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Abstract
While graph theoretical modeling has dramatically advanced our understanding of complex brain systems, the feasibility of
aggregating connectomic data in large imaging consortia remains unclear. Here, using a battery of cognitive, emotional and
resting fMRI paradigms, we investigated the generalizability of functional connectomic measures across sites and sessions.
Our results revealed overall fair to excellent reliability for a majority of measures during both rest and tasks, in particular for
those quantifying connectivity strength, network segregation and network integration. Processing schemes such as node
definition and global signal regression (GSR) significantly affected resulting reliability, with higher reliability detected for the
Power atlas (vs. AAL atlas) and data without GSR. While network diagnostics for default-mode and sensori-motor systems
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were consistently reliable independently of paradigm, those for higher-order cognitive systems were reliable predominantly
when challenged by task. In addition, based on our present sample and after accounting for observed reliability, satisfactory
statistical power can be achieved in multisite research with sample size of approximately 250 when the effect size is
moderate or larger. Our findings provide empirical evidence for the generalizability of brain functional graphs in large
consortia, and encourage the aggregation of connectomic measures using multisite and multisession data.
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Introduction
Since its debut in the last decade (Sporns et al. 2005), the study
of functional interactions in the human connectome has
become an increasingly appealing research frontier in neurosci-
ence. The brain connectome is typically modeled using graph
theoretical methods, which decompose the functional architec-
ture of the brain into a large set of nodes and interconnecting
edges (Bullmore and Bassett 2011). This approach has greatly
advanced our understanding of the functional organization of
the brain, bringing valuable insights into the topological char-
acteristics of brain systems (Power et al. 2011) and variations
therein related to neural development (Fair et al. 2009), aging
(Meunier et al. 2009) and clinical brain disorders (Buckner et al.
2009; Lynall et al. 2010; Cao et al. 2016).

We are now in the era of “big data,” where large research
consortia have been established around the world and hun-
dreds or thousands of imaging scans could potentially be
pooled to pursue questions that can only be addressed with
large sample sizes (Biswal et al. 2010). Such applications
include ascertaining genetic determinants of brain network
structure (Richiardi et al. 2015) or elucidating patterns in brain
network architecture predictive of low-incidence disease
among individuals at risk (Cao et al. 2016). However, while
moderate to high test–retest reliability of brain graph properties
has been demonstrated in both resting state (Braun et al. 2012;
Cao et al. 2014; Termenon et al. 2016) and active tasks (Cao
et al. 2014; Wang et al. 2017) using data acquired at a single
site, it remains unclear whether the increased sample size
associated with pooling data collected across different sites is
offset by attenuated reliability of network analysis measures in
relation to statistical power. Previous work has shown rela-
tively good predictability of connectome-based measures for
neuropsychiatric disorders such as autism using multisite data
(Abraham et al. 2017), suggesting larger participant-related vari-
ance compared with site-related variance in connectomic stud-
ies. Despite this, the reliability of the connectomic measures in
a multisite setting has not been explicitly explored. The utility
of data fusion in connectomics research will be constrained by
the answer to this question.

Here, using the data from the North American Prodrome
Longitudinal Study (NAPLS) consortium (Addington et al. 2012),
we sought to examine the feasibility of aggregating multisite,
multisession functional magnetic resonance imaging (fMRI)
data in the study of brain graphs. In this work, 8 subjects were
scanned twice (on consecutive days) at each of the 8 study sites
across the United States and Canada using a battery of 5 fMRI
paradigms including 4 cognitive tasks and a resting state scan.
This unique sample allows us to probe the question of whether
it is feasible (i.e., achieving acceptable levels of reliability) to
aggregate fMRI data acquired from multiple sites and sessions
and to determine which approach to aggregating such data
maximizes reliability. Generalizability theory was used to
quantify reliability of graph theoretical metrics, first for the full

8-site, 2-session study, and then for the circumstance in which
a given subject is scanned once on one site drawn randomly
from the set of all available sites (i.e., paralleling the design of
the typical cohort study in which scans from a single session
are pooled across multiple sites). We compared reliability of
graph theoretical metrics across different fMRI paradigms and
data processing schemes and isolated the most reliable nodes in
the brain for each paradigm. We also estimated the required sam-
ple size to achieve satisfactory statistical power in a multisite
study and investigated the effects of 2 data pooling methods
(“merging raw data” and “merging results”) on the reliability of the
resulting brain graphs. The results of this study provide evidence
for the feasibility, sample size, and optimal method for pooling
large sets of graph theoretical measures in large consortia.

Methods
Subjects

A sample of 8 healthy traveling subjects (age 26.9 ± 4.3 years, 4
males) was included as part of the NAPLS-2 consortium
(Addington et al. 2012). The consortium comprises 8 study sites
across the United States and Canada: Emory University,
Harvard University, University of Calgary, University of California
Los Angeles (UCLA), University of California San Diego (UCSD),
University of North Carolina Chapel Hill (UNC), Yale University,
and Zucker Hillside Hospital (ZHH). Each site recruited one subject
and the participants traveled to each of the 8 sites in a counterba-
lanced order. At each site, subjects were scanned twice on 2 con-
secutive days with the same fMRI paradigms, resulting in a total
of 128 scans (8 subjects × 8 sites × 2 days) for each paradigm. All
scans were completed within a period of 2 months, during which
time no changes were made to the MRI scanners at each site.

All participants received the Structured Clinical Interview
for Diagnostic and Statistical Manual of Mental Disorders (DSM-
IV-TR (First et al. 2002)) and Structured Interview for Prodromal
Syndromes (McGlashan et al. 2001), and were excluded if they
met the criteria for psychiatric disorders or prodromal syn-
dromes. Other exclusion criteria included a prior history of
neurological or psychiatric disorders, substance dependency in
the last 6 months, IQ < 70 (assessed by the Wechsler
Abbreviated Scale of Intelligence (Wechsler 1999)) and the pres-
ence of a first-degree relative with mental illness. All subjects
provided informed consent for the study protocols approved by
the institutional review boards at each site.

Experimental Paradigms

The NAPLS-2 consortium included a battery of 5 paradigms tar-
geting functional domains of interest in cognitive neuroscience:
a verbal working memory paradigm (hereafter WM paradigm),
a paired-associates encoding paradigm for episodic memory
(hereafter EM encoding paradigm), a paired-associates retrieval
paradigm for episodic memory (hereafter EM retrieval
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paradigm), an emotional face matching paradigm (hereafter FM
paradigm) and a resting-state paradigm (hereafter RS para-
digm). These paradigms have been described in detail in previ-
ous studies (Forsyth et al. 2014; Gee et al. 2015; Noble et al.
2016) but are summarized briefly below.

