmentation changes [193].

Topical medications such as 13.9% eflornithine cream, an irreversible inhibitor of orni-
thine decarboxylase, affects hair follicle growth and differentiation and can improve mild
facial hirsutism in women with mild skin irritation [194, 195].

Professional light-based therapies include lasers (alexandrite, diode, and neodymium-
doped yttrium aluminum) and intense pulsed light. These light therapies provide wave-
lengths of 600 to 1100 nm that are absorbed by the melanin in the hair and destroy the hair.
This approach provides a prolonged solution for hirsutism after multiple treatments. The
light can also be absorbed by epidermal melanin, which is greater in darker skinned
individuals, increasing the risk of blisters, dyspigmentation, and scarring [196]. The
neodymium-doped yttrium laser has longer wavelengths, which is less absorbed by epidermal
melanin of darker skinned individuals, decreasing side effects. Light-based therapies should
be the first line of treatment of localized hirsutism [125, 126]. Laser treatment was associated
with a 50% reduction of hair at 6 months after treatment with mild side effects such as pain,
skin redness, and perifollicular edema [197]. Uncommon side effects include burns, blisters,
hyperpigmentation/hypopigmentation, and scarring that can be reduced by topical anes-
thetic creams prior to treatment and by cooling mechanisms after treatment. Sun exposure
should be avoided before and after treatment. Improvement of hirsutism with laser has been
associated with improvement in quality of life, anxiety, and depression in young women with
PCOS [198, 199].
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Light-based home-use devices are also available and approved by the US Food and Drug
Administration. These devices provide less optical energy and should be carefully used to
avoid injuries to skin and eyes [200, 201]. Fewer RCTs have evaluated the efficacy of these
devices [202].

Hormonal therapies should be considered in moderate or severe forms of hirsutism and
include COCPs and antiandrogens [192]. COCPs alone improve hirsutism in adolescents with
PCOS [184]. Estrogens in the COCPs decrease free androgens by increasing hepatic pro-
duction of SHBG and decrease ovarian and adrenal androgen production by suppressing LH
levels [203]. Progestins in the COCPs also have some antiandrogenic properties by blocking
the AR and inhibiting 5a-reductase activity. A small RCT involving adolescents with PCOS
showed no difference in hirsutism improvement when two COCPs were compared during
12 months (30 mg of ethinyl estradiol and 0.15 mg of desogestrel vs 35 mg of ethinyl estradiol
and 2 mg of cyproterone acetate) [204]. However, cyproterone acetate is not available in the
United States.

Spironolactone, cyproterone acetate (which can be part of COCPs), and flutamide are
antiandrogens that have been evaluated and used to treat hirsutism in women [191]. Spi-
ronolactone is an aldosterone antagonist that blocks the AR. It should be used after 6 months
of COCPs; monitoring for side effects such as volume depletion and electrolyte disturbances
should be explained and performed [125, 205]. The starting dose for spironolactone is;25 mg/d.
Subsequently, doses can range from 100 to 200mg/d divided in two doses. Flutamide at a dose of
250 to 500mg/d divided in two doses during 12months has shown beneficial effects on hirsutism
in women, but there are no RCTs evaluating the effect of flutamide alone or in combination with
COCPs in adolescents. Low doses of flutamide (125 mg/d) in combination with metformin have
been used in adolescents with ovarian hyperandrogenism [206]. Flutamide has been associated
with severe side effects such as liver toxicity [191, 207]. Finasteride is a topical medication that
inhibits 5a-reductase that should be avoided in adolescents, as data are very limited even among
adult women [190].

Antiandrogens alone could be considered to treat hirsutism or alopecia when COCPs are
contraindicated or poorly tolerated. However, antiandrogens must be used with effective
contraception in sexually active adolescents to avoid fetal undervirilization [125, 126]. The
combination of COCPs and antiandrogens is superior for management of hirsutism [186].

F. Management of Acne

Treatment will be guided by severity of acne with the following goals of treatment: reduction
of sebum production, prevention of formation of microcomedones, suppression of Propioni-
bacterium acnes, and reduction of inflammation to prevent scaring [208]. Mild acne can be
managed initially with over-the-counter topical treatments such as benzoyl peroxide 0.1%/
2.5% (Epiduo gel) or topical retinoids or the combination of the two agents as well as ap-
propriate skin care. Moderate and severe forms of acne require the addition of systemic
antibiotics (macrolides) for 3 or 4 months but discontinuation after new inflammatory lesions
have stopped appearing [208, 209]. COCPs can also be added for management of moderate to
severe acne in adolescents [184]. Timely referral to a dermatologist should be considered
when the response is poor or in severe cases, as acne has a major negative impact on ad-
olescent psychosocial well-being.

