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Abstract

Background: The long-term use of opioid analgesics is limited by the development of unwanted side-effects, such as toler-

ance. The molecular mechanisms of morphine anti-nociceptive tolerance are still unclear. The mitochondrial calcium uni-

porter (MCU) is involved in painful hyperalgesia, but the role of MCU in morphine tolerance has not been uncharacterised.

Methods: Rats received intrathecal injection of morphine for 7 days to induce morphine tolerance. The mechanical

withdrawal thresholdwasmeasuredusingvonFreyfilaments, and thermal latencyusing thehotplate test. Theeffects of an

MCU inhibitor, antisense oligodeoxynucleotide against cyclic adenosinemonophosphate response element (CRE)-binding

protein (CREB) or cytoplasmic polyadenylation element-binding protein 1 (CPEB1) in morphine tolerance were examined.

Results: Spinal morphine tolerance was associated with an increased expression of neuronal MCU, phospho-CREB

(pCREB), and CPEB1 in the spinal cord dorsal horn. MCU inhibition increased the mechanical threshold and thermal

latency, and reduced the accumulation of mitochondrial calcium in morphine tolerance. Intrathecal antisense oligo-

deoxynucleotide against CREB or CPEB1 restored the anti-nociceptive effects of morphine compared with mismatch

oligodeoxynucleotide in von Frey test and hotplate test. Chromatin immunoprecipitation with quantitative PCR assay

showed that CREB knockdown reduced the interaction of pCREB with the ccdc109a gene (encoding MCU expression)

promoter and decreased the MCU mRNA transcription. RNA immunoprecipitation assay suggested that CPEB1 binds to

the MCU mRNA 30 untranslated region. CPEB1 knockdown decreased the expression of MCU protein.

Conclusions: These findings suggest that spinal MCU is regulated by pCREB and CPEB1 in morphine tolerance, and that

inhibition of MCU, pCREB, or CPEB1 may be useful in preventing the development of opioid tolerance.
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Editor’s key points

� The molecular mechanisms of morphine tolerance are

unclear.

� The role of the mitochondrial calcium uniporter (MCU)

in morphine tolerance was characterised in a rat model

of morphine tolerance induced by intrathecal

morphine injection for 1 week.

� Morphine tolerance was associated with increased

expression of neuronal MCU, phospho-CREB, and

CPEB1 in the spinal cord dorsal horn.

� Inhibition of the MCU and CREB or CPEB1 knockdown

increased mechanical threshold and thermal latency,

indicating that the spinal MCU is regulated by pCREB

and CPEB1 in morphine tolerance.

� Inhibition of theMCU, pCREB, or CPEB1 provide potential

novel targets for preventing development of opioid

tolerance.
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Consumption of prescription opioids has been growing.1,2

However, long-term opioid use is limited by the development

of unwanted side-effects, such as tolerance, hyperalgesia, and

dependence/addiction, which contribute to the current

epidemic of opioid abuse and overdose-related deaths in the

USA.2e4 Tolerance to opioid analgesia is described as reduced

responsiveness to the analgesia produced by opioids. Previous

evidence showed that morphine tolerance induces neurotox-

icity in spinal neurones5; however, the molecular mechanism

of morphine tolerance is not clear.

The mitochondrial calcium uniporter (MCU) is a critical

protein of the inner mitochondrial membrane mediating Ca2þ

uptake into the matrix.6 MCU is involved in the induction of

painful hyperalgesia and spinal long-term potentiation (LTP).7

Chronicmorphine induces a facilitated LTP.8 However, the role

of MCU in morphine tolerance is not clear. The transcription

factor, cyclic adenosine monophosphate response element

(CRE)-binding protein (CREB), has been shown to regulate

neural plasticity.9 Short- and long-term morphine exposure

alter phosphorylated CREB (pCREB) expression in different

brain regions.10 Chronic morphine raises pCREB levels in the

lumbar dorsal root ganglion and the dorsomedial nucleus of

the hypothalamus.10,11 Repeated morphine exposure causes

neuroadaptations in neurones through the activation of

CREB.12 Cytoplasmic polyadenylation element-binding pro-

teins (CPEB) are mRNA-binding proteins associated with pro-

tein translation that play an important role in development,

health, and disease.13 Recent evidence shows that CPEB is

involved in hyperalgesia priming and pain chronification.14e16

Of the four CPEB protein subtypes (CPEB1e4),17 CPEB1 is

involved in anxiety and chronic pain.18 Similar cellular and

intracellular changes occur in the spinal cord after peripheral

nerve injury and morphine tolerance19; however, the role of

MCU or CPEB1 in morphine tolerance remains unclear.

pCREB binds at the promoter of the ccdc109a gene (encoding

MCU expression) and stimulates its expression.20 However,

the relationship of MCU and pCREB or CPEB1 in morphine

tolerance is not clear. Here, we report that pCREBmediates the

expression of MCU transcription in an epigenetic manner, and

that CPEB1 mediates the expression of spinal MCU protein.
Methods

Animals

Before the beginning of the study, male 7e8-week-old Sprague

Dawley rats (weight: 210e230 g) obtained from Charles River

Laboratories, Wilmington MA USA were housed (one to three

per cage) for ~1 week. The rats freely received access to food

andwater, andweremaintained on a 12:12 light:dark schedule

at 21�C and 60% humidity. The University of Miami Institu-

tional Animal Care and Use Committee approved the housing

conditions and experimental procedures. All procedures were

in accordance with relevant aspects of the Animal Research:

Reporting of In Vivo Experiments and National Institutes of

Health guidelines. An intrathecal catheter was implanted

through an incision in the atlanto-occipital membrane, and

advanced 8.5 cm caudally to position its tip at the level of the

lumbar enlargement, as described21 (see Supplementary

Methods and Results for details).