The WM paradigm is a block-designed Sternberg-style task
where subjects viewed a set of uppercase consonants (each set dis-
played for 2 s, followed by a fixation cross for 3 s). After each set, a
lowercase probe appeared and the participants were instructed to
indicate if the probe matched any of the consonants from the pre-
vious set by pressing designated buttons. Four conditions were pre-
sented in the task targeting 4 working memory loads with 3, 5, 7,
and 9 consonants in the target sets. Each load comprised a total of
12 trials with 50% matched trials. The resting-state fixation blocks
were interspersed throughout the task to provide a baseline. The
entire task lasted for 9min (184 whole-brain volumes).

The EM encoding task used an event-related paradigm
where subjects were presented a series of semantically unre-
lated word pairs for objects from 12 different categories (e.g.,
animals, transportations, food, etc.) and colored picture pairs
depicting each word. During each trial, participants were asked
to imagine the 2 objects interacting together and then pressed
a button once a salient relationship had been built between the
2 words. Each trial was displayed for 4 s and followed by a jit-
tered interstimulus interval between 0.5 and 6 s. In the active
baseline condition, subjects were presented by a series of
1-digit number pairs and colored squared pairs. Participants
were asked to sum up the 2 numbers and press a button once
the summation had been calculated. The paradigm consisted
of 32 encoding trials and 24 baseline trials and lasted for
8.3min (250 whole-brain volumes).

The EM retrieval paradigm followed directly after the EM
encoding task. In this task, a pair of words was presented on
the screen on each trial and subjects were asked to indicate
whether the given word pair had been presented during the
encoding paradigm by ranking their confidence level. The
retrieval paradigm consisted of 64 trials where 50% had been
presented during encoding task. In the active baseline condi-
tion, participants were instructed to press the button corre-
sponding to a confidence level presented on the screen. The
retrieval run lasted for 7.3min (219 whole-brain volumes).

The FM task consisted of 2 consecutive identical runs on
each day. Each run comprised 5 conditions where subjects
viewed a set of emotional faces or geometric shapes. In the
face matching condition, participants were instructed to choose
which of the 2 faces shown on the screen presented the same
emotion as a target face. In the face labeling condition, subjects
were asked to choose which of the 2 labels (e.g., angry, scared,
surprised, and happy) depicted a target face. In the gender
matching condition, subjects needed to select which of the 2
faces on the screen was the same gender as a target face. In the
gender labeling condition, participants selected which gender
label (i.e., male or female) corresponded to a target face. In the
shape matching condition, participants were asked to match 2
corresponding geometric shapes. Each block lasted for 50 s with
10 trials. The entire task was performed in 2 separate runs with
5.5min (132 whole-brain volumes) each.

RS is a 5-min eyes-open paradigm (154 whole-brain volumes)
where subjects were asked to lay still in the scanner, relax, gaze
at a fixation cross, and not engage in any particular mental activ-
ity. After the scan, investigators confirmed with the participants
that they had not fallen asleep in the scanner.

To ensure successful manipulation of active tasks, we
checked task response rates for each scan. The scans with a

response rate < 50% were excluded for data analysis. This
resulted in exclusion of a total of 2 scans for the EM encoding
paradigm. In addition, for each of the WM, EM encoding, EM
retrieval, and FM tasks, 1 scan was unusable due to technical
artifacts, and 1 scan for the EM encoding paradigm did not
complete successfully. These data were also excluded from
analysis.

Data Acquisition

Imaging data were acquired from 8 3 T MR scanners with 3 dif-
ferent machine models. Specifically, Siemens Trio scanners
were used at Emory, Harvard, UCLA, UNC and Yale, GE HDx
scanners were used at UCSD and ZHH, and a GE Discovery
scanner was used at Calgary. The Siemens sites employed a 12-
channel head coil and the GE sites employed an 8-channel
head coil. fMRI scans were performed by using gradient-
recalled-echo echo-planar imaging (GRE-EPI) sequences with
identical parameters at all 8 sites: (1) WM paradigm: TR/TE
2500/30ms, 77° flip angle, 30 4-mm slices, 1mm gap, 220mm
FOV; (2) EM encoding and retrieval paradigms: TR/TE 2000/
30ms, 77° flip angle, 30 4-mm slices, 1mm gap, 220mm FOV;
(3) FM paradigm: TR/TE 2500/30ms, 77° flip angle, 30 4-mm
slices, 1mm gap, 220mm FOV; (4) RS paradigm: TR/TE 2000/
30ms, 77° flip angle, 30 4-mm slices, 1-mm gap, 220-mm FOV.
In addition, we also acquired high-resolution T1-weighted
images for each participant with the following sequence: (1)
Siemens scanners: magnetization-prepared rapid acquisition
gradient-echo (MPRAGE) sequence with 256mm × 240mm ×
176mm FOV, TR/TE 2300/2.91ms, 9° flip angle; and (2) GE scan-
ners: spoiled gradient recalled-echo (SPGR) sequence with
260mm FOV, TR/TE 7.0/minimum full ms, 8° flip angle.

Data Preprocessing

Data preprocessing followed the standard procedures imple-
mented in the Statistical Parametric Mapping software (SPM8,
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). The same
preprocessing pipelines were used for each paradigm. In brief,
all fMRI images were slice-time corrected to the first slices of
each run, realigned for head motion, registered to the individ-
ual T1-weighted structural images, and spatially normalized to
the Montreal Neurological Institute (MNI) template with a
resampled voxel size of 2 × 2 × 2mm3. Finally, the normalized
images were spatially smoothed with an 8mm full-width at
half-maximum (FWHM) Gaussian kernel.

All preprocessed images were then examined for head
motion. Specifically, we quantified frame-wise displacements
(FD) for each subject in each run based on the previous defini-
tion (Power et al. 2012). The scans with an average FD ⩾ 0.5mm
were shown to have a pronounced within-subject effect on
connectivity (Power et al. 2012) and thus were discarded. This
resulted in the exclusion of 1 scan for the EM encoding task, 1
scan for the EM retrieval task, and 2 scans for the FM task. As a
consequence, the final number of scans included for further
network analysis were 127 for the WM paradigm, 123 for the
EM encoding paradigm, 126 for the EM retrieval paradigm, and
125 for the FM paradigm.

Given the fact that the time series for WM, EM encoding and
EM retrieval tasks were much longer than that for resting state
than that during resting state, this discrepancy would confound
the direct comparisons of the derived reliability estimates
between paradigms. To achieve a matched amount of data, we
only used the first 154 time points in these tasks for further
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analysis, which equaled the total number of time points in rest-
ing state.

