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Abstract

Unsupervised domain adaptation (UDA) is the task of modifying a statistical model trained on 

labeled data from a source domain to achieve better performance on data from a target domain, 

with access to only unlabeled data in the target domain. Existing state-of-the-art UDA approaches 

use neural networks to learn representations that can predict the values of subset of important 

features called “pivot features.” In this work, we show that it is possible to improve on these 

methods by jointly training the representation learner with the task learner, and examine the 

importance of existing pivot selection methods.

1 Introduction

Unsupervised domain adaptation (UDA) is the task of modifying a statistical model trained 

on labeled data from a source domain to achieve better performance on data from a target 

domain, without access to any labeled data in the target domain. Supervised domain 

adaptation methods can obtain excellent performance from a small number of labeled 

examples in the target domain (Daumé III, 2007), but UDA is attractive in cases where 

annotation requires specialized expertise or the number of meaningfully different sub-

domains is large (e.g., both are true for clinical NLP).

Structural correspondence learning (Blitzer et al., 2006) (SCL) is one widely-used method 

for UDA in natural language processing. The key idea in SCL is that a subset of features, 

believed to be predictive across domains, are selected as pivot features. For each selected 

pivot feature, SCL creates an auxiliary classification task of predicting the value of that 

feature in an instance, given the values of all the non-pivot features for that instance. The 

auxiliary classifiers therefore learn important cross-domain information about the structure 

of the feature space, which the SCL algorithm uses to create an augmented representation 

that aligns features from different domains (further details in Section 2).

Meanwhile, recent advances in neural network learning have shown that training regimens 

that jointly consider evidence from multiple sources can improve performance – both multi-

task learning (Søgaard and Goldberg, 2016) and fine tuning (Howard and Ruder, 2018; 

Devlin et al., 2018). However, existing SCL-based methods treat the representation learning 

and task learning as separate tasks, so the parameters of the representation learning 

machinery are fixed before training for the downstream task. Jointly learning the 
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representation- and task-specific parameters can potentially allow a learning algorithm to 

find representations that are better suited for the task.

In this work, we describe a new UDA algorithm that is trained to jointly maximize two 

objectives: the primary supervised task in the source domain, and a pivot feature 

reconstruction task that can be trained on unlabeled data. We also explore the importance of 

pivot feature selection to this algorithm, in experiments that quantitatively and qualitatively 

examine the quality of existing pivot selection methods. We find that our joint neural 

approach to SCL improves unsupervised domain adaptation substantially on a standard 

sentiment classification task. Our results also show that while existing pivot selection 

methods per-form well, they are below an oracle-provided ceiling for many source-target 

pairs for the sentiment classification task we examine.

2 Background

This work builds off of existing work in unsupervised domain adaptation, starting with 

Blitzer’s work on structural correspondence learning (SCL) (Blitzer et al., 2006, 2007). In 

the UDA task setup, one is given two datasets, the source DS = {Xs, ys}, with labels for each 

instance, and the target DT = {Xt}, with unlabeled instances only. The goal of UDA is to 

learn a function fu(Xs, ys, Xt) that improves on the classification performance over a 

function fl(Xs, ys) when applied to new data drawn from the target distribution.

SCL is essentially a representation learning algorithm that works by creating a number of 

auxiliary classification tasks from the unlabeled source and target training instances 

(inspired by Ando and Zhang 2005). First, a set of p pivot features are selected, intended (in 

Blitzer’s words) to be “features which behave in the same way for discriminative learning in 

both domains.” Then, SCL creates p auxiliary tasks of predicting the value of pivot features 

in an instance given the non-pivot features in the instance. The weights of these linear 

classifiers are then aligned as columns in a matrix W , and the k left singular vectors are 

chosen from the singular value decomposition W = UƩV⊤ to reduce its dimensionality, 

leading to a projection matrix θ ∈ Rn×k that maps instances from the original feature space 

into the learned space. Most practical implementations find the best performance of SCL is 

obtained when projected features are concatenated with the original feature space; for some 

tasks and datasets other combinations have been tested and proved superior (Sapkota et al., 

2016).

Recently, neural-network-based domain adaptation algorithms have been successful, 

including domain adversarial methods (Ganin et al., 2016) and auto-encoder-based methods 

(Glorot et al., 2011; Chen et al., 2014). However, a neural version of SCL still obtains near 

state-of-the-art performance (Ziser and Reichart, 2017). In that work, the AE-SCL system 

uses a multi-layer perceptron to replace the SVD for learning the feature projection. This 

network takes non-pivot features as input, has one hidden layer, and predicts the value of the 

pivot features at the output layer. Since it obtains supervision from the values of features, it 

can be trained on unlabeled instances from the source and target domains. To train for the 

down-stream sentiment classification task, the source in-stances are first passed into the 

trained representation learning network, and the values of the hidden layer are considered an 
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additional set of features. These features are combined with all the original features, and the 

authors use a logistic regression classifier for the final sentiment classifier.