Anti-nociception testing

We used calibrated von Frey filaments (Stoelting, Wood Dale,

IL, USA) to determine the mechanical withdrawal threshold
serially to the hind paw in ascending order of strength, as

described.21 Experimenters were blinded to the groups during

behavioural tests. Hotplate thermal latency was measured

with a hotplate apparatus (IITC Life Science Inc., Woodland

Hills, CA, USA). The anti-nociceptive effects of morphine were

represented as a percentage of the maximum possible effect

(%MPE) using the formula %MPE¼([testebaseline]/[cut-off-

ebaseline])�100% (see Supplementary Methods and Results

for details).
Quantitative real time polymerase chain reaction

Rat lumbar L4/5 spinal cord dorsal horn (SCDH) tissue was

collected and RNeasyMini Kit (Qiagen, Germantown,MD, USA)

was used for total RNA isolation. One microgram of RNA was

converted into cDNA, and then real-time polymerase chain

reaction (PCR) was performed (see Supplementary Methods

and Results for details).
Western immunoblots

Rat SCDH tissue or B35 cells (American Type Culture Collection

(ATCC), Manassas, VA) were lysed, homogenised, and soni-

cated with 1� RIPA protein lysis buffer containing protease

and phosphatase inhibitor cocktail (Sigma-Aldrich, St Louis,

MO, USA). Proteins were denatured and transferred onto a

polyvinylidene difluoride (PVDF) membrane, and the mem-

branewas incubatedwith primary antibodies overnight at 4�C,
including rabbit polyclonal anti-MCU, mouse monoclonal

anti-pCREB, goat anti-CPEB1, mouse anti-VDAC1, and mouse

monoclonal anti-b-actin. The PVDF membrane was incubated

with secondary antibodies, and then developed in chem-

iluminescence solution (see Supplementary Methods and

Results for details).
Chromatin immunoprecipitation with quantitative
PCR

For chromatin immunoprecipitation with quantitative PCR

(ChIP-qPCR), SCDH tissue was homogenised and fixed with

formaldehyde 1% for 10 min, and 2.5 M glycine was used to

stop the reaction. Fixed tissue was washed and resuspended

with sodium dodecyl sulphate (SDS) lysis buffer 250 ml (50 mM

Tris-HCl [pH 8.0], 10 mM ethylenediamine tetra-acetic acid,

and SDS 1%), as described22 (see Supplementary Methods and

Results for details).
RNA immunoprecipitation with quantitative PCR

B35 cells were treated with recombinant tumour necrosis

factor alpha (rTNFa) (10 ngml�1) or vehicle,22 cross linked with

formaldehyde 1%, lysed in lysis buffer, and immunoprecipi-

tated with anti-CPEB1 antibody (see Supplementary Methods

and Results for details). RNA was extracted and converted

into cDNA, and then real-time PCR was performed with Fast

SYBR Green Master Mix (Applied Biosystems, Grand Island,

NY, USA).
Immunohistochemistry

Immunostaining was carried out, as described.23 On Day 7 of

chronic morphine, 1.5 h after the last morphine dose, the rats

were perfused with paraformaldehyde (PFA) 4% in 0.1 M

phosphate-buffered saline. The spinal cord was postfixed and

cryoprotected. Immunostaining of glial fibrillary acidic protein



Fig. 1. Effect of mitochondrial calcium uniporter (MCU) inhibition on morphine tolerance. (a) We harvested spinal cord dorsal horn (SCDH)

1 h after the last morphine dose on Day 7 in morphine-tolerant rats. Western blots demonstrated that morphine tolerance increased the

expression of MCU in the SCDH compared with sham (P<0.05; t-test; n¼5e6). (b) Scheme for intrathecal administration. Morphine toler-

ance was induced by intrathecal injection of morphine (arrow; twice a day); sham group was saline. Ruthenium 360 (Ru360) or vehicle

(arrowhead) was administered every morning 30 min before morphine or saline (sham). (c) Intrathecal MCU inhibitor, Ru360, significantly

up-regulated the mechanical withdrawal threshold compared with vehicle (F(4,40)interaction¼6.62, P<0.001; F(4,40)main effect time¼23.51,

P<0.0001; F(1,10)main effect treatment¼12.53, P<0.01; two-way ANOVA repeated measures; n¼6). The mechanical withdrawal threshold in the

Ru360 group was higher than that in the vehicle group on Days 5 and 7 (***P<0.001 vs vehicle; two-way ANOVA Bonferroni tests). (d) In the

hotplate test, there was a significant difference in maximum possible effect (MPE) (%) of thermal latency between Ru360 and saline (F(3,30)

interaction¼9.47; P<0.001; F(3,30)main effect time¼29.45; P<0.0001; F(1,10)main effect treatment¼25.47; P<0.001; two-way ANOVA repeated measures; n¼6).