Construction of Brain Graphs

Overview of Brain Graph Analysis
Our brain graph analysis followed closely with the approaches
reported in the literature (Bullmore and Sporns 2009; Bullmore
and Bassett 2011; Cao et al. 2014, 2016, 2017; Gu et al. 2017) and
aimed to cover several different graph construction schemes.
Particularly, nodes and edges are 2 fundamental elements in
the construction of brain networks. The definitions of nodes
and edges differ in the literature in terms of different brain
atlases and different connection weights. While brain graphs
derived from distinct processing schemes are qualitatively sim-
ilar (Wang et al. 2009; Zalesky et al. 2010; Lord et al. 2016) and
thus might all be valid in the study of human connectomes, the
comparative reliability of different schemes in the context of
multisite, multisession studies is unclear. In addition, whether
to perform global signal regression (GSR) during data proces-
sing is still an open question and the reliability for this proces-
sing step has not been established (Murphy and Fox 2017).
Here, we focused our analysis on 2 widely used brain atlases
(the AAL atlas (Tzourio-Mazoyer et al. 2002) and the Power atlas
(Power et al. 2011)), 2 types of graphs (binary graph and
weighted graph) and 2 processing strategies (with GSR and
without GSR). Consequently, 8 different graph models were
constructed for each scan in our data: AAL binary graph with/
without GSR, AAL weighted graph with/without GSR, power
binary graph with/without GSR and power weighted graph
with/without GSR. Figure 1 provides a diagram describing the
graph construction procedures.

Node Definition
We used 2 different node definitions (1 anatomy-based and 1
function-based) to construct brain graphs, in order to investi-
gate how different atlases would influence the results. The
anatomically based definition was given by the AAL atlas con-
sisting of 90 nodes based on cortical gyri and subcortical nuclei
(Tzourio-Mazoyer et al. 2002), and the functionally based defini-
tion was given by the Power atlas with 264 nodes based on
meta-analyses of task and rest data (Power et al. 2011). Notably,
the Power atlas does not include nodes in the bilateral hippo-
campus, bilateral amygdala and bilateral ventral striatum.
Since these regions are of particular interest in cognitive and
clinical neuroscience, we additionally included these nodes
based on previously published coordinates from meta-analyses
(Spreng et al. 2009; Liu et al. 2011; Sabatinelli et al. 2011),
thereby increasing the total number of nodes to 270 (one node
per region and hemisphere). This expanded Power atlas has
also been used in the previous research (Cao et al. 2014, 2017;
Braun et al. 2015).

Noise Correction
The mean time series for each node in both atlases were then
extracted from the preprocessed images. The extracted time
series were then corrected for the mean effects of task condi-
tions (for task data), white matter and cerebrospinal fluid sig-
nals, and the 24 head motion parameters (i.e., the 6 rigid-body
parameters generated from the realignment step, their first
derivatives, and the squares of these 12 parameters (Satterthwaite
et al. 2013; Power et al. 2014)). To assess the effect of GSR on brain
graph reliability, all measures were calculated both with and with-
out GSR. The residual time series were then temporally filtered

(task data: 0.008Hz high pass, rest data: 0.008–0.1Hz band pass) to
account for scanner noises.

Edge Definition and Network Thresholding
The corrected and filtered time series were subsequently used
to build a 90 × 90 (AAL atlas) or 270 × 270 (Power atlas) pairwise
correlation matrix for each scan using Pearson correlations.
The derived correlation matrices were further thresholded into
50 densities ranging from 0.01 to 0.50 with an increment inter-
val of 0.01. At each density, only the connections with correla-
tion coefficients higher than the given threshold were kept as
true internode connections in the matrices. The density range
was based on common practice in the literature and on empiri-
cal data where small-world networks are present within the
range (Achard and Bullmore 2007; Cao et al. 2014, 2016).
Afterwards, edges in binary networks were defined by assigning
a value of 1 to the connections that survived a given threshold,
and edges in weighted networks were given as the original cor-
relation coefficients of the survived connections. For both
binary and weighted networks, a value of 0 was assigned to the
connections that did not survive a given threshold. As a result,
8 adjacency matrices were generated for each scan: 90 × 90
binary matrix with/without GSR, 90 × 90 weighted matrix with/
without GSR, 270 × 270 binary matrix with/without GSR, and
270 × 270 weighted matrix with/without GSR. Graph theory
based brain network measures were subsequently calculated
from these derived matrices.

Graph Theoretical Measures for Connectomics
We computed a series of graph-based connectomic measures
that are commonly reported in the literature evaluating the
network connectivity strength, network segregation and inte-
gration, small-world and modular structures, assortative and
hierarchical organizations, and nodal centrality. These mea-
sures can be generally divided into 2 categories: global mea-
sures and local measures. The global measures quantify the
characteristics of the brain as an entity, as follows:

• Mean connectivity: mean of all elements in the correlation
matrix.

• Small-worldness: an index assessing the combination of net-
work segregation (clustering) and network integration (path
length).

• Transitivity: normalized global metric of network clustering.
• Characteristic path length: average shortest path length
between all pairs of nodes in the network.

• Global efficiency: average inverse of shortest path length
between all pairs of nodes in the network.

• Modularity: degree to which the network can be divided into
nonoverlapping communities.

• Number of modules: number of communities the network
can be divided into.

• Assortativity: tendency for nodes to be connected with other
nodes of the same or similar degree.

• Hierarchy: power law relationship between degree and clus-
tering coefficients for all nodes in the network.

Accordingly, the local measures quantify the properties of each
network node, including:

• Node strength: mean connectivity of a given node.
• Node diversity: variance of connectivity of a given node.
• Node degree: number of links connected to a given node.
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• Clustering coefficient: proportion of node’s neighbors that are
also neighbors of each other.

• Node path length: average path length between a given node
and all other nodes in the network.

• Local efficiency: inverse of shortest path length for a given
node.

• Betweenness centrality: fraction of shortest paths in the net-
work that pass through a given node.

• Within-module degree: local degree of a given node in its
own module relative to other nodes.

• Participation coefficient: ability of a given node in connecting
different modules relative to connecting its own module.

All measures were computed using the Brain Connectivity
Toolbox (BCT) (https://sites.google.com/site/bctnet/). For a more
detailed description of these graph theoretical measures, please
refer to the previous publications (Bullmore and Sporns 2009;
Rubinov and Sporns 2010; Bullmore and Bassett 2011). Of note,
the computations for small-worldness and modular partitions

were based on 100 network randomizations, and Louvain gree-
dy algorithm was used for the optimization of modularity qual-
ity function Q (with resolution parameter γ = 1) (Newman 2006;
Blondel et al. 2008). After computation, all derived connectomic
measures were averaged across all densities to ensure that
results were not biased by a single threshold.

