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A B S T R A C T

In recent decades, drought has been identified as part of the several regular climate-related hazards happening in
many African countries including South Africa, often with devastating implications on food security. Studies have
shown that the earth temperature has increased over the recent years which can trigger drought occurrences and
other climate-related hazards. Drought occurrence is principally a climate-related event that cannot be totally
effaced though it can be managed. This study is aimed at appraising drought severity in Cape Town area, South
Africa using Geographic Information System (GIS) and remotely sensed data obtained from United States
Geological Survey (USGS) database between the years 2014 and 2018. The study revealed that the land use
dynamics witnessed drastic changes where vegetation, water body and bare surface decreased from 2095 to 141
km2, 616 to 167 km2 and 2337 to 1381km2 respectively while built up and sparse vegetation increased from 5301
to 8191 km2 and 7382–7854 km2 during the period. Vegetation health and drought severity of the study area was
assessed using vegetation indices and Normalized Drought Dryness Index (NDDI). The result reveals that
Normalized Difference Water Index (NDWI) and other vegetation indices decreased considerably more in recent
years (2017 and 2018) which might have triggered drought events during the period compared to the other years
(2014–2016). Furthermore, the spatial trend of land surface temperature (LST) and NDDI increased in recent
years with NDDI values ranging between moderate drought and severe drought threshold. Consequently, if the
increment persists, it can lead to adverse impacts such as food insecurity, land degradation and environmental
health deterioration. Evidently, this study reveals the current state of vegetation health regarding drought severity
in the area using remotely sensed data.
1. Introduction

Remote multispectral and hyperspectral measurements have been an
imperative source of data for drought and vegetation dynamics assess-
ment. Several multispectral vegetation indices (VIs) have been employed
to appraise growing vegetation attributes in recent decades (Adam et al.,
2010; Vi~na et al., 2011; Yang et al., 2012). These indices are essential in
terms of analytical orders of reflectance in the blue, green, near-infrared
and red spectral bands which have been recognized to be connected with
green vegetation factors. These factors include water index, leaf area
index and drought index (Rhee et al., 2010; Vi~na et al., 2011), canopy
cover (Garbulsky et al., 2011), the fraction of absorbed and reflected land
surface temperature and surface radiation (Orimoloye et al., 2018b).
Restrictions, however, have existed due to the effect of external factors
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for example, soil and dead material setting, solar and viewing geometry
as well as meteorological event, all of which pose a challenge in carrying
out a proper assessment.

The impacts of drought have been assessed through the estimation of
green vegetation in drought-affected areas either as long or short-term
dryness using vegetation indices such as Normalized Difference Water
Index (NDWI), Soil Adjusted Total Vegetation Index (SATVI), Normalized
Difference Vegetation Index (NDVI), Land Surface Temperature (LST)
and Normalized Drought Dryness Index (NDDI) in the prior research,
particularly in an arid or semi-arid and mild Mediterranean ecosystem
where vegetation is sporadic (Gu et al., 2007; Orimoloye et al., 2018c).
Sparse or scanty vegetation in grasslands alludes to the dead part of the
grasslands such as fallen litter and standing dry grasses aggregated from
previous years either by natural or anthropogenic practices (Leslie and
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Richman, 2018; Otto et al., 2018).
Drought has been identified by several researchers to be the most

difficult yet less likely to be understood of all natural disasters in-term of
mitigation and influencing human activities when compared to some
other climate-related events (Mann and Gleick, 2015; Lemos et al., 2016;
Orimoloye et al., 2018a). Thus, it is a weighty and cumbersome envi-
ronmental factor in the world's climatic zones including South Africa
(Mann and Gleick, 2015; Lemos et al., 2016). It has played an imperative
role in many sectors such as health and agriculture. Drought always starts
with water scarcity for domestic and agricultural use, thus affecting
streams, soil moisture, groundwater, ecosystems, water bodies, wetlands
and human action (Orimoloye et al., 2018c). This may lead to the
recognition of various forms of droughts (agricultural, meteorological,
ecological and socioeconomic), which connotes the perspectives of
various components on water dearth. Moreover, among these compo-
nents, agriculture can be more influenced adversely by the onset of
droughts event as a result of its dependence on soil moisture and water
resources conservation during several stages of crop growth.