MPE (%) in the Ru360 group was higher than that for vehicle on Day 5 or 7 (**P<0.01; ***P<0.001 vs vehicle; two-way ANOVA Bonferroni tests).

(eeh) Lowmagnification of MCU immunoreactivity (IR) (MCU-IR) images. (iek) High-magnification images display that MCU-IR co-localised

with NeuN, but not with (len) glial fibrillary acidic protein (GFAP) or (oeq) OX42; scale bar: 50 mm. MT, morphine anti-nociceptive tolerance.
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Fig. 2. Effect of mitochondrial calcium uniporter inhibition on mitochondrial calcium in spinal cord dorsal horn (SCDH) neurones.

Ruthenium 360 (Ru360) (50 mM) was injected intrathecally every morning 30 min before morphine injection once a day for 7 days. At 30 min

after the last morphine, Rhod-2/AM was intrathecally injected for Rhod-2 imaging. (aed) Representative image of Rhod-2 in the SCDH in (a)

salineþsham, (b) Ru360þsham, (c) salineþmorphine anti-nociceptive tolerance (MT), and (d) Ru360þMT groups. (e) There was a significant

increase in Rhod-2-positive cells at SCDH Laminae I and II in the vehicleþMT group compared with the vehicleþsham or Ru360þsham

groups (**P<0.01; one-way ANOVA; n¼6); Rhod-2-positive cells in the Ru360þMT group was lower than that in the vehicleþMT group in SCDH

Laminae I and II (P<0.05; one-way ANOVA; n¼6). Similarly, there was a significant increase in Rhod-2-positive cells in the vehicleþMT group

compared with the vehicleþsham or Ru360þsham group in (f) Laminae IIIeV or (g) Laminae IeV (***P<0.001; one-way ANOVA; n¼6). (f) Rhod-

2-positive cells in Ru360þMT group were fewer than in the vehicleþMT group in SCDH Laminae IIIeV (**P<0.01; one-way ANOVA; n¼6). (g)

Total Rhod-2-positive cells in Laminae IeV in the Ru360þMT group was lower than in the vehicleþMT group (**P<0.01; one-way ANOVA; n¼6).
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Fig. 3. Effect of knockdown of transcriptional factor, cyclic adenosine monophosphate response element (CRE)-binding protein (CREB), on

spinal morphine tolerance. (aec) Immunostaining showed that phosphorylated cyclic adenosine monophosphate response element-

binding protein (pCREB) co-localised with NeuN, but not with (def) glial fibrillary acidic protein (GFAP) or (gei) OX42 in spinal cord dor-

sal horn (SCDH) in morphine-tolerant rats, suggesting neuronal pCREB activity in morphine tolerance. (j) Western immunoblots showed

that morphine tolerance up-regulated the expression of pCREB in the SCDH compared with the sham group (**P<0.01; t-test; n¼6). (k)

Expression of spinal pCREB in the mismatch ODN (mmODN)/morphine anti-nociceptive tolerance (MT) group was higher than in the sham

group (***P<0.001; one-way analysis of variance [ANOVA] with post hoc Fisher’s protected least significant difference [PLSD]; n¼4e5); pCREB in

the AS-CREBþMT group was significantly lower than that in the mmODNþMT group (**P<0.01; one-way ANOVA with post hoc Fisher’s PLSD;

n¼4e5). (l) Intrathecal AS-CREB caused an elevation of mechanical withdrawal threshold compared with mmODN (F(4,40)main interaction¼6.70,

P<0.001; F(4,40)main effect time¼15.08, P<0.0001; F(1, 10)¼22.93, P<0.001; two-way ANOVA repeated measures; n¼6). The mechanical withdrawal

threshold in the AS-CREB group was higher than in the mmODN group on Days 5 and 7 (***P<0.001 vs mmODN; two-way ANOVA Bonferroni

tests; n¼6). (m) Intrathecal AS-CREB increased %MPE in thermal latency compared with mmODN (F(3,40)main effect interaction¼9.08, P<0.001;
F(3,30)main effect time¼26.41, P<0.0001; F(1, 10) main effect treatment¼ 55.29, P<0.0001; two-way ANOVA repeated measures; n¼6). Thermal latency in

the AS-CREB group was higher than that in the mmODN group on Day 5 or 7 after ODN (**P<0.01 vs mmODN; two-way ANOVA Bonferroni

tests; n¼6).
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(GFAP), OX42, NeuN, pCREB, MCU, or CPEB1 in the SCDH was

performed (see Supplementary Methods and Results for

details).
Mitochondrial Ca2þ imaging in the spinal dorsal horn

Rhod-2/AM (a mitochondrial Ca2þ indicator; Thermo Fisher

Scientific,Waltham,MA) was dissolved in dimethylsulphoxide

2% in saline to a final concentration of 33 mM. Rhod-2 (30 ml)
was injected intrathecally, as described previously24 (see