Assessment of Reliability Using Generalizability Theory

Generalizability Theory
The generalizability theory is an extension of the classical test
theory which typically uses intraclass correlation coefficients
(ICC) as index of reliability (Shrout and Fleiss 1979; Barch and
Mathalon 2011; Cao et al. 2014). Unlike classical test theory,
generalizability theory pinpoints the source of different sys-
tematic and random variances by decomposing the total vari-
ance into different facets of measurement (Shavelson and
Webb 1991; Barch and Mathalon 2011). Here, the total variance
in each of the outcome measures (σ2(Xpsd)) was decomposed

Figure 1. Diagram of the overall analysis pipeline in the study (see Methods for details).
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into (1) the participant-related variance σ2(p), (2) the scan site-
related variance σ2(s), (3) the session-related variance σ2(d), (4)
their 2-way interactions σ2(ps), σ2(pd), σ2(sd), and (5) their 3-way
interaction and random error σ2(psd,e) (Shavelson and Webb
1991; Noble et al. 2016).

σ σ σ σ σ

σ σ σ
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Reliability was subsequently quantified using the D-coefficient
(ϕ), which in essence measures the proportion of participant-
related variance over the total variance, thus evaluating the abso-
lute agreement of the target measure (analogous to ICC(2,1) in
classical test theory (Shavelson and Webb 1991)).
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where, n(i) represents the number of levels in factor, i.
According to established criteria (Shrout and Fleiss 1979; Cao
et al. 2014; Forsyth et al. 2014), the D-coefficients can be inter-
preted as follows: poor reliability (<0.4), fair reliability (0.4–0.59),
good reliability (0.6–0.74), and excellent reliability (>0.74).

Generalizability theory can be applied to 2 types of studies,
namely, the generalizability study (G-study) and the decision
study (D-study). In the G-study, the reliability coefficients are
estimated based on the facets and their levels in the studied
sample (here n(s) = 8, n(d) = 2)(Shavelson and Webb 1991;
Forsyth et al. 2014), while in the D-study, the researchers define
the universe they would like to generalize into, which may con-
tain some or all of the facets and levels in the overall universe
of observations (Shavelson and Webb 1991; Noble et al. 2016).
Since in a neuroimaging consortium, a “nested” design is com-
monly used whereby each participant is scanned once only at
one site and different subjects could be scanned on any num-
ber of different scanners, the expected site- and session-related
variances would be higher than those in a “crossed” design as
used in this study (Lakes and Hoyt 2009). We therefore recom-
puted the reliability coefficients to generalize our results to n(s) =
1 and n(d) = 1, which correspond to the expected reliability in a
“nested” design with distinct subjects between sites and sessions.

Statistics
We performed both G- and D-studies on each of the examined
graph properties. For each study, the measurement variances
were decomposed using a 3-way analysis of variance (ANOVA)
model, where graph properties were entered as dependent vari-
ables and subject, site and session were entered as random-
effect factors. The estimated variances for each factor were
then subjected to the reliability coefficients formula, and
D-coefficients for each of the graph properties were calculated.
This procedure was repeated for each processing scheme and
each paradigm.

We then used the resulting coefficients to explore several
scientifically interesting questions. In particular, we asked (1)
whether there would be significant reliability differences
between global and local properties; (2) whether different node
and edge definitions (i.e., AAL binary, AAL weighted, Power
binary, Power weighted) would result in differences in reliabil-
ity measures; (3) whether GSR would significant affect reliabil-
ity; and (4) whether different fMRI paradigms (i.e., WM, EM
encoding, EM retrieval, FM, RS) would generate different reli-
ability. Here, a mixed model was employed to answer these

questions, where reliability measures for each property were
given as the dependent variable, processing schemes (node and
edge definitions, GSR strategies) were given as fixed-effect
within-subject factors and fMRI paradigm as random-effect
within-subject factor, and property type (global and local) was
set as a fixed-effect between-subject factor. The main effects
for each of the factors were then estimated.

Given the interdependency nature of graph measures, the
reliability estimates derived from these measures are also likely
to be dependent on each other. As a result, we further per-
formed a more strict statistical comparison of the reliability
measures after controlling for dependency of the observations.
This was done by entering the prewhitened reliability values
into the mixed model described above. The results from this
analysis were also reported.

Node-Wise Reliability in D-Study
Given the fact that the D-study yielded significantly lower mean
reliability than the G-study (see Results), particularly for mea-
sures of nodal centrality (i.e., degree, betweenness, within-
module degree, and participation coefficient), we further probed
the reliability of centrality measures for each node in the context
of D-study, in order to ascertain the most reliable nodes in the
brain in different paradigms. Here, we only utilized Power atlas
and weighted networks without GSR to maximize reliability and
minimize confounds, since other processing schemes were shown
to be significantly less reliable (see Results). The reliability compu-
tation followed the same procedure as described above.

Comparison of Statistical Power Between Multisite and
Single-Site Studies

Although performing a multisite study provides the opportu-
nity to increase sample size and to generalize results cross
sites, it would also likely lead to power loss since it introduces
additional site-related variance which is not explicitly modeled
in single-site studies. For this reason, we further estimated the
minimal sample size that is required for a multisite study to
achieve comparable power to that of a single-site study. As
described above, the multisite reliability was obtained in the D-
study context where both n(s) and n(d) equal to one. For single-
site reliability, the D coefficients of all examined measures
were recalculated for each of the 8 sites. For each site (16 scans
with 8 subjects and 2 sessions), 3 variance components were
considered: subject, session and subject × session. The reliabil-
ity coefficients were computed in terms of these 3 components
and then averaged across all 8 sites. By this procedure we
acquired empirical estimates evaluating the reliability for a
single-site study (Cannon et al. 2017, 2018).

In the situation of perfect reliability (r = 1), the effect size of
measurement equals its “true” effect size. However, the effect
size attenuates when the reliability of measurement decreases.
Therefore, low reliability would bias the “true” effect size of the
measurement and in turn lead to power loss (Cohen 1988). Here,
we calculated the empirical effect sizes for all graph measures
based on their reliability coefficients in the multisite and single-
site study contexts. We considered a set of “true” effect sizes rang-
ing from 0.3 to 0.9 (interval of 0.2) to mimic different levels of
effect size in a case–control study (small: 0.3; medium: 0.5; large:
0.7; very large: 0.9 (Cohen 1988)). The effect sizes for each measure
were computed according to Cohen’s formula (Cohen 1988):

( ) = ′( ) × ( )ES m ES m rel m
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where ES′(m) is the “true” effect size of the given measurement,
rel(m) is the reliability of the measurement, and ES(m) is the
derived effect size under that reliability estimate.

The power estimations were performed using the R statisti-
cal power analysis toolbox pwr (https://cran.r-project.org/web/
packages/pwr/index.html). Here, for each of the “true” effect
sizes, we calculated statistical power across a range of sample
sizes for both multisite and single-site studies. This generated
a set of functions depicting the relationship between statistical
power and sample size for both studies and thus provided the
information on the optimal sample sizes for each measure in a
multisite study context.