The technique of multispectral analysis of vegetation health has been
employed to characterize drought severity (Alshaikh, 2015; Dutta et al.,
2015; Trisasongko et al., 2015; Khosravi et al., 2017; Zhang et al., 2017a,
b) with an adoptable outcome. The advent of RS has imparted immensely
to the use of digital and global data with computers and software ap-
plications such as ArcGIS, ENVI, ILWIS and QGIS for analyzing, pro-
cessing, managing and monitoring this remotely sensed information to
aid drought assessment and other hazards as well as providing solutions
to the challenges facing local and global sustainable advancement (Piao
et al., 2003). RS and GIS are features of earth observation science and
have contributed an advanced system for arranging, analyzing, manip-
ulating and storing the information about the spatial components
including drought and vegetation health. Hence, remotely sensed data
and GIS techniques have been utilized in recent decade to monitor urban
features as well as the environmental changes (Adefisan et al., 2015;
Onamuti et al., 2017; Stephen et al., 2017; Orimoloye et al., 2018b,
2018c).

The dynamics of soil water under drought situations could result to
changes in soil spectral reflectance identified on RS information (Gao
et al., 2011). Studies have suggested that an increase in soil humidity in
open surfaces such as bare or cultivated lands lead to a decrease in soil
reflectivity (Garbulsky et al., 2011; Zargar et al., 2011). Several indices
have been utilized by different studies to monitor, quantify and map
droughts subject to the environmental and climatological factors as well
as the indices extracted from the satellite images. Furthermore, several
indices such as Vegetation Condition Index, VCI (Quiring and Ganesh,
2010), Normalized Difference Vegetation Index, NDVI (Swain et al.,
2011), temperature vegetation dryness index, TVDI (Gao et al., 2011),
and Normalized Difference Water Index, NDWI (El-Hendawy et al., 2017;
Orimoloye et al., 2018c) and Normalized drought Dryness Index, NDDI
(Gu et al., 2007; Rhee et al., 2010) were utilized for drought assessment
based on land surface temperature, LST and vegetation indices as well as
NDDI (Orimoloye et al., 2018b). Hence, scientists have started to
concentrate on the reaction of vegetation canopy to drought stress, and
likewise on the RS of vegetation as an obscure observation of drought
stress.

Cape Town area is witnessing an acute drought as a result of several
factors such as climate change and variability, decrease in rainfall
amount, inadequate monitoring by environmental stakeholders and sig-
nificant irrigation supply factors in the area and these may affect agri-
cultural practices and other water-dependent activities. Therefore, crops
and agricultural practice might have been severely affected in the period
of severe drought. More so, proper monitoring and assessment of drought
require more research-based commitment as this can be devastating to
people, food security and environmental health if not properly and timely
appraised.

However, plants and animals, as well as other features, are influenced
by drought events. Various abiotic and biotic elements regain strength
2

when the drought is over while some can never regain again which can
lead to their extinction. Thus, droughts can reduce soil quality due to less
organic activity, heavy wind erosion and extinction of some soil organ-
isms; drought can also cause water bodies to shrink leading to the death
of water animals (Blauhut et al., 2015; Wilhite et al., 2014; Orimoloye
et al., 2018c). The recent drought occurrence in South African cities
including the study area might increase the devastating state of water
dearth in the area and its possible direct impact on agriculture and do-
mestic water usage (Nobre et al., 2016; Yan et al., 2016; Orimoloye and
Adigun, 2017). More so, the health and condition of freshwater biomes,
for example, ponds, rivers and lakes, wetlands are influenced, with the
living organisms in them becoming risked and vulnerable to this envi-
ronmental risk (Orimoloye et al., 2018c). Animals move long ways of
looking for water. Consequently, they migrate to new environments, in
most times rendering them exposed to the environmental-related risk,
while others experience different hazards and this may lead to biodi-
versity and ecosystem extinction (Orimoloye et al., 2018c).