Supplementary Methods and Results for details).
Drugs

Morphine sulphate was purchased from West-Ward Pharma-

ceuticals (Eatontown, NJ, USA). MCU antagonist ruthenium

360 (Ru360) was purchased from VWR (Radnor, PA, USA) and

dissolved in saline. The sequences of rat antisense CREB oli-

godeoxynucleotides (ODNs), 50-TGGTCATCTAGTCACCGGTG-
30, and mismatch ODN (mmODN), 50-GACCTCAGG-
TAGTCGTCGTT-30 (synthesised by Sigma-Aldrich), were

designed, as reported.25,26 The sequences of rat CPEB1 anti-

sense ODN, 50-CATACACCACTCCACCAAATAG-30, and

mmODN, 50-AATAGAACACACCACCTGATAC-30, were pur-

chased from Sigma-Aldrich.
Data analysis

Behavioural data were analysed by two-way analysis of vari-

ance (ANOVA) with repeated measures subjected to Bonferroni

testing. Statistical significance was determined by t-test or

one-way ANOVA with post hoc test after Fisher’s protected least

significant difference (PLSD) (StatView 5, SAS Institute Inc.,

Cary, NC). Data are presented as mean (standard error of the

mean), with P-values of <0.05 considered statistically

significant.
Results

Role of spinal MCU in morphine tolerance

To examine the role of the MCU in morphine tolerance, we

harvested SCDH after the last morphine on Day 7 for

immunoblotting. Morphine tolerance increased the expres-

sion of MCU in the SCDH compared with sham; P<0.05; t-test;
n¼5e6 (Fig. 1a). We then examined whether MCU inhibition

reduced the spinal morphine tolerance. Ru360, an MCU in-

hibitor, specifically blocks Ca2þ uptake by MCU.27 We injected

Ru360 (50 mM) intrathecally 30 min before the morning

morphine injection for 7 days (Fig. 1b), and tested the me-

chanical threshold and thermal latency before and 60 min

after the morning morphine injection on Days 1, 3, 5, and 7.

Ru360 up-regulated the mechanical withdrawal threshold

compared with vehicle (saline) (Fig. 1c). The mechanical

withdrawal threshold in the Ru360 group was higher than in

the control on Days 5 and 7 (P<0.001 vs vehicle; two-way

ANOVA Bonferroni tests; n¼6) (Fig. 1c). In the hotplate test,

thermal-latency MPE was higher in the Ru360 group than

that in the saline vehicle group on Day 5 or 7 (P<0.01, or

P<0.001 vs vehicle, respectively; two-way ANOVA Bonferroni

tests; n¼6) (Fig. 1d). Neither Ru360 nor vehicle changed the

basic mechanical threshold and thermal latency in control

rats (Supplementary Fig. S1). The immunoreactivity (IR) of
MCU in SCDH co-localised with NeuN (a neuronal marker;

Fig. 1eek), but not with GFAP (a marker of astrocytes;

Fig. 1len) or OX42 (a marker of microglia; Fig. 1oeq), sug-

gesting that MCU was expressed in SCDH neurones, but not

glia, in morphine-tolerant rats.
MCU inhibition reduced spinal cord dorsal horn
neurone mitochondrial calcium

We examined whether MCU inhibition reduced the spinal

mitochondrial Ca2þ using a Rhod-2 assay.24 Ru360 (50 mM) was

injected intrathecally every morning 30 min before the

morphine injection for 7 days. Half an hour after the last

morphine dose, Rhod-2 was injected intrathecally, the ani-

mals were perfused 70 min after Rhod-2, and the spinal cord

was harvested for imaging. Representative images of Rhod-2-

positive cells in vehicleþsham, Ru360þsham, vehi-

cleþmorphine anti-nociceptive tolerance (MT), or Ru360þMT

are shown in Fig 2. There was a significant increase in Rhod-2-

positive cell number in SCDH Laminae I and II in the

vehicleþMT group compared with that in the vehicleþsham

or Ru360þsham groups (P<0.01; one-way ANOVA; Fig. 2e);

Rhod-2-positive cells in the Ru360þMT group were lower than

in the vehicleþMT SCDH Laminae I and II (P<0.05; one-way

ANOVA; Fig. 2e). Similarly, there was an increase in Rhod-2-

positive cells in SCDH Laminae IIIeV (Fig. 2f) and total

amount of Rhod-2-positive cells in Laminae IeV (Fig. 2g) in the

vehicleþMT group compared with the vehicleþsham or

Ru360þsham group. There were fewer Rhod-2-positive cells in

the Ru360þMT group than in the vehicleþMT group in

Laminae IIIeV (Fig. 2f) or in total Rhod-2-positive cells in

Laminae IeV (Fig. 2g).
Knockdown of spinal CREB reduced morphine
tolerance

Chronic morphine exposure increases pCREB expression in

various brain regions.10 Immunostaining showed that spinal

pCREB co-localised with NeuN (Fig. 3aec), but not with GFAP

(Fig. 3def) or OX42 (Fig. 3gei), in morphine-tolerant rats.

Western immunoblots showed that the expression of pCREB

was up-regulated in the SCDH in the morphine tolerant

compared with the sham group; P<0.01; t-test; n¼6 (Fig. 3j). To

determine if knockdown of CREB using antisense ODN

against CREB (AS-CREB; 50 mg) reduced the spinal morphine

tolerance, we intrathecally administered AS-CREB or mmODN

30 min before each morning morphine injection for 7 days.