Comparison of Different Data Aggregation Approaches

We further addressed another practical question: at which level
should we aggregate data from separate runs of a paradigm?
For example, one could merge the outcomes by computing the
connectomic measures for each scan run separately and then
averaging the derived measures from multiple runs (Anderson
et al. 2011). Alternatively, one could merge the original data by
concatenating time series from multiple runs and then com-
puting the connectomic measures from the concatenated time
series (Laumann et al. 2015). We refer the former as the “merg-
ing results” approach and the latter as the “merging raw data”
approach. Previous research has shown that concatenation of
time series using single-session data dramatically decreases reli-
ability (Cao et al. 2014), suggesting that “merging raw data” may
not be an optimal choice for data aggregation. However, by using
single-session data, splitting and concatenation of time series
would also lead to the decrease of number of time points, bring-
ing difficulty in the interpretation of the observed reliability
changes. Therefore, it would be important to investigate whether
the same reliability results apply to data concatenation by using
scans from multiple sites and/or sessions. Since concatenation of
multiple scans would dramatically increase the number of time
points and thus potentially benefit reliability, any reliability
reductions in the context of merged data would be most likely
due to the concatenation method itself.

Here, we aimed to give a direct comparison of reliability
measures derived from “merging results” and “merging raw
data” approaches, in order to inform a superior data aggrega-
tion approach in a multisite, multisession study. The FM task
used in this study offered an opportunity to explicitly investi-
gate this question since it comprised 2 consecutive identical
runs on each scan day (5.5min each, see text above). Here, by
“merging raw data” the preprocessed time series of both runs
were concatenated and brain graph measures were computed
from the concatenated time series (i.e., 11min). In contrast, by
“merging results” the graph measures were computed for each
run separately and then averaged to acquire the mean mea-
sures for both runs. We subsequently calculated the reliability
coefficients for the resulting measures from both approaches. A
repeated-measures ANOVA model was employed to compare
the reliability differences between these 2 approaches and sin-
gle session, with the processing approach as within-subject fac-
tor and reliability measures as dependent variable.

Results
Brain Graph Reliability for Each Paradigm

Overall, in the context of the 8-site, 2-session study (G-study),
we observed fair to excellent reliability for almost all computed
measures in all paradigms, regardless of processing scheme

(Fig. 2A–E). The only exceptions for this were measures of
assortativity and hierarchy during resting state, episodic mem-
ory retrieval and emotional face matching, 2 second-order
metrics that showed poor to excellent reliability depending on
processing scheme (0.26 < ϕ < 0.82). Among the remainder, the
most reliable measures were mean connectivity (0.46 < ϕ < 0.93
for all schemes), transitivity (0.45 < ϕ < 0.91 for all schemes),
global efficiency (0.45 < ϕ < 0.92 for all schemes), and node
strength (0.63 < ϕ < 0.90 for all schemes). In addition, small-
worldness, local efficiency, path length, clustering coefficient,
and modularity also showed excellent reliability when using
the Power atlas and weighted networks without GSR (0.74 < ϕ <
0.91) (Tables S4, S6, S8, S10, S12).

In the D-study with Nsites = 1 and Nsessions = 1, we found dra-
matically reduced reliability compared with G-study, particu-
larly when analyzed with binary networks (0.06 < ϕ < 0.62 for
all paradigms, Fig. 3A–E) and with GSR (0.01 < ϕ < 0.45 for all
paradigms). Nevertheless, a few measures still showed fair to
good reliability across all paradigms and across both atlases,
though only for weighted networks without GSR. These
included measures assessing network connectivity strength
(e.g., mean connectivity, node strength, 0.44 < ϕ < 0.64 for all
paradigms) and network segregation and integration (e.g., path
length, efficiency, transitivity, 0.44 < ϕ < 0.62 for all paradigms)
(Tables S5, S7, S9, S11, S13). Other measures, such as number of
modules, also reached fair reliability in the working memory,
episodic memory retrieval and emotional face matching tasks
(0.36 < ϕ < 0.54). Together, these findings suggest that measures
of network connectivity and network segregation and integra-
tion are the most reliable measures in human functional con-
nectomics, even when pooling data in which different subjects
are scanned once on different scanners.

Reliability Comparisons Between Paradigms, Processing
Schemes, and Property Types

For both G- and D-studies using original reliability data, the
results revealed that fMRI paradigm (P < 0.001), node definition
(F > 30.94, P < 0.001), edge definition (F > 24.01, P < 0.001) and
GSR (F > 297.68, P < 0.001) all significantly influenced resulting
reliability (Figs 2F, 3F). Specifically, graph measures computed
from all examined tasks showed higher reliability than those
from resting state (PBonferroni < 0.001). The Power atlas and
weighted networks had higher reliability than the AAL atlas
(P < 0.001) and binary networks (P < 0.001). Moreover, signifi-
cantly higher reliability was observed for data without GSR
compared with those with GSR (P < 0.001). In contrast, property
type (global and local) did not show significant effect on reli-
ability coefficients (F < 0.51, P > 0.49), suggesting that global
and local properties are equally reliable.

After accounting for interdependency of the observations,
we found that there were no longer significant differences
between different paradigms and network types (P > 0.08).
However, significant differences remained between measures
with GSR and those without GSR (F > 20.60, P < 0.001), and
between those based on the AAL atlas and those based on the
Power atlas (F > 5.03, P < 0.03), suggesting that the effects of
GSR and brain atlas on graph reliability are robust and less
affected by the inherent dependency of the data structure.

Variance Components of Functional Graph Measures

Here we report the results of variance isolation derived from
the Power weighted networks without GSR, since this scheme
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Figure 2. Reliability for examined graph properties, paradigms and processing schemes in the G study context, wherein Nsites = 8 and Nsessions = 2 (A: resting state;

B: working memory; C: episodic memory encoding; D: episodic memory retrieval; E: emotional face matching). (F) The statistical comparison between different para-

digms and schemes by averaging all graph properties. The orange dashed lines indicate the level of fair reliability (⩾0.4) and the red dashed lines indicate the level of

good reliability (⩾0.6).
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Figure 3. Reliability for examined graph properties, paradigms and processing schemes in the D study context, wherein Nsites = 1 and Nsessions = 1, simulating the

design of the typical “big data” application involving pooling of data from different scanning sites (A: resting state; B: working memory; C: episodic memory encoding;

D: episodic memory retrieval; E: emotional face matching). (F) The statistical comparison between different paradigms and schemes by averaging all graph properties.

The orange dashed lines indicate the level of fair reliability (⩾0.4).
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in general yielded the highest reliability. Overall, for all proper-
ties in all paradigms, the 3 largest variance components were
participant, participant × site and participant × site × session
(Figs S1–S5). These 3 components together accounted for more
than 80% of the total variance for almost all properties. In con-
trast, session-related variance was the smallest, less than 1% of
the total variance for most properties. In addition, site-related
variance was much smaller (2–17 times) than participant-
related variance for the vast majority of properties.