The social implication of droughts is perhaps the most felt, as it
directly involves individuals and communities. For instance, in many
developed countries, days without adequate water can be a nightmare.
Humanwellbeing has an immediate connection with water availability of
any settlement. Clean water for drinking and local use, and in addition
sanitation, helps individuals to avert and manage infections (Dale et al.,
2001). Studies have suggested that droughts caused low food production
especially in low-income nations where the natural source of water is
life-reliant and people have less to eat whichmight result in ill-health and
possibly demise (Epstein, 2000; Dale et al., 2001). This is peculiar to
remote communities of developing nations, where communication and
accessibility are usually inadequate. Furthermore, people migrate from
where there is a water dearth to other places in search of better living
conditions as a result of drought and this makes the area to be drought
vulnerable, as many of its residents are forced to relocate. Farming and
other agricultural practices suffer more when people migrate. Droughts
have been identified to have more impact on rural areas of the world put
pressure on family lives; people feel insecure and are threatened by forest
extinction and wildfires there could also be a loss of human life due to
drought occurrence in any given area (Leng et al., 2015). This study
focused on the landscape dynamics and drought events in Cape Town
area, South Africa. In doing so, this study aimed at assessing the drought
severity in the study area using Geographic Information System (GIS) and
remotely sensed data with high resolution, to quantify the spatial
configuration of drought indices in the study area and examine its po-
tential impacts between year 2014 and 2018.

2. Materials & methods

The study area encompasses Cape Town in Western Cape, South Af-
rica (Fig. 1). The city is a port city on the country's southwest coast and
has a land cover area of about 400.3 km2. It is located at latitude 33.55� S
and longitude 18.25� E. The area has a warm Mediterranean climate
(Rohli and Vega, 2011) withmoderately wet winters, mild and dry, warm
summers. The summer, which lasts from late November to March, is
warm and dry with an average maximum of 26.0 �C (79 �F) and a min-
imum of 16.0 �C (61 �F). Winter lasts from the beginning of June to
August and may witness large cold fronts entering the inland from the
Atlantic Ocean for limited periods with significant precipitation and
strong north-westerly winds. Winter months in the city average
maximum temperature of 18.0 �C (64 �F) and a minimum temperature of
8.5 �C (47 �F)”. The area experiences a total annual average rainfall of
about 515 mm.

The satellite images for the study area during the years 2014–2018
operational land imager (OLI) and thermal infrared sensor (TIRS)
Landsat 8 imageries were acquired from the USGS archives (Table 1) and
were administered in 1:150.000 shapefile map of Cape Town area. All the
imageries were radiometrically rectified (Chander and Markham, 2003;
Ogunjobi et al., 2018; Orimoloye et al., 2018b). The years that were



Fig. 1. Study area location.

Table 1
Specifications of the satellite images used for the drought assessment.

Data Year Date of
Acquisition

Path/
Row

Thermal
lines

Cloud
cover_land (%)

Landsat 8
OLI_TIRS

2014 2014-12-05 175/
84

7701 6.85

Landsat 8
OLI_TIRS

2015 2015-01-06 175/
84

7701 0.09

Landsat 8
OLI_TIRS

2016 2016-12-26 175/
84

7701 4.47

Landsat 8
OLI_TIRS

2017 2017-11-27 175/
84

7701 0.07

Landsat 8
OLI_TIRS

2018 2018-01-14 175/
84

7701 1.69
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chosen for the study based on the onset of severe drought in the study as
revealed in previous studies (Leslie and Richman, 2018; Otto et al., 2018;
Jordaan et al., 2019).
2.1. Image processing

All raw remotely sensed images of the study area were obtained from
the USGS database. The satellite imageries collected were in five seg-
ments, data in 2014, 2015, 2016, 2017 and 2018. All the data acquired
are good quality images of less than 10% cloud cover as presented in
Table 1. More so, the information in Fig. 2 and Table 1 show the flow
chart and data specifications of the satellite data used for this study, and
they are all named after their features such as path and row, date
3

acquired, thermal lines, months and years of acquisition and they were
all analyzed with ArcGIS 10.3 GIS tool. “The operational land imager
(OLI) image incorporates the shortwave infrared (SWIR) band, thermal
infrared (TIR) band, near-infrared (NIR) band and visible bands. TIRS
bands are thermal infrared bands with a higher resolution compared with
TIR bands (2014–2018 images)”.