Using western immunoblots, we found that spinal pCREB in

the mmODNþMT group was higher than in the sham group;

P<0.001; one-way ANOVA with post hoc Fisher’s PLSD; n¼4e5

(Fig. 3k); in the AS-CREBþMT group, pCREB was lower than in

the mmODNþMT group; P<0.01; one-way ANOVA with post hoc

Fisher’s PLSD; n¼4e5 (Fig. 3k). We tested the mechanical

threshold and thermal latency 60 min after morphine injec-

tion on Days 1, 3, 5, and 7. Intrathecal AS-CREB caused an

elevation of mechanical threshold compared with mmODN

(Fig. 3l). The mechanical threshold in the AS-CREB group was

higher than that in the mmODN group on Days 5 and 7;

P<0.001 vs mmODN; two-way ANOVA Bonferroni tests; n¼6

(Fig. 3l). Intrathecal AS-CREB increased MPE in thermal la-

tency compared with mmODN (Fig. 3m). Thermal latency in

the AS-CREB group was higher than in the mmODN group on



Fig. 4. Effect of spinal cytoplasmic polyadenylation element-binding protein 1 (CPEB1) on morphine tolerance. Double immunostaining

showed that the immunoreactivity (IR) of CPEB1-IR co-localised with (aec) NeuN, but not with (d) glial fibrillary acidic protein (GFAP) or (e)

OX42. (f) Western immunoblots showed that morphine tolerance increased the expression of CPEB1 in the spinal cord dorsal horn

compared with sham (**P<0.01; t-test; n¼4). (g) Intrathecal AS-CPEB1 caused an elevation of mechanical withdrawal threshold compared

with mismatch oligodeoxynucleotide (mmODN) (F(4,40)interaction¼4.30, P<0.01; F(4,40) main effect time¼22.13, P<0.0001; F(1,10) main effect

treatment¼5.27, P<0.05; two-way analysis of variance [ANOVA] repeated measures). The mechanical withdrawal threshold in the AS-

CPEB1þmorphine anti-nociceptive tolerance (MT) group was higher than in the mmODNþMT group 5 and 7 days after ODN (*P<0.05,
** P<0.01 vs mmODNþMT; two-way ANOVA Bonferroni tests). (h) Intrathecal AS-CPEB1 increased thermal latency using hotplate test

compared with mmODN F(3,30)interaction¼5.90, P<0.01; F(3,30) main effect time¼43.68, P<0.0001; F(1,10)main effect treatment¼6.78, P<0.05; two-way

ANOVA repeated measures). The mechanical withdrawal threshold in the AS-CPEB1þMT group was higher than in the mmODNþMT

group on Day 7 (***P<0.001 vs mmODNþMT; two-way ANOVA Bonferroni tests).
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Day 5 or 7; P<0.01 vs mmODN; two-way ANOVA Bonferroni

tests; n¼6 (Fig. 3m). In sham rats receiving repeatedly intra-

thecal saline for 7 days, there was no significant difference

between intrathecal mmODN and AS-CREB injections on

basic mechanical threshold and thermal latency

(Supplementary Fig. S2).
Role of spinal CPEB in morphine tolerance

CPEB is a sequence-specific RNA-binding protein at the mRNA

30 untranslated region (UTR) regulating mRNA translation that

modulates neuronal synaptic plasticity.28 CPEB is responsible

for induction of hyperalgesia priming in the chronification of



Fig. 5. Phosphorylated cyclic adenosine monophosphate response element-binding protein (pCREB) bound mcu gene promoter regions in

the spinal cord dorsal horn (SCDH) and mediated mitochondrial calcium uniporter (MCU) transcription. (a) We analysed the alignment of

rat MCU gene promoter regions, and found two putative CRE-binding areas, Site 1 (TGACGTAA)29 and Site 2 (TGAGGTCA),30,31 and chro-

matin immunoprecipitation with quantitative PCR (ChIP-qPCR) primer areas of the MCU gene at rat chromosome 20 (accession number:

NC_005119; NCBI Reference Sequence: NC_005119.4). The TATA box of mcu gene was shown. The first base C (chr 20: 29199224) of the first

intron of the mcu gene was referred to as number þ1. (b) Motif of the CREB-binding sites based on the JASPAR data sets (http://jaspar.

genereg.net/matrix/MA0018.2). (c and d) ChIP-qPCR assay showed that enrichment of pCREB at CRE Site 1 or 2 of the mcu gene pro-

moter region in the mismatch oligodeoxynucleotide (mmODN)þmorphine anti-nociceptive tolerance (MT) group was increased compared

with the mmODNþsham group (*P<0.05; one-way analysis of variance [ANOVA]; n¼5). Enrichment of pCREB at Site 1 or 2 on mcu gene

promoter in the AS-CREBþMT group was lower than that in the mmODNþMT group (**P<0.01; one-way ANOVA; post hoc Fisher’s protected

least significant difference [PLSD]; n¼5). (e) RTePCR showed increased MCU mRNA expression (***P<0.001; one-way ANOVA; post hoc Fisher’s

PLSD test; n¼5). (f and g) Western immunoblots showed no differences in expression of MCU protein between mmODNþsham and AS-

CREBþsham groups (f). (g) MCU protein expression increased (**P<0.01; one-way ANOVA). (hej) Double immunostaining showed that

pCREB was co-localised with MCU in the SCDH in morphine-tolerant rats; scale bar: 50 mm.
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pain,14 and CPEB1 is involved in anxiety and chronic pain.18 To

examine the role of CPEB in morphine tolerance, double im-

munostaining showed that CPEB1 IR co-localised with NeuN

(Fig. 4aec), but not with GFAP (Fig. 4d) or OX42 (Fig. 4e).