One standard corpus used to develop new domain adaptation algorithms is the Amazon 

sentiment analysis dataset.1 This corpus was created by Blitzer et al. (2007), but we use the 

version included in the software release from Ziser and Reichart (2017)2, along with their 

pre-processing steps, for ease of comparison with their results. This dataset contains reviews 

from four product categories on Amazon.com – books, DVDs, electronics, and kitchen 

appliances. Reviews are mapped to binary categories: positive if the review assigns the 

product >3 stars (out of 5) and negative if it assigns the product < 3 stars. This dataset also 

contains additional unlabeled instances for each category, used for training the pivot 

predictor.

3 Methods

The current work has two motivating factors. First, we would like to improve the 

performance of SCL using joint training. Existing SCL-based methods are successful in 

treating pivot prediction as a pre-training phase, but joint training may improve UDA by 

allowing the network to find representations that are equally good at pivot reconstruction but 

better for downstream task performance. Second, we would like to evaluate the quality of 

pivot selection methods and explore whether this step might be eliminated to simplify SCL.

We focus on feature-based UDA methods, as opposed to approaches that rely on 

embeddings (e.g., Barnes et al., 2018; Ziser and Reichart, 2018), since our primary interest 

is in improving existing models developed with a feature engineering approach. Such 

methods allow us to quickly adapt a number of different models to new datasets (e.g., for 

already-existing NLP pipeline software), rather than engineering new neural models from 

scratch for each of the pipeline tasks. For that reason, we compare to the AE-SCL model of 

Ziser and Reichart, rather than their subsequent models that take embeddings as input. In 

any case, we show that with some tuning the AE-SCL model can obtain state-of-the-art 

performance for many pairs.

3.1 Joint Neural Structural Correspondence Learning

Figure 1 graphically depicts our proposed joint model. The input to the model x ∈ ℛn is the 

set of all features extracted from the text – to compare with Ziser and Reichart (2017) we 

use unigrams and bigrams, extracted using scikitlearn (Pedregosa et al., 2011). We 

experimented with a few different hidden layer sizes, and settled on d = 2000 – this balances 

the need of the representation to predict more output variables than the AE-SCL method 

with run-time constraints. The representation is generated with h(x) = ReLU(Whx), for 

Wh ∈ ℛd × n. The task prediction is f task(x) =  Sigmoid  W th(x) (W t ∈ ℛ1 × d) and the pivot 

prediction is f pivot(x) = W ph(x) W p ∈ ℛp × d .

1https://www.cs.jhu.edu/~mdredze/datasets/sentiment/
2https://github.com/yftah89/Neural-SCL-Domain-Adaptation
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The joint loss function for labeled source data Dl, all data Da, and model parameters θ is:

ℒ(D; θ) = ∑
x, y ∈ Dl

BCE f  task (x), y + λ ∑
x ∈ Da

BCE f pivot(x), pivots(x) + ρℛ(θ) (1)

where BCE is the binary cross-entropy loss, λ controls the weight of pivot prediction loss, 

pivots is a function that selects the indices from an instance that are the pivot features to be 

predicted, and ρ is the weight of the regularization term ℛ.

To train this model, we alternate passing labeled source data and unlabeled data from the 

source and target domains into the network. For the labeled data, the error term is the sum of 

task- and pivot-prediction tasks, while for the unlabeled data only the pivot-prediction loss is 

computed.

Training proceeds for 30 epochs, with mini-batch size of 50 instances, using the Adam 

optimizer (Kingma and Ba, 2014) with learning rate 0.001. For the loss function weight, we 

used ρ = 0.1 and λ = 100. We used held-out source data to compute validation loss after 

each epoch and selected the trained model with the lowest validation loss.

3.2 Pivot Selection for Neural Systems

One standard way of choosing pivot features is by calculating mutual information (MI) 

between the source features and labels, and selecting the features with the highest MI. It is 

far from clear, however, that this technique is always optimal. Earlier experiments with the 

POS tagging task (Blitzer et al., 2006) used feature frequency instead, and the extent of the 

correlation between frequency and MI for that task is not established.

Here, we attempt to provide some evidence about the quality of MI for the task of sentiment 

classification, using the classification pair of books to electronics. First, we wanted to rule 

out the null hypothesis that prediction of MI pivots is essentially a generic representation 

learning algorithm – in other words, that a network learning structure between any sets of 

sufficiently common features may improve adaptation performance. We modified Ziser et 

al.’s code to simply select random feature indices from the subset of those that occurred 

frequently enough to be pivot candidates. With this setup, adaptation performance averaged 

0.724 across ten runs, well below their reported 0.744, casting doubt on the null hypothesis.

Next, we want to examine the contention that features with high MI relative to source labels 

are general. To do this, we simply compare the list of MI features used when the source is 

books to those when the source is electronics. We find that, out of the 100 pivot features 

selected by MI in either cases, there is overlap of 26 features, some examples of which are 

shown in Table 1 (left). Table 1 also shows a number of MI-selected pivots from the books 
domain that are not general (middle), and then a set of features MI-correlated with the target 

domain that seem general (right). These latter two columns are essentially precision and 

recall errors of the MI pivot selection algorithm.
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Finally, we perform an oracle-based adaptation experiment, where we select the pivot feature 

indices using MI against the gold labels of the target domain, but then proceed with training 

looking only at source labels, with results in Table 2 discussed below.