Land cover classes are typically mapped from digital remotely sensed
data through the process of supervised digital image classification
(Tewkesbury et al., 2015; Yang et al., 2015; Shalaby and Tateishi, 2007).
The goal of the image classification process is to automatically categorize
all pixels in an image into land cover classes (Shalaby and Tateishi,
2007). The maximum likelihood classifier quantitatively evaluates both
the variance and covariance of the category spectral response patterns
when classifying an unknown pixel so that it is considered to be one of
the most accurate classifiers since it is based on statistical parameters.
This study used supervised classification and using ground checkpoints
with digital topographic maps of the study area. The area was classified
into five main classes: vegetation, water body, built-up, bare surface and
sparse vegetation. Descriptions of these land cover classes are presented
in Fig. 3.

3. Results and discussion

The analysis of supervised classification of the study area between
2014 and 2018 is shown in Fig. 3; and along with the land area coverage
for the various land features retrieved from the imagery and drought
indices used in this study were presented in Tables 2 and 3 respectively,
the area covered with different land features (vegetation, water body,



Fig. 2. Flow chart of the processes used in this study.

Fig. 3. Land use features between 2014 and 2018.
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built-up, bare surface (newly cultivated area, sand fill, open surface and
rock) and sparse vegetation cover. In year 2014 the study area covered by
sparse vegetation was (7382 (42%)) km2 followed by built-up area of
about (5301 (30%)) km2; the area covered by water body was (619 (3%))
km2, while bare surface and vegetation cover (2337 (13%)) and (2095
(12%)) km2, respectively in the same period. More so, the results
revealed that there was a drastic change in vegetation cover between
2014 and 2015; built-up area and vegetation cover area of about (5991
(34%)) and (1438 (8%)) km2, respectively, while water body was (279
4

(1%)) km2 lesser than the previous year with about (340) km2. Sparse
vegetation has the highest area coverage for the year 2015 with about
(7747 (44%)) km2 and bare surface with (2279 (13%)) km2.

Land features characteristics for 2016 as presented in Fig. 3 and
Table 3 with the percentage of the area covered for each feature include
vegetation, water body, built-up, bare surface and sparse vegetation for
the year 2016. Sparse vegetation covers land area of about (7263 (41%))
km2 followed by built-up area with (6486 (37%)) km2 for year 2016.
While water body and bare surface have area coverage of (527 (3%)) and



Table 2
Indices used for drought appraisal in Cape Town area.

SN Indices Equation References

1 LST
LST ¼ Tb

1þ ðλ * Tb ðρÞInε
Williams, 2009,
Orimoloye et al. 2018b

2 SATVI SATVI ¼
ρNir � ρgreen

ρNir þ ρgreenþ L
ð1þ LÞ�

ρB7
2

Qi et al., 1994; Qi et al.,
2002; Noroozi et al., 2011

3 NDWI
NDWI ¼ ρgreen� ρNir

ρgreen þ ρNir
Zhang et al., 2017a,b;
Orimoloye et al., 2018c

3 NDDI NDDI ¼ NDVI � NDWI
NDVI þ NDWI

Domingo et al., 2015

4 WDVI WDVI ¼ ρNir – γρred
Where γ ¼ 1.06

Clevers, 1991

5 L (soil
adjusted
factor)

L ¼ 1 – 2 a * NDVI * WDVI Allbed et al., 2014

6 NDVI ρNir � ρRed
ρNir þ ρRed

Yengoh et al., 2015

Table 3
Land use dynamics and its percentage between 1986 and 2016.