Western blots showed that morphine tolerance increased the

expression of CPEB1 in SCDH compared with sham treatment

(P<0.01; t-test; n¼4; Fig. 4f). To further verify the role of CPEB1

in morphine tolerance, we examined the effect of CPEB1

knockdown using CPEB1 antisense ODN (AS-CPEB). AS-CPEB1

or mmODN (40 mg) was injected intrathecally 30 min before

each morning morphine injection for 7 days followed by

testing of mechanical threshold and thermal latency 60 min

after the injection on Days 1, 3, 5, and 7. Intrathecal AS-CPEB1

caused an elevation of mechanical withdrawal threshold

compared with mmODN (Fig. 4g). The mechanical withdrawal

threshold in the AS-CPEB1þMT group was higher than in the

mmODNþMT group on Days 5 and 7 (P<0.05; two-way ANOVA

Bonferroni tests; Fig. 4g). Intrathecal AS-CPEB increasedMPE in

the hotplate test compared with mmODN (Fig. 4h). Thermal

MPE in the AS-CPEB1þMT group was higher than in the

mmODNþMT group on Day 7 (P<0.001 vs mmODNþMT; two-

way ANOVA Bonferroni tests; Fig. 4h). Neither AS-CPEB1 nor

mmODN changed the basic mechanical threshold or thermal

latency in sham rats (Supplementary Fig. S3).
pCREB binding mediated MCU transcription

The activation of pCREB induces MCU expression through

binding to the mcu gene promoter to drive mRNA transcrip-

tion in human cultured HeLa cells.20 To further clarify the

role of pCREB in mediating MCU expression in rats in vivo, we

analysed the alignment of rat mcu gene promoter regions.

The two putative CRE-binding areas, Site 1 (TGACGTAA)29

and Site 2 (TGAGGTCA)30,31; the ChIP-qPCR primer areas of

the gene at rat chromosome 20 (accession number: Genbank

Location, Chromosome 20, NC_005119.4 (29037452..29199224);

NCBI Reference Sequence: NC_005119.4); and the TATA box (a

DNA sequence in the promoter region of genes) of the gene

are shown in Fig 5a, and the motif of sequence logo for CREB-

binding sites based on the JASPAR data sets (http://jaspar.

genereg.net/matrix/MA0018.2) is shown in Fig 5b. We used

the ChIP-qPCR assay to determine if pCREB mediated gene

expression in the SCDH in an epigenetic manner. One hour

after the last injection of morphine, lumbar SCDH was har-

vested for ChIP-qPCR, which showed that enrichment of

pCREB at Site 1 or 2 on the mcu promoter in the mmODNþMT

group was increased compared with the mmODNþsham

group (P<0.05; one-way ANOVA; Fig. 5c and d), and that

enrichment of pCREB at Site 1 or 2 in the AS-CREBþMT group

was lower than in the mmODNþMT group (P<0.01; one-way

ANOVA; Fig. 5c and d). RTePCR revealed that MCU mRNA in

the mmODNþMT group was higher than in the mmODNþ-

sham group, and that MCU mRNA in the AS-CREBþMT group

was lower than in the mmODNþMT group (Fig. 5e). Western

immunoblots showed that there was no difference in the

expression of MCU protein between mmODNþsham and AS-

CREBþsham groups (Fig. 5f). However, MCU protein expres-

sion in the mmODNþMT group was higher than in the

mmODNþsham group; MCU in the AS-CREBþMT group was

lower than in the mmODNþMT group (P<0.01; one-way

ANOVA; Fig. 5g). These results suggest that pCREB modulates

mcu gene expression in an epigenetic manner in morphine

tolerance. Double immunostaining showed that pCREB was
co-localised with MCU in the SCDH of morphine-tolerant rats

(Fig. 5hej).
CPEB1 binding to MCU mRNA 3′ UTR in vitro

Transcription of themcu gene is mediated by pCREB binding to

the mcu promoter in HeLa cells.20 To verify whether CPEB1

regulates MCU mRNA translation to protein, we analysed the

alignment of rat MCU mRNA 30 UTR (immediately following

the translation stop codon), and observed that there were two

CPE motifs, UUUUUAAU32 (M1) and CPE consensus sequence

UUUUUAU13,33 (M2) (Fig. 6a; Supplementary Fig. S4). Expres-

sion of MCU and CPEB1 was induced in rat neuronal B35 cells

treated with recombinant TNFa for 3 h, as described.22 Using

an RNA immunoprecipitation (RNA-IP) assay, we observed

thatMCUmRNA expression in CPEB1 immunoprecipitates was

not increased at the M1 CPE sequence (Fig. 6b); however, MCU

mRNA in CPEB1 immunoprecipitates was increased at the M2

CPE consensus sequence (Fig. 6c). We verified that expression

of MCU and CPEB1 proteins was up-regulated by rTNFa treat-

ment (Supplementary Fig. S5).
Knockdown of spinal CPEB1 reduced the expression of
spinal MCU protein in morphine tolerance