G. Screening of Other Comorbidities

Additional comorbidities can occur in adolescents with PCOS that might be independent of
overweight status. These comorbidities include impaired glucose tolerance and type 2 di-
abetes [125, 126, 210, 211]. Additional comorbidities include decreased quality of life, de-
pression, anxiety, eating disorders and disordered eating, and altered body image [192,
212–214]. Identification of IR, hyperinsulinemia, and obesity galvanizes efforts to investigate
and initiate treatment of associated comorbidities such as impaired glucose tolerance, type 2
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diabetes mellitus, dyslipidemia, and sleep apnea. Adequate screening for comorbidities
should be guided by symptoms, clinical examination, and specific personal and family risks
factors. This should be followed by appropriate management to avoid further complications
[125, 215, 216].

As per management of any adolescent, the HEEADDSS screening tool should be used (that
is, H, home environment; E, education and employment; E, exercise and healthy eating; A,
activity and peers; D, drugs, smoking, and alcohol; D, depression and suicide ideation; S,
sexuality and sexual health; S, sleep) [217]. Prompt referral to social work, psychology, and
counseling in the presence of psychosocial comorbidities is necessary, as these comorbidities
will affect adherence to any interventions. Self-management strategies such as mindfulness
and yoga in PCOS are emerging and requiremore research [172, 218]. Contraception should be
discussed in sexually active adolescents with PCOS who are not taking COCPs for PCOS.

H. Transition to Adult Care Providers

Preparation for transition to adult care will require reinforcement of education about PCOS,
its comorbidities, lifestyle interventions,medical treatment, and the need of long-term follow-
up [125, 126, 219]. Women with PCOS are best managed by multidisciplinary health care
teams comprised of endocrinologists, general physicians, gynecologists, family doctors, or
general practitioners. Therapeutic options should be discussed with the adolescent or
emerging adult. The selection of an appropriate specialist for adult care should be based on
adolescent preferences andmajor complaints, local availability of health care professionals or
specialized clinics, health care insurance, and the possible need of fertility management in
the near future.

4. Summary

PCOS is a complex disorder involving multiple organ systems with onset during the early
pubertal years (Fig. 1). The list of factors involved in the pathophysiology continues to ex-
pand, with accruing evidence indicating that hyperandrogenism is a pivotal factor affecting
multiple tissues [220, 221]. GWASs have identified genes common to both Han Chinese and
white populations that are involved in neuroendocrine, metabolic, and reproductive path-
ways [118]. Data obtained from animal models have consistently implicated testosterone as
an important factor in the pathogenesis of PCOS. The important contributions of ectopic fat
storage and adipocyte androgen biosynthesis are emerging. Promising clinical and preclinical
data point toward neuroendocrine involvement with supporting roles for GABA signaling and
neuronal ARs.

At this time, an individualized treatment plan can be developed for the adolescent girl with
features of PCOS. Attention to the history, physical examination, and laboratory data
is important to identify adolescent girls at risk to develop PCOS.Whereas deferring diagnostic
labeling may be appropriate, treatment of clinical features and comorbidities is vital to the
health and self-esteem of these patients. One future goal includes prevention through timely
identification of at-risk prepubertal and early pubertal girls through lifestyle interventions.
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Gut microbiota and the polycystic ovary syndrome: influence of sex, sex hormones, and obesity. J Clin
Endocrinol Metab. 2018;103(7):2552–2562.

110. Torres PJ, Siakowska M, Banaszewska B, Pawelczyk L, Duleba AJ, Kelley ST, Thackray VG. Gut
microbial diversity in women with polycystic ovary syndrome correlates with hyperandrogenism.
J Clin Endocrinol Metab. 2018;103(4):1502–1511.

111. Thackray VG. Sex, microbes, and polycystic ovary syndrome. Trends Endocrinol Metab. 2019;30(1):
54–65.

112. Vink JM, Sadrzadeh S, Lambalk CB, Boomsma DI. Heritability of polycystic ovary syndrome in a
Dutch twin-family study. J Clin Endocrinol Metab. 2006;91(6):2100–2104.

113. Chen ZJ, Zhao H, He L, Shi Y, Qin Y, Shi Y, Li Z, You L, Zhao J, Liu J, Liang X, Zhao X, Zhao J, Sun Y,
Zhang B, JiangH, ZhaoD, Bian Y, Gao X, Geng L, Li Y, ZhuD, Sun X, Xu JE, Hao C, RenCE, Zhang Y,
Chen S, Zhang W, Yang A, Yan J, Li Y, Ma J, Zhao Y. Genome-wide association study identifies
susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat Genet.
2011;43(1):55–59.

114. Shi Y, Zhao H, Shi Y, Cao Y, Yang D, Li Z, Zhang B, Liang X, Li T, Chen J, Shen J, Zhao J, You L, Gao
X, Zhu D, Zhao X, Yan Y, Qin Y, Li W, Yan J, Wang Q, Zhao J, Geng L, Ma J, Zhao Y, He G, Zhang A,
Zou S, Yang A, Liu J, Li W, Li B, Wan C, Qin Y, Shi J, Yang J, Jiang H, Xu JE, Qi X, Sun Y, Zhang Y,
Hao C, Ju X, Zhao D, Ren CE, Li X, Zhang W, Zhang Y, Zhang J, Wu D, Zhang C, He L, Chen ZJ.
Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome.NatGenet.
2012;44(9):1020–1025.