LULC/Year 2014
(km2)

2015
(km2)

2016
(km2)

2017
(km2)

2018
(km2)

vegetation 2095
(12%)

1438
(8%)

736 (4%) 353 (2%) 141 (1%)

Water Body 619 (3%) 279 (1%) 527 (3%) 202 (1%) 167 (1%)
Built-up 5301

(30%)
5991
(34%)

6486
(37%)

7930
(45%)

8191
(46%)

Bare Surface 2337
(13%)

2279
(13%)

2722
(15%)

1328
(7%)

1381
(8%)

Sparse
vegetation

7382
(42%)

7747
(44%)

7263
(41%)

7921
(45%)

7854
(44%)

Fig. 4. Weighted difference vegetation index
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(2722 (15%)) km2 respectively, for the same year, vegetation has area
coverage of about (736 (4%)) km2. In year 2017, vegetation in the study
area decreased drastically compare with the previous years where built-
up and vegetation area coverage of (7930 (45%)) and (353 (2%)) km2

respectively. Water body covers land area of about (202 (1%)) km2 while
bare surface and vegetation have land cover of about (1328 (7%)) and
(353 (2%)) km2 respectively, for the same year. Land features charac-
teristics for 2018 revealed changes in land use dynamics with the per-
centage of the area covered for each feature for the year. There exists a
drastic decreased in vegetation, water body coverage in the study area
where the water body and vegetation have area coverage of (167 (1%))
and (141 (1%)) km2 respectively. While the built up covers land area of
about (8191 (46%)) km2 followed by sparse vegetation area with about
(7854 (44%)) km2 for year 2018.While, for the same year, vegetation has
area coverage of about (141 (1%)) km2.
3.1. Vegetation indices

The summary of the characteristics and crucial observations from the
five years of drought assessments is presented in this study. This study
used LST and five indices (SATVI, NDWI, WDVI, NDDI and NDVI) as
presented in Table 2 to assess the drought occurrence in the study area
between the years 2014 and 2018.

The information shown in Figs. 4, 5, 6, 7, 8, and 9 reveals the current
state of vegetation health in the Cape Town area using satellite images
obtained during summer periods (November to January, subject to the
availability of the good images for the study area). The variation in the
LST and vegetation indices for the summer seasons are evaluated and
presented in Figs. 4, 5, 6, 7, 8, and 9. The results from this study show
that drought occurs predominantly during the assessed periods as
asserted by previous studies that droughts episode in most cases are
witnessed in the summer months which was validated by this study
(Vicente-Serrano et al., 2014; Diffenbaugh et al., 2015; Wolf et al., 2016).
The NDWI and corresponding drought severity designations are
for 2014, 2015, 2016, 2017 and 2018.



Fig. 5. Spatial variation of NDWI of Cape Town area between 2014 and 2018.

Fig. 6. Spatial variation of SATVI of Cape Town area between 2014 and 2018.
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presented in Figs. 5 and 8. The results reveal that the areas with low
NDWI values are susceptible to drought severity while the areas with
high NDWI connotes little or no drought occurrence as asserted by
6

previous investigations (Hanson and Weltzin, 2000; Gu et al., 2007, Park
et al., 2016). The NDWI and other indices values decreased considerably
more in recent years 2017 and 2018 as revealed in Figs. 4, 5, and 6 which



Fig. 7. Land surface temperature for 2014, 2015, 2016, 2017 and 2018.

Fig. 8. Spatial variation of NDDI in the study area for 2014, 2015, 2016, 2017 and 2018.
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connotes that this development could be a sign of drought occurrences
during the period compared to the years 2014–2016. The WDVI-NDWI
variation was also moderately intense during the drought situations
(December 2016 to January 2018). This increment was more evident in
years 2017 and 2018, which corroborates the alarmingly high water
dearth and drought occurrence in the area (Berger, 2017; Botai et al.,
2017). Evidently, this study has revealed the current state of vegetation
health and its implication on drought severity episodes in the study area.
7

3.2. Spatial variation of LST and NDDI

In recent decades, drought has been identified as part of the chronic
climate-related hazards happening in many nations in the African
continent including South Africa, often with devastating implications on
food security (Qi et al., 1994; Sheffield et al., 2014; Klisch and Atzberger,
2016). Using surface reflectance from 2014 to 2018, NDVI, LST and NDDI
values were calculated and all remote sensing variable values including