For resting state, the proportion of variance attributed to partic-
ipant ranged between 4% and 50%, with the highest proportion in
relation to global efficiency and lowest in relation to within-
module degree. For cognitive tasks, the participant variance
ranged between 4% and 59%. Here, the properties with the highest
participant-related variance were mean connectivity and node
strength, which accounted for about 60% of the total variance for
all tasks. Other properties with high participant-related variance
included measures of network segregation and integration (path
length, transitivity, clustering coefficient, efficiency) and node
diversity, which in general accounted for around 50% of the total
variance for each task. In contrast, participant-related variance
represented a low proportion (less than 40% of the total) for mea-
sures of small-worldness, modularity, hierarchy and nodal cen-
trality (degree, betweenness, within-module degree, participation
coefficient). These results suggest that graph properties evaluating
network segregation and integration are more trait-related mea-
sures, while those evaluating small-world organization, modular
structure, and centrality are more state-related measures.

Node-Wise Reliability in D-Study

We found that examined tasks had considerably more reliable
nodes than resting state for all centrality measures (Fig. 4).
While assigning nodes into 9 well-established systems as previ-
ously reported (sensori-motor, visual, auditory, default-mode,
cingulo-opercular, frontoparietal, salience, attention, subcorti-
cocerebellar (Power et al. 2011)), the reliable nodes (ϕ > 0.40)
mainly mapped to the frontoparietal system (e.g., superior,
middle and inferior frontal gyri, and inferior parietal lobules),
cingulo-opercular system (e.g., superior frontal gyrus, middle
cingulate cortex, supramarginal gyrus, and rolandic

operculum), salience system (e.g., anterior cingulate cortex,
insula, supramarginal gyrus, and middle frontal gyrus), atten-
tion system (e.g., inferior frontal gyrus, superior and inferior
parietal lobule, precuneous, and middle temporal gyrus), as
well as the default-mode system (e.g., medial frontal cortex,
precuneous, and middle temporal gyrus), visual system (e.g.,
middle occipital gyri, lingual gyrus, and fusiform gyrus), and
sensori-motor system (e.g., precentral gyrus, postcentral gyrus,
supplementary motor area, and paracentral lobule) (Fig. 4 and
Table S14).

In contrast to the results for task paradigms, the resting
state data in general showed fewer reliable nodes. Here, the
reliable nodes were mainly distributed in the default-mode sys-
tem (e.g., medial frontal cortex, precuneous, and middle tempo-
ral gyrus) and sensori-motor system (e.g., precentral gyrus,
postcentral gyrus, supplementary motor area, and paracentral
lobule) (Table S14). Notably, these systems were part of the reli-
able systems found in the task paradigms, suggesting that the
reliability distribution of nodal centrality consists of a set of
systems that is independent of active tasks and another set of
systems that is reliable only when tasks are presented.

Comparison of Statistical Power in Multisite Versus
Single-Site Studies

The reliabilities of all connectomic measures were substantially
higher in the single-site study compared with the multisite
study context. Similar to the multisite study, measures of con-
nectivity strength, network segregation and integration had
highest reliability of all measures in the single-site study. In
addition, measures of hierarchy, modular structure, node diver-
sity and centrality were considerably more reliable in the
single-site study than in the multisite study (Table S15).

The power analysis revealed that with a small effect size
(d = 0.3), the sample size needed for an adequate level of power
(≥0.8) in multisite studies (approximately 700–1400) was much
larger than that in single-site studies (less than 600 subjects)
(Figs 5 and S8). With an increase of effect size, the sample size
required to achieve adequate power was dramatically
decreased, as was the difference in sample size needed for mul-
tisite and single site studies to have equivalently high power.

Figure 4. The most reliable nodes in terms of nodal centrality measures in the D study context, wherein Nsites = 1 and Nsessions = 1. Nodes were allocated into 9 prede-

fined functional systems according to Power et al. Note that the default-mode and sensori-motor systems showed high reliability in both resting state and cognitive

tasks, while the higher-order systems (frontoparietal, cingulo-opercular, attention, salience) were predominantly reliable in cognitive tasks. RS = resting state; WM =

working memory; EMenc = episodic memory encoding; EMretr = episodic memory retrieval; FM = emotional face matching.
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In multisite studies, for the most reliable measures including
network connectivity, network segregation and integration,
only 250–300 subjects in total were needed to detect a medium
effect (d = 0.5), only 100– 150 to detect a large effect (d = 0.7),
and only <100 to detect a very large effect (d = 0.9) (Fig. 5). In
contrast, for relatively less reliable measures such as hierarchy
and nodal centrality, a total sample size of > 150 was required
even with a very large effect size (d = 0.9) (Fig. S6). In single-site
studies, a total sample size of 275 is sufficient to detect a
medium effect and sample size of 100 to detect a large effect
for all examined properties.

Comparison of Data Pooling Methods

By merging results from both runs, reliability of all studied
graph measures increased compared with those derived from a
single scan (Fig. 6). In contrast, the “merging raw data”
approach reduced reliability for almost all measures. A direct
comparison between the 2 methods demonstrated a significant
difference in graph reliability, where the “merging results”
approach yielded a significantly higher reliability than a single
run (F > 20.91, P < 0.001) and the “merging raw data” approach
(F > 16.30, P < 0.001) in both G- and D-studies. These results

Figure 5. Statistical power as a function of total sample size across multiple effect sizes for 5 selected connectomic measures. The red lines represent power for multi-

site studies while the blue lines represent power for single-site studies, based on Cohen’s d for 2-tailed contrast of 2 independent groups at α = 0.05. The effect sizes

have been adjusted downward for observed reliabilities of each connectomic measure in the multisite and single-site contexts, respectively.
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remained significant after prewhitening of the reliability data
(F > 10.15, P < 0.005). Moreover, graph measures derived from
single run showed significantly higher reliability than those
derived from the “merging raw data” approach in both G- and
D-studies (F > 5,40, P < 0.03), although only without prewhiten-
ing. These results support the superiority of using a “merging
results” approach in data aggregation in the study of human
functional connectomes.

Discussion
This study investigated a fundamental question in human
functional connectomics research: how feasible is it to aggre-
gate multisite fMRI data in large consortia? Our results demon-
strated that (1) the connectomic measures derived from
different sites and sessions showed generally fair to good reli-
ability, particularly for measures of connectivity strength, net-
work segregation, and network integration; (2) choice of
parcellation scheme significantly influenced reliability, with
networks constructed from the Power atlas significantly more
reliable than those constructed from the AAL atlas; (3) applica-
tion of GSR remarkably reduced reliability of connectomic mea-
sures; (4) while network diagnostics for some primary
functional systems were consistently reliable independently of

paradigm, those for higher-order cognitive systems were reli-
able predominantly when challenged by task; (5) a total sample
size of 250 participants or more was likely to be sufficient for
multisite case–control studies if the effect size of group differ-
ences is at least moderate (≥0.5); and (6) different data aggregation
approaches yielded different reliabilities, with the “merging
results” approach higher than the “merging raw data” approach.
These results provide empirical evidence for the feasibility of pool-
ing large sets of functional data in human connectomics research
and offer guidelines for sample size, data analytic approaches,
and aggregation methods that equate with adequate levels of reli-
ability and statistical power.