115. Hayes MG, Urbanek M, Ehrmann DA, Armstrong LL, Lee JY, Sisk R, Karaderi T, Barber TM,
McCarthy MI, Franks S, Lindgren CM, Welt CK, Diamanti-Kandarakis E, Panidis D, Goodarzi MO,
Azziz R, Zhang Y, James RG, Olivier M, Kissebah AH, Stener-Victorin E, Legro RS, Dunaif A;
Reproductive Medicine Network. Genome-wide association of polycystic ovary syndrome implicates
alterations in gonadotropin secretion in European ancestry populations [published correction appears
in Nat Commun. 2016;7:10762]. Nat Commun. 2015;6(1):7502.

116. Day FR, Hinds DA, Tung JY, Stolk L, Styrkarsdottir U, Saxena R, Bjonnes A, Broer L, Dunger DB,
Halldorsson BV, Lawlor DA, Laval G, Mathieson I, McCardle WL, Louwers Y, Meun C, Ring S, Scott
RA, Sulem P, Uitterlinden AG, Wareham NJ, Thorsteinsdottir U, Welt C, Stefansson K, Laven JS,
Ong KK, Perry JR. Causal mechanisms and balancing selection inferred from genetic associations
with polycystic ovary syndrome. Nat Commun. 2015;6(1):8464.

117. Fessler DM,Natterson-Horowitz B, Azziz R. Evolutionary determinants of polycystic ovary syndrome:
part 2. Fertil Steril. 2016;106(1):42–47.

118. Day F, Karaderi T, Jones MR, Meun C, He C, Drong A, Kraft P, Lin N, Huang H, Broer L, Magi R,
Saxena R, Laisk T, Urbanek M, Hayes MG, Thorleifsson G, Fernandez-Tajes J, Mahajan A, Mullin
BH, Stuckey BGA, Spector TD,Wilson SG, Goodarzi MO, Davis L, Obermayer-Pietsch B, Uitterlinden
AG, Anttila V, Neale BM, JarvelinMR, Fauser B, Kowalska I, Visser JA, AndersenM, Ong K, Stener-
Victorin E, Ehrmann D, Legro RS, Salumets A, McCarthy MI, Morin-Papunen L, Thorsteinsdottir U,
Stefansson K, Styrkarsdottir U, Perry JRB, Dunaif A, Laven J, Franks S, Lindgren CM, Welt CK;
23andMe Research Team. Large-scale genome-wide meta-analysis of polycystic ovary syndrome
suggests shared genetic architecture for different diagnosis criteria. PLoS Genet. 2018;14(12):
e1007813.

119. Dapas M, Sisk R, Legro RS, Urbanek M, Dunaif A, Hayes MG. Family-based quantitative trait meta-
analysis implicates rare noncoding variants in DENND1A in polycystic ovary syndrome [published
online ahead of print 30 April 2019]. J Clin Endocrinol Metab. doi: 10.1210/jc.2018-02496.

120. Kokosar M, Benrick A, Perfilyev A, Fornes R, Nilsson E, Maliqueo M, Behre CJ, Sazonova A, Ohlsson
C, Ling C, Stener-Victorin E. Epigenetic and transcriptional alterations in human adipose tissue of

1568 | Journal of the Endocrine Society | doi: 10.1210/js.2019-00078

http://dx.doi.org/10.1210/js.2019-00078


polycystic ovary syndrome [published correction appears inSci Rep. 2016;6:25321].Sci Rep. 2016;6(1):
22883.

121. Nilsson E, Benrick A, Kokosar M, Krook A, Lindgren E, Källman T, Martis MM, Højlund K, Ling C,
Stener-Victorin E. Transcriptional and epigenetic changes influencing skeletal muscle metabolism in
women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2018;103(12):4465–4477.

122. Dumesic DA, Oberfield SE, Stener-Victorin E, Marshall JC, Laven JS, Legro RS. Scientific statement
on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary
syndrome. Endocr Rev. 2015;36(5):487–525.

123. Johnson T, Kaplan L, Ouyang P, Rizza P. National Institutes of Health Evidence-Based Methodology
Workshop on Polycystic Ovary Syndrome. NIH EbMW Reports. Bethesda, MD: National Institutes of
Health, 2012;1:1–14. Available at: https://prevention.nih.gov/sites/default/files/2018-06/FinalReport.pdf.
Accessed 17 February 2019.

124. Lizneva D, Suturina L, Walker W, Brakta S, Gavrilova-Jordan L, Azziz R. Criteria, prevalence, and
phenotypes of polycystic ovary syndrome. Fertil Steril. 2016;106(1):6–15.

125. TeedeHJ,MissoML, CostelloMF,Dokras A, Laven J,MoranL, PiltonenT, NormanRJ; International
PCOS Network. Recommendations from the international evidence-based guideline for the assess-
ment and management of polycystic ovary syndrome. Clin Endocrinol (Oxf). 2018;89(3):251–268.
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