Fig. 9. Spatial variation of NDVI for 2014, 2015, 2016, 2017 and 2018.
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LST NDDI and NDVI with 1 km resolution was used as an index of
accumulated surface water content were also scaled from 10 to 40 for
LST, -4 to -0.5 for NDDI and -1 to 1 (NDVI) for each pixel to discriminate
the weather component from the ecosystem component as done by Kogan
(1995) for VCI using NDVI. The variations of each drought conditions
were examined and the scaling was done so that the scaled value -1
means the driest condition and 1 means the wettest condition for NDVI,
greater and equal to 40 �C means the driest condition and less than and
equal to 10 �C means the wettest condition for LST and greater and equal
to -4 means the driest condition and less than and equal to -.5 means the
wettest condition for NDDI during the period. The result further revealed
that year 2016, 2017 and 2018 experienced driest conditions as depicted
in Figs. 7, 8, and 9, which corroborates previous studies on drought
assessment (Jordaan et al., 2019; Leslie and Richman, 2018; Ogunjobi et
al., 2018; Otto et al., 2018). The results from the study revealed that
NDVI have the opposite direction to NDDI, and LST and the likely reason
for the opposite directions is that the NDVImostly detects soil moisture in
the arid region and vegetation moisture in the humid region compared to
other indices.

Various vegetation indices have been utilized by different studies to
assess water dearth with different shortcomings of these indices (Gu
et al., 2007; Rojas et al., 2011; Alshaikh, 2015; Sholihah et al., 2016;
Zhang et al., 2017a,b). More so, studies have shown that other vegetation
indices are considered to be more efficient than NDVI. For instance, at 40
percent the noise level of the NDVI is 4 times in green cover than that of
the WDVI and about 10 times that of the SATVI which is equivalent to a
vegetation estimation error of about þ/- 23% for the NDVI, while WDVI
and SATVI is aboutþ/- 7% andþ/- 2.5% estimated error respectively (Qi
et al., 1994). Therefore, the WDVI and SATVI are better representative
vegetation indicators than the other vegetation indices; more so, other
factors such as climatic and geographical zone can also play a crucial role
in this development (Qi et al., 1994). All the indices used in the study are
indications of drought conditions because they reflect the energy and
water exchanges among vegetation, soil, and atmosphere, and considers
8

the characteristics of soil moisture (Rhee et al., 2014).
Land surface temperature (LST) of the study area is presented in

Fig. 7; each year has its thermal characteristics and it was depicted from
the analysis that the LST was higher in the inner city which is likely to be
the built-up region compared to the regions covered with vegetation and
other features. The result further shows that there was variation in LST
between 2014 and 2018. It also revealed that the built-up area connotes
that the urban area has high thermal signal as shown in Fig. 7 compared
with the other land features that have a lower land surface temperature
probably due to vegetation cover and water body as opined by Peng et al.
(2014) and Orimoloye et al. (2018a,b,c). This development might have
contributed immensely to the drought occurrence in the area during the
period of investigation.
3.3. Influence of drought severity on vegetation and other biodiversity

Previous studies have identified the notable impacts of inter-annual
precipitation variation on vegetation health such as NDVI and NDWI
(Karamihalaki et al., 2016; Khan et al., 2016; Orimoloye et al., 2018c).
This study found that in most of the study area, the NDWI values during
the peak of highest vegetation covers corroborated with the drought
severity assessed using the LST and NDDI (Figs. 7 and 8). The NDDI is
most likely suitable for recognizing the implications of water availability
and drought situations on vegetation health in semi-arid areas including
the study area than only precipitation, as the NDDI encompasses NDVI
and NDWI obtained from a reliable and dependable source (satellite
data) and considers the active atmospheric evaporative interest area that
is, Cape Town area (mild Mediterranean) which has relatively mild
winters and very warm summers. More so, the results from the study
revealed that the vegetation cover gives more grounded negative rela-
tionship with LST, and NDDI for all land features at all levels, while
built-up area and open surface give positive relationship of LST and NDDI
during the period of investigation. The LST, NDDI and other drought
indices pattern fluctuate during the same period but reaches the highest



Table 5
Water level percentage of total dam capacity by year over the study area (Ob-
tained from the City of Cape Town's Water Dashboard).