We determined the effect of spinal CPEB1 knockdown by

CPEB1 antisense ODN on protein expression of CPEB1 andMCU

in spinal morphine tolerance. SCDH was collected on Day 7 at

1 h after the last morphine injection for western immunoblot

analysis. CPEB1 expression in the mmODNþMT group

increased compared with the sham group (P<0.01; one-way

ANOVA with post hoc Fisher’s PLSD test; n¼4e5). Spinal CPEB1

in the AS-CPEB1þMT group was lower than in the

mmODNþMT group (P<0.05; one-way ANOVA with post hoc

Fisher’s PLSD test; n¼4e5; Fig. 6d). MCU protein expression

was increased in the mmODNþMT group compared with the

sham group treated withmmODN (P<0.01; one-way ANOVA with

post hoc Fisher’s PLSD; n¼4e5; Fig. 6e). MCU in the AS-

CPEB1þMT group was lower than in the mmODNþMT group

(P<0.01; one-way ANOVA with post hoc Fisher’s PLSD; n¼4e5;

Fig. 6e). Double immunostaining showed that CPEB1 IR co-

localised with MCU (Fig. 6f).
Discussion

We found that: (i) spinal morphine tolerance increased the

expression of MCU, pCREB, and CPEB1 in the SCDH; (ii) MCU

inhibition decreased the behavioural response to morphine

tolerance and mitochondrial Ca2þ accumulation; (iii) CREB or

CPEB1 knockdown reduced the morphine-tolerance behav-

ioural response; (iv) pCREB regulated the mcu gene transcrip-

tion in an epigenetic manner; (v) CPEB1 binds MCU mRNA 30

UTR; and (vi) knockdown of CPEB1 down-regulated the MCU

protein expression. The present findings suggest that spinal

MCU was regulated by pCREB and CPEB1 in spinal morphine

tolerance.

Chronic use of opioid analgesics is often hampered by the

development of unwanted side-effects, such as tolerance and

dependence, contributing to the current epidemic of opioid

abuse and overdose-related deaths.34 The molecular mecha-

nisms of morphine are still unclear. Chronic morphine

treatment induces neuro-inflammation in a manner analo-

gous to endotoxin.35 Opioid-induced neurotoxic conse-

quences involve neuronal apoptosis.5 Chronic opioid use

http://jaspar.genereg.net/matrix/MA0018.2
http://jaspar.genereg.net/matrix/MA0018.2


Fig. 6. Cytoplasmic polyadenylation element-binding protein 1 (CPEB1) on the mitochondrial calcium uniporter (MCU) mRNA. (a) We

analysed the alignment of rat CPEB1 motifs at the MCU mRNA 30 untranslated region (UTR) and found two putative CPE-binding areas,

motif 1, UUUUUAAU32 (M1), and motif 2, CPE consensus sequence, UUUUUAU13,33 (M2). AUG, translation start codon, and UGA,

translation stop codon, are shown. The first base U (chr20# 29039206) following UGA was referred to as number þ1. (b) To induce the

expression of MCU and CPEB1, we used rat neuronal B35 cells treated with recombinant tumour necrosis factor alpha (rTNFa) for 3 h.

Using an RNA immunoprecipitation assay, we observed that MCU mRNA in CPEB1 immunoprecipitation was not increased at the M1

CPE sequence, and that (c) MCU mRNA in CPEB1 immunoprecipitation was increased at the M2 CPE consensus sequence. (d)

Morphine-tolerant rats were treated with antisense oligodeoxynucleotide against CPEB1. Western immunoblots showed a significant

increase in CPEB1 in the mismatch oligodeoxynucleotide (mmODN)þmorphine anti-nociceptive tolerance (MT) group compared with

the sham group (**P<0.01; one-way analysis of variance [ANOVA] with post hoc Fisher’s protected least significant difference [PLSD] test;

n¼4e5). Spinal CPEB1 in the AS-CPEB1þMT group was lower than in the mmODNþMT group (*P<0.05; one-way ANOVA with post hoc

Fisher’s PLSD test; n¼4e5). (e) Western immunoblots showed that MCU in the spinal cord dorsal horn (SCDH) was increased in the

mmODNþMT group compared with sham rats treated with mmODN; MCU in the SCDH of the AS-CPEBþMT group was lower than in

the mmODNþMT group (**P<0.01; one-way ANOVA with post hoc Fisher’s PLSD; n¼4e5). (f) Double immunostaining showed that CPEB1

immunoreactivity was co-localised with MCU; scale bar: 50 mm. (g) The proposed signalling pathways mediated by phosphorylated

cyclic adenosine monophosphate response element-binding protein (pCREB) and CPEB1. Morphine tolerance evoked neuronal activity

to induce phosphorylation of CREB. pCREB binds to CRE sites of the mcu gene promoter to induce MCU transcriptional expression. Up-

regulated CPEB1 may regulate MCU translation. CPE motifs in MCU mRNA 30 UTRs reside in a complex containing CPEB1.13 CPEB1

binds to the MCU mRNA 30 UTR to regulate MCU mRNA translation. AUG, mRNA translation start codon; ORF, open reading frame of

the stretch of codons between AUG and a stop codon.
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often leads to altered gene activation and increased oxidative

stress affecting protein expression and ion channel function.