Overall Reliability of Functional Graph Measures

Using our multisite, multisession data, we found that the vast
majority of functional connectomic measures were reasonably
reliable during both resting state and cognitive tasks. This find-
ing is in line with previous studies using test–retest data, where
fair to excellent test–retest reliability have been shown for
functional graph metrics in various fMRI paradigms, including
resting state (Braun et al. 2012; Cao et al. 2014; Welton et al.
2015; Termenon et al. 2016), working memory (Cao et al. 2014),
emotional face matching (Cao et al. 2014), attentional control
(Telesford et al. 2010), and natural viewing (Wang et al. 2017).
These prior publications and our present data suggest that
graph theory based connectomic measures are associated with
overall high between-subject variance and relatively lower
within-subject variance. Indeed, our analyses revealed that
subject-related variance was one of the largest components for
almost all examined properties in all paradigms. In contrast,
within-subject variance such as scan site- and session-related
variance, were found to be much smaller than subject-related
variance, suggesting the feasibility of using these measures in
the study of human functional connectomes in large consortia.
Notably, 2 other relatively large components were the subject ×
site and subject × site × session interactions. This pattern is
also consistent with previous findings in brain activity mea-
sures during working memory (Forsyth et al. 2014) and emo-
tional face matching (Gee et al. 2015), suggesting that many
fMRI measures are sensitive to factors such as subject alert-
ness, diurnal variations, situational distractions, and variations
in head placement, among others (Meyer et al. 2016). Because
these factors were not controlled in our traveling subjects
study, and indeed are difficult to homogenize across sites and
time, the reliability coefficients presented here likely represent
a lower bound estimate of reliability (i.e., theoretically higher
reliabilities would be obtained with greater standardization of
time of day, head positioning, and subject alertness).

Interestingly, some of the examined graph properties were
associated with particularly high proportions of subject-related
variance during the cognitive tasks, including measures of con-
nectivity strength (e.g., mean connectivity and node strength),
network segregation (e.g., clustering coefficient and transitivity)
and network integration (e.g., path length and global/local effi-
ciency). For each of these measures, approximately 50–60% of
the total variance was attributed to subjects, indicating that
subject-related variance was larger than any other components.
Since a similar finding has also been reported in the previous test–
retest studies (Telesford et al. 2010; Cao et al. 2014; Termenon
et al. 2016), these results suggest that graph properties for connec-
tivity strength, network segregation and network integration are
particularly robust across scan sites and scan sessions and are
thus possibly reflective of stable, participant-specific features of

Figure 6. Reliability comparison of 2 data aggregation approaches (A: G study;

B: D study). The “merging results” approach (i.e., averaging properties across

sessions) was associated with significantly higher reliability compared with

those from single session, while the “merging raw data” approach (i.e., concate-

nation of time series from both sessions) had significantly reduced reliability.

The orange dashed lines indicate the level of fair reliability (⩾0.4) and the red

dashed lines indicate the level of good reliability (⩾0.6).

1274 | Cerebral Cortex, 2019, Vol. 29, No. 3



brain organization. In contrast, measures assessing the small-
world and modular structures (e.g., small-worldness, modu-
larity, number of modules) and nodal centrality (e.g., degree,
betweenness, within-module degree, and participation coeffi-
cient) had in general equal proportions of subject-related and
error-related components, suggesting that these measures are
to a greater degree sensitive to within-subject factors and thus
potentially more state-related. Prior work has shown that mea-
sures of network segregation and integration are highly heritable
(Smit et al. 2008; Fornito et al. 2011), while measures of small-
world and modular structures are dynamic during different
behavioral and cognitive states such as finger tapping (Bassett
et al. 2006), motor learning (Bassett et al. 2011, 2015) and mem-
ory (Braun et al. 2015). These findings converge with our results
in suggesting that trait- and state-related characteristics of brain
functional systems may be captured by different graph based
connectomic measures.

Effects of Processing Schemes on Reliability

Our study found significant effects of processing scheme on the
detected reliability. Specifically, networks constructed from the
Power atlas were more reliable than those from the AAL atlas.
This is consistent with the finding in a prior study where the
Power atlas also showed better reliability than the AAL atlas in
terms of test–retest reliability (Cao et al. 2014). Two factors may
plausibly account for this. First, the number of nodes in the
Power atlas is 3 times as large as that in the AAL atlas. Since
atlas size has been shown to be quantitatively influence result-
ing graph measures (Wang et al. 2009; Zalesky et al. 2010), this
effect may also translate to their reliabilities. Second, compared
with the AAL atlas, the Power atlas represents a finer definition
of functionally separated units derived from the meta-analysis
of a large set of imaging data. As a result, networks constructed
from the Power atlas may better pertain to the task paradigms
used in the study and thus show higher reliability.

Apart from node definition, GSR has shown to have a signifi-
cant effect on graph reliability. Here, our result is parallel to a
previous study showing lower test–retest reliability of hub dis-
tributions with GSR (Liao et al. 2013). These findings are partic-
ularly interesting since the validity of GSR has been much
discussed in the literature (Liu et al. 2017; Murphy and Fox
2017). Arguably, GSR is one of the most effective approaches
available to control for head motion related artifacts (Power
et al. 2012, 2014; Satterthwaite et al. 2013; Yan et al. 2013).
However, global signal also incorporates nonartifactual sources
such as postsynaptic spiking (Scholvinck et al. 2010) and brain
glucose metabolism (Thompson et al. 2016), and may poten-
tially help to increase diagnostic specificity for certain mental
disorders such as schizophrenia (Yang et al. 2014). In addition,
while effectively controlling for motion-related artifacts, the
GSR step can also introduce spurious anticorrelations (Murphy
et al. 2009) and distance-dependent artifact (Ciric et al. 2017) to
the data. As a result, the decreased reliability associated with
GSR may be attributable to the removal of reliable neural infor-
mation from the signal and/or the introduction of additional
noise into the analysis. Another interpretation, from an oppo-
site point of view is that, head motion is usually highly reliable
within subjects (Couvy-Duchesne et al. 2014; Zeng et al. 2014)
which could potentially contribute to greater reliability of graph
metrics if they are influenced by movement. This possibility
would suggest a reliability–accuracy trade-off for brain connec-
tomic measures, where reducing motion artifacts could attenu-
ate reliability but increase accuracy for outcomes. Taken

together, these results suggest that a more comprehensive
evaluation of effect of GSR is still warranted in future work.