Major dams May
2014

May
2015

May
2016

May
2017

16 February
2018

Wemmershoek Dam 58.8 50.5 48.5 36 48.0
Berg River Dam 90.5 54.0 27.2 32.4 53.4
Steenbras Upper 79.1 57.8 56.9 56.7 83.6
Theewaterskloof
Dam

74.5 51.3 31.3 15 11.6

Steenbras Lower 39.6 47.9 37.6 26.5 40.0
Voelvlei Dam 59.5 42.5 21.3 17.2 16.7
Total stored
(megalitres)

646
137

450
429

279
954

190
300

220 808

Total % Storage 71.9 50.1 31.2 21.2 24.6
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value in the built-up area followed by bare surface. These results connote
that the areal measure of vegetation plethora has more direct corre-
spondence with the drought occurrence and the surface thermal char-
acteristics which are the attributes of the land surface that control or
influence drought events in any given region. This research also reveals
that the major land features that were used in the study area are
vegetation.

Recent studies using remote sensing and GIS as well as other tech-
niques have demonstrated that in different locales under current global
warming conditions, the warming earth and drought can have a greater
influence on the vegetation dynamics than other natural hazards (Hanson
and Weltzin, 2000). This is because drought can largely determine the
plant and soil-water stress which might adversely affect agricultural
practices and in turn have significant effects on food security and human
well-being (Turner and Annamalai, 2012; Wheeler and Von Braun, 2013;
Nobre et al., 2016; Yan et al., 2016; Orimoloye et al., 2018b, 2018c).
Moreover, the NDDI and some other related vegetation indices are
evaluated on various factor scales, allowing classification of the best
fitting indicator to identify the diverse response times of vegetation al-
liances to water shortage as a result of drought (Nobre et al., 2016; Yan
et al., 2016). The procedures utilized in this study is without a doubt in
detecting the drought impacts on vegetation change and other
vegetation-based practices such as farming and urban greening system
which play a vital role in ameliorating climate change impact (Orimoloye
et al., 2018b).

Various studies have established the significance of droughts in
engendering land degradation activities (Ibrahim et al., 2015; Yengoh
et al., 2015). Nevertheless, the changes in drought severity can be a
crucial factor driving land degradation processes and NDWI and NDVI
trends in the mild Mediterranean zones. Hence, it is crucial to note that
the results obtained in this study advocate that the drought event may not
define different changes observed in NDVI (Fig. 9). Consequently, other
indices such as SATVI, WDVI, NDWI, and LST can also reveal more
drought states as presented in Figs. 4, 5, 6, 7, and 8. The observed spatial
patterns of NDDI using Palmer Drought Severity Index (PDSI) as pre-
sented in Table 4 revealed that the years 2016–2018 have experienced a
severe drought in the study area. PDSI was employed to identify the
susceptibility of the study area to drought using NDDI values combined
with LST for the chosen period. The illustration of drought classification
for PDSI values of Cape Town area is presented in Table 4. The infor-
mation in Fig. 4 is harmonious with the WDVI values which may be
considered to be less efficient in vegetation dryness and drought
assessment and has a slight effect on green vegetation cover, rendering it
relatively insensate to low vegetation cover as asserted by previous
studies (Qi et al., 1994; Wu et al., 2010).

In support of the results from this study, drought in the Western Cape
of South Africa including the study area commenced in 2015 and is
leading to a critical water deficit in the area, most strikingly influencing
the city of Cape Town. Moreover, in spite of water saving strategies, it
was confirmed that dam levels have faced a drastic decline in the past
three years (Table 5). After quality rainfall in 2013 as well as 2014, the
area began to experience dry spell in 2015, followed by three years of dry
winters, which were likely linked to El Ni~no events and climate vari-
ability in the affected area (Araujo et al., 2016; Baudoin et al., 2017). This
development also corroborated with the information in Fig. 8 which
Table 4
Discretization criteria for NDDI and Palmer Drought Severity Index categories
(Fuchs, 2012).