4 Evaluation

We follow the standard setup for the Amazon sentiment task, splitting each source dataset 

into 1600 training and 400 validation instances, and evaluating on the entire labeled target 

dataset for each pair. We compare against two baselines: First, the reported results of Ziser 

and Reichart, and second, our replication of their results using their code. Our replication 

changed their code by replacing the stochastic gradient descent optimizer with Adam 

(Kingma and Ba, 2014), and increasing the training batch size from 1 to 50. These changes 

were made to speed training runs during development; we found they produced better-than-

reported results and include these superior results as an even stronger baseline. We report 

results of two configurations of our joint learner. The first configuration (JointMI) uses the 

MI between source labels and features to select 100 pivot features. The second configuration 

(JointOracle) is an oracle-informed system where we use the MI between target labels and 

features to select pivot features, but only use source labels while training the network. Both 

the AE-SCLR model and our JointMI model were run for 10 iterations to minimize 

differences due to random initialization and to calculate significance statistics.

Table 2 shows the results of our experiments. First, we note that our replication of AE-SCL 

improves upon their reported results in 8 of 12 pairs, often by substantial margins, and is 

only worse in one pair (Kitchen→Books). Our JointMI method is superior to the reported 

AE-SCL results in all pairs, 1.7 points (absolute) on average, and significantly better than 

the AE-SCLR in 9 of 12 pairs, using Welch’s one-tailed t-test. This is, to our knowledge, the 

best result on this task using a feature-based approach (i.e., excluding systems that use 

embeddings). Despite constraining our system to adapting feature-based models, this result 

is competitive with the best-known result using a pure neural approach with embeddings as 

input, as Ziser and Reichart (2018) report an average accuracy of 0.804. The JointOracle 

configuration shows that, despite the large gains of joint training, there is still significant 

improvement available with better pivot selection.

5 Discussion and Conclusion

Our results show that by jointly learning representations and task networks, UDA can be 

greatly improved over existing neural UDA methods. We note that there are existing domain 

adaptation methods that use joint training with auxiliary tasks. Yu and Jiang (2016) use an 

auxiliary task of predicting whether a masked pivot word in a sentence is positive or negative 

sentiment, where they introduce a new technique to select pivots that still is based on 

correlations with source labels. Our work is unique in showing that the standard task of 

mutual-information-selected pivot prediction is a high quality auxiliary task, though future 

work should explore whether their pivot selection algorithm is superior to MI in our joint 

model. We also showed that existing neural UDA methods can be improved significantly 

with minor changes to the training regimen. Finally, we show that mutual information pivot 

selection is quite far from the performance ceiling provided by oracle-based pivot selection.
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This work evaluated on the widely-used Amazon sentiment dataset from Blitzer et al. 

(2007). However, we believe that future work on domain adaptation should phase out the use 

of this dataset.3 The test set for this setup is flawed in two important ways: first, it is 

artificially balanced with positive and negative reviews, when the problem is not actually 

balanced; it also has 3-star reviews removed, which is not a realistic test set setup without 

looking at labels. For these reasons, we recommend that future work use different domain 

adaptation datasets.

The Pytorch implementation used to produce these results is publicly available.4
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Figure 1: 
Network architecture for unsupervised domain adaptation.
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Table 1:

Example features selected as pivots using MI. Shared features indicates those selected for both domains. Book 
(spec) highlights pivots selected in the books domain that appear domain-specific. Elec (gen) indicates high-

MI pivots in the electronics domain that appear domain-general that are not selected when books is the source 

domain.

Shared features Book (spec) Elec (gen)

an excellent Writing and great

best care about is perfect

bad flat never buy

highly recommend pages not good

waste your finish poor
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Table 2:

Summary of results. B=Books, D=Dvd, E=Electronics,K=Kitchen. AE-SCL=Reported results from Ziser and 

Reichart (2017). AE-SCLR=Replicated results from the same. JointMI=results from the joint model in Section 

3.1. JointO=results from the joint model using oracle MI pivot selection. Bold indicates a significant difference 

(p < 0.05) between AE-SCLR and JointMI using Welch’s one-tailed t-test.

S→T AE-SCL AE-SCLR JointMI JointO

B→D 0.794 0.812 0.808 0.84

B→E 0.744 0.761 0.786 0.818

B→K 0.795 0.814 0.809 0.831

D→B 0.758 0.779 0.807 0.808

D→E 0.763 0.763 0.803 0.843

D→K 0.8 0.821 0.83 0.832

E→B 0.701 0.701 0.738 0.749

E→D 0.732 0.748 0.766 0.824

E→K 0.848 0.848 0.875 0.869

K→B 0.742 0.731 0.744 0.767

K→D 0.743 0.754 0.752 0.828

K→E 0.828 0.841 0.856 0.851

Ave. 0.771 0.781 0.798 0.821
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