Reliable Nodes in Rest and Tasks

Across both resting state and the implemented tasks, the reli-
able nodes were predominantly distributed in the default-mode
and sensori-motor systems. This result is highly parallel to the
results of a recent study using the Human Connectome Project
(HCP) test–retest data (Termenon et al. 2016), where the same
distribution was reported for resting state. Interestingly, both
systems serve as the primary functional systems in the human
brain. The default-mode network is involved in brain’s resting
state and becomes active when individuals are focused on
internal thoughts (Buckner et al. 2008). The sensori-motor sys-
tem may relate to the motor response during active tasks and
the sensation of environmental changes during resting state.
The functionality of these systems makes them plausible to be
more robust than other systems independent of fMRI paradigms.

Besides the above systems, the cognitive tasks also showed
high reliability for nodes in the frontoparietal system, cingulo-
opercular system, salience system and attention system.
Notably, these systems are pivotal to human cognitive func-
tions such as memory (Prabhakaran et al. 2000; McNab and
Klingberg 2008), emotional processing (Phillips et al. 2003) and
executive functioning (Niendam et al. 2012), and are strongly
associated with the memory–emotion task battery used in this
study (Forsyth et al. 2014; Gee et al. 2015). Together, these find-
ings suggest that the cognitive tasks would increase the reli-
ability of the multimodal cognitive systems, while the primary
functional systems are consistently robust through different
brain states/imaging paradigms.

Statistical Power for Multisite and Single-Site Studies

Although a considerably larger sample size is required to com-
pensate for power loss in a multisite study when the effect size
is small, with medium to large effects, sample sizes required
for adequate to excellent power are in the range typical of con-
sortium studies, particularly for measures with relatively high
multisite reliability (i.e., connectivity strength, network segre-
gation and integration). Interestingly, a recently study using
simulated data found that approximately 120 subjects per
group are sufficient to yield satisfying power for network con-
nectivity measures in multisite studies (Dansereau et al. 2017),
which is quantitatively similar to the estimated sample size in
our study. Since a total sample size larger than 200 subjects is
increasingly common in large consortia, studies using data
from these consortia are likely to be reasonably well-powered.

Effects of Data Pooling Methods on Reliability

By comparing 2 data pooling approaches, we found that “merg-
ing results” is associated with significantly better reliability of
brain graph measures compared with the “merging raw data”
approach. This result is consistent with previous work using
single-session data that also revealed a significant decrease of
graph reliability by the chopping and concatenation of fMRI
time series (Cao et al. 2014). Notably, our current finding was
derived from the concatenation of data from 2 identical runs,
which increased the total number of time points by a factor of
2. Considering this, the reliability change reported here is most
likely induced by the “concatenation” approach itself rather
than the loss of data points. While speculative, the poor
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performance of “concatenation” approach may relate to the
modification of the fundamental characteristics of original fMRI
series such as signal frequency, which renders the
concatenated signals particularly sensitive to physiological
noise and other artifacts (Gavrilescu et al. 2008). In contrast, the
average of graph properties computed from separate runs sig-
nificantly increased reliability. This result is intuitive since the
mean calculation of multirun data statistically reduces run-
specific noise and thus boosts reliability. Another explanation
here is that these 2 merging approaches would lead to different
treatment of session-related variance, a factor that may affect
the outcome reliabilities.

Limitations

We acknowledge several limitations for our study. First,
although we have constructed brain networks with several dif-
ferent processing schemes in this work, the choice of other pro-
cessing schemes such as the preprocessing parameters (Braun
et al. 2012), filter frequency (Deuker et al. 2009; Braun et al.
2012), and selected thresholds (Schwarz and McGonigle 2011;
Termenon et al. 2016) may still influence reliability. Second,
while we have provided data on a set of fMRI experiments eval-
uating memory, emotion and resting functions of the brain, all
findings reported in this study are nevertheless influenced by
the specific paradigms, scan parameters, subjects and data pro-
cessing methods used here, and it is possible that these results
may not be able to generalize to other tasks, protocols, proces-
sing methods, and populations. Third, our reliability study was
based on a crossed design where each subject was evaluated at
all of the different sites across 2 sessions. This is different from
a more commonly used nested design in which different sub-
jects are evaluated on different scanners. We sought to general-
ize our results to mimic this situation using the D-study
extension, where we were essentially modeling how well one
scan randomly sampled from among the set of 16 scans avail-
able for each subject reflects their “true” score for each graph
property. Fourth, the single-site reliability was estimated by
averaging reliability measures across different sites, which
implicitly treated site as a fixed-effect factor (Westfall et al.
2016). This was different from our multisite analysis where site
was treated as a random-effect factor. Fifth, the total number
of time points for the paradigms used in this study (particularly
resting state) are generally small, which limits the possibility of
exploring the reliability of graph measures in longer scan ses-
sions. Our results suggest that reliability may not benefit from
simply concatenating multiple sessions of fMRI data, at least
for the face matching paradigm used here. However, it is still
an open question whether further increase of fMRI data (e.g.,
concatenation of series from more than 2 sessions, and exten-
sion of scan length for each session) would compensate for the
reliability penalty caused by the concatenation method. Sixth,
the sample size in our study was relatively small. Although this
traveling subject sample is one of the largest to date, future
studies with larger samples assessing between-site reliability
are still warranted. In addition, much of the work regarding
within-site reliability could be performed using larger public
datasets such as the HCP (Van Essen et al. 2013), the 1000
Connectome Project (Biswal et al. 2010) and the Healthy Brain
Network Serial Scanning Initiative (’Connor et al. 2017). Seventh,
our findings were based on 2 commonly used brain atlases
which we have chosen to be representative of structural and
functional atlases, respectively. However, given the large num-
ber of atlases available in the literature (Craddock et al. 2012)

and given that no single atlas seems to be qualitatively superior
than others (Arslan et al. 2017), it would be important to test the
generalizability of connectomic findings across different atlases
and to test the effect of parcel numbers on the reliability mea-
sures. Eighth, while we argue that single-site studies possess
larger power than multisite studies (and tested this using empir-
ical data), we urge the readers to note that the increased power
in single-site studies is likely at the cost of higher false positive
rate compared with multisite studies. In other words, results
from single-site studies likely reflect idiosyncratic site-specific
effects that do not necessarily generalize to other sites (Westfall
et al. 2016). Last but not least, although our work reported here
mainly focused on reliability, it is important to note that reliabil-
ity is not the only criterion for the guidance of method/measure-
ment selection in a multisite setting. Other measures such as
sensitivity and specificity are equally important, and these need
to be tested in future work.

Conclusions
In conclusion, using fMRI data and a traveling subject sample,
our study presented evidence for the generalizability of human
connectomic measures across sites and sessions and for the
feasibility of pooling large set of brain network data for both
resting state and active tasks. While our findings generally
encourage the use of multisite, multisession scans to promote
power in functional connectomics research, future work is still
required to replicate these findings and to test the generaliz-
ability of these results.
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