Drought Class NDDI Values Categories

0 0 No drought
D0 -0.5 to -0.99 Incipient dry spell
D1 -1.0 to –1.99 Mild Drought
D2 -2.0 to -2.99 Moderate Drought
D3 -3.0 to -3.99 Severe Drought
D4 -4.0 or -less Extreme Drought

9

reveals the drought severity in recent years. The information retrieved
from the City of Cape Town's Water Dashboard shows that the level of
dam declined from about 71 % to 24 % in years 2014 and 2018
respectively. This drop is highly significant and if it persists, the area can
become more vulnerable to extreme dryness which may have negatively
influenced the environment and the residents of the area (Leng et al.,
2015).

The results from this study revealed that the observed patterns and
drought situations across the observed period in the study area suggest
substantial vulnerability of biodiversity and ecosystems in the area.
However, some studies have asserted drought to be a significant element
in land degradation processes globally including Africa (Nicholson et al.,
1998; Fensholt et al., 2015). This can also affect or contribute to the
decrease in agricultural production and other water-dependent activities
due to drought severity in recent years in the area. Moreover, it was
confirmed that the year 2017 was the driest between 2014 and 2018 as
shown in Figs. 5 and 8 and Table 5.

Nevertheless, the effects of drought are not consistent and identified
by the availability of water in the soil. Therefore, studies have shown that
production would reduce under drought situation due to the independent
of water availability and plant physiological activities are significantly
compelled by water dearth which may be as a result of severe drought.
This could help explain the reason the findings in this study revealed a
general negative trend between NDWI and NDDI as well as LST in the
study area which was connoted by a negative NDDI pattern with NDWI
(for instance, from 2016 to 2018). More so, water deficits could limit
agricultural practices and adversely affect the domestic use of water in
the area (Leng et al., 2015).

4. Conclusion

This study presents a spatially synergistic approach in assessing
drought occurrence in Cape Town area of South Africa between 2014 and
2018 using remotely sensed information. The study revealed the
importance of RS and GIS in appraising drought severity. However, with
the aid of headway in modern RS technologies, comparisons were readily
carried out to assess this natural hazard and other possible related
environmental disasters. This study used some selected vegetation
indices as well as the NDDI and LST to investigate drought occurrence in
the study area during the period of study.

This study utilized five land use features include vegetation, built-up,
water body, bare surface, and sparse vegetation division estimated from a
spectral mixture grouping or classification as an indicator for the purpose
of comparison with drought indices. The outcomes revealed that the
vegetation fraction gives a more grounded negative connection with LST,
and NDDI for all land features at all levels, while built-up area and open
surface give positive relationship of LST and NDDI between 2014 and
2018. The LST, NDDI and other drought indices pattern fluctuate with
years, but yields the highest value around the built-up area followed by
bare surface. These discoveries propose that the areal measure of
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vegetation plethora has more direct correspondence with the drought,
thermal characteristics, and moisture attributes of the surface that con-
trol or influence drought events. This research also reveals that the major
land features that were used in the study area are vegetation.

The results also reveal that the NDWI and other vegetation indices
decreased considerably more in recent years (2017 and 2018) than in the
previous years (2014–2016). This development has contributed to the
droughts occurrence during the years 2017–2018. Conversely, the spatial
trends of LST and NDDI have witnessed increment in recent years, with
the NDDI values ranging between moderate drought and severe drought
thresholds. Consequently, if this increment persists, such development
can have adverse effects on residents in terms of food insecurity, land
degradation and environmental health deterioration. The results further
suggest that the NDWI and NDDI can be joint to identify vegetation
changes as well as drought severity and its potential impact on agricul-
ture and the environment. Findings from the study show that the
shortage of water content in the study area in 2017 and 2018 was more
severe than in 2014 and 2015. However, utilizing NDWI and NDDI, as
well as LST, cannot be used to draw an ultimate conclusion on drought
occurrence as other factors can also be incorporated. These factors
include soil type, geographic location as well as climate zone. Subse-
quently, a more thorough evaluation of the vegetation dynamics, drought
severity monitoring and meteorological variables incorporated with
remotely sensed data are required.
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