N-methyl-D-aspartate receptor-mediated activation of intra-

cellular signalling may also be involved in the development of

opioid tolerance.36 Spinal reactive oxygen species contribute

to chronic morphine effects.37,38 Emerging evidence suggests

a critical role for epigenetic mechanisms in opioid abuse.12

Gene transcriptional factors play a pivotal role in learning,

memory, and drug abuse.12,39 Chronic morphine induced the

upregulation of spinal pCREB.36 However, the molecular

modulation at specific genes in spinal morphine tolerance is

still not clear.

Mitochondrial Ca2þ is involved in many functions from

control of metabolism and ATP production to regulation of cell

death. The activity of the MCU as a highly selective ion

channel controls the mitochondrial Ca2þ influx.40 MCU, which

was identified genetically in 2011,41,42 enhancesmitochondrial

Ca2þ uptake upon overexpression.42 We observed that the

MCU inhibitor, Ru360, reduced the behavioural response to

morphine tolerance. Consistent with MCU expression con-

trolling mitochondrial Ca2þ uptake in cultured cells20 and in

mouse SCDH,24 we used Rhod-2/AM (a mitochondrial Ca2þ

indicator) fluorescence assay to show that morphine tolerance

increased the Ca2þ accumulation in mitochondria, and that

intrathecal Ru360 decreased the mitochondrial Ca2þ in

morphine-tolerant rats, the first demonstration of a role of

MCU in morphine tolerance.

CREB is involved in learning, memory, and drug addic-

tion,43 and is thought to be an important mediator in chronic

morphine treatment.44,45 The number of neurones expressing

pCREB is increased in morphine-exposed cultured neurones,

and in morphine-tolerant rats the number of pCREB-

expressing neurones in the lumbar dorsal horn ganglion is

also increased.11 Previous studies showed that morphine

tolerance increased pCREB in the spinal cord.46,47 We found

that chronic morphine treatment increased pCREB in the

SCDH in line with these findings.46,47

CPEB plays an important role in modulating synaptic

plasticity, learning, and memory.28 Polyadenylation of mRNA

initiates translation, which is regulated by CPEB.28,48 CPEB

plays an important role in the induction of hyperalgesic

priming, raising the possibility of a role in the chronification of

pain.14 The CPEB family of RNA-binding proteins is composed

of four members in vertebrates (CPEB1e4). CPEB1 is essential

to the regulation of mitochondrial energy production in neu-

rones,13 and stabilises the binding of activated cytoplasmic

polyadenylation specific factor that attracts poly(A) polymer-

ase to catalyse poly(A) elongation. The polyadenylated poly(A)

tail is involved in the activation of protein translation.

Knockdown of CPEB expression by intrathecal antisense ODN

can prevent the induction of hyperalgesic priming,49 and a

similar mechanism is shared in chronic opioid treatment.50

We found that chronic morphine tolerance increased the

expression of CPEB1 in SCDH neurones, and that knockdown

of CPEB1 reduced morphine tolerance, which is consistent

with previous studies showing that CPEB1 is involved in

hypernociception.14

Protein expression is controlled by extensive transcrip-

tional or translational processing. Recent studies have

implicated epigenetic modulation in brain reward regions

after drug abuse or stress.51 However, little is known about

MCU regulation through gene transcription and translation in

morphine tolerance. CREB phosphorylation modulates gene

transcription that is dependent on the activation of CRE at the
promoters.52 In human HeLa cells, CREB binds the mcu gene

promoter and initiates gene transcription.20 Our bio-

informatic analysis revealed at least two putative CREB-

binding sites in the rat mcu promoter location, and we

found that morphine tolerance increased the enrichment of

pCREB on mcu gene promoter regions, which was reduced by

knockdown of CREB, suggesting that pCREB regulates mcu

gene transcription.

CPEB1 is a sequence-specific mRNA-binding protein that

controls mRNA translation to protein.53 CPEB binds CPE, a

uridine-rich sequence element (consensus UUUUUAU motif)

of the 30 UTR of target mRNAs.33,54 We found that MCU mRNA

contains CPEs in its 30 UTR and that CPEB1was enriched on the

MCU mRNA 30 UTR in the cultured neurones, suggesting that

CPEB1 mediates MCU mRNA translation and increases MCU

protein expression. Knockdown of CPEB1 expression pre-

vented the up-regulation of MCU protein, suggesting that

CPEB1 plays an important role of MCU translation. However,

the detailed mechanism of CPEB1 regulation of MCU trans-

lation is still unclear.

In conclusion, we provide evidence that spinal morphine

tolerance increased MCU, pCREB, and CPEB1; that pCREB

mediated MCU expression in an epigenetic manner; and that

CPEB1 likely contributed to MCU protein regulation in

morphine tolerance. The results also suggest that an MCU

inhibitor, or agents blocking pCREB or CPEB1 upregulationmay

be useful in preventing the development of opioid tolerance,

an issue of significant clinical relevance.
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