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Abstract

The aberrant Hedgehog (Hh) signaling induced by mutations or overexpression of the signaling 

mediators has been implicated in cancer, associated with processes including inflammation, tumor 

cell growth, invasion and metastasis, as well as cancer stemness. Small molecules targeting the 

regulatory components of the Hh signaling pathway, especially Smoothened (Smo), have been 

developed for the treatment of cancer. However, acquired resistance to a Smo inhibitor vismodegib 

observed in clinical trials suggests that other Hh signaling components need to be explored as 

potential anticancer targets. Natural and dietary compounds provide a resource for the 

development of potent agents affecting intracellular signaling cascades, and numerous studies have 

been conducted to evaluate the efficacy of natural products in targeting the Hh signaling pathway. 

In this review, we summarize the role of Hh signaling in tumorigenesis, discuss results from recent 

studies investigating the effect of natural products and dietary components on Hh signaling in 

cancer, and provide insight on novel small molecules as potential Hh signaling inhibitors.
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1. Introduction

The Hedgehog (Hh) signaling pathway was first identified in Drosophila [1]. It is known to 

be involved in various developmental processes such as tissue patterning and organogenesis 

during embryogenesis [2–4] as well as in tissue regeneration and repair after injury [5, 6]. 

Although Hh signaling is important during development, its dysregulation has been 
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implicated in hyperproliferative disorders including cancer [7–9]. Genetic mutations of Hh 

signaling mediators and their hyperactivation have been associated with development of 

basal cell carcinoma (BCC), medulloblastoma, breast, pancreatic, prostate and lung cancers 

[10]. Consequently, Hh signaling has been explored for cancer prevention and treatment [11, 

12]. Clinical development of agents targeting a Hh signaling component Smoothened (Smo) 

resulted in approval of vismodegib and sonidegib for the treatment of BCC by the United 

States Food and Drug Administration (FDA) in 2012 and 2015, respectively. However, 

development of resistance to vismodegib reported in patients with advanced BCC and 

medulloblastoma [13, 14] underscores the need for alternative approaches targeting different 

mediators of the Hh signaling pathway.

Because of the role of the Hh signaling in cancer, naturally occurring compounds and 

dietary components inhibiting aberrant Hh signaling have been investigated for cancer 

prevention and therapy during the past decade [15, 16]. We retrieved articles from the 

PubMed database using the keywords “hedgehog and cancer”, “Smo and cancer”, and “Gli 

and cancer” and searched for natural products and dietary components reported to regulate 

Hh signaling in cancer. In this article, we review the role of Hh signaling in processes 

associated with carcinogenesis, such as inflammation, tumor growth, invasion, metastasis 

and stemness. In addition, we summarize results from in vitro and in vivo studies 

investigating natural products and dietary components as inhibitors of Hh signaling.

2. Hh Signaling

Hh signaling is activated upon the interaction between Hh ligands, such as Sonic Hedgehog 

(Shh), Desert Hedgehog (Dhh), and Indian Hedgehog (Ihh), and the membrane-bound cell 

surface receptor, Patched (Ptch) [17, 18]. In the absence of Hh ligands, Ptch keeps G 

protein-coupled receptor Smo from entering the primary cilium, where the suppressor of 

fused (SuFu) forms complex with glioma associated oncogene (Gli) 2 and 3 [19]. Gli can be 

phosphorylated by protein kinase A (PKA), casein kinase (CK)-1, and glycogen synthase 

kinase (GSK)-3β and partially degraded by proteasome in the base of the primary cilium 

[20–23]. Recently, the ciliary G-protein coupled receptor Gpr161 was found to increase the 

level of cAMP, resulting in PKA activation [24]. This observation suggests that cilia has a 

possible role in repressing Gli in the absence of Hh ligand, and in converting inactive Gli to 

an active form in the presence of the ligand. After partial removal of the C-terminal domain, 

the repressor form of Gli translocates to the nucleus to act as a transcriptional repressor to 

turn off Hh signaling.

During activation of the Hh signaling pathway, Hh ligands bind to the Ptch receptor to form 

a complex which is then degraded in lysosomes, and released Smo is relocalized at the tip of 

the cilium to activate downstream signaling [25]. Although the precise mechanism of Smo 

activation is not clearly understood, recent studies suggest that covalent modification of Smo 

on the Asp95 residue by cholesterol induce conformational changes in response to Hh 

ligands [26, 27]. After Smo activation, Gli2/3 escapes from SuFu complex and Gli2 as an 

activated form of Gli (Gli-A) induces transcription of the target genes. One of the target 

genes, Gli1, further amplifies the Hh signaling; Gli1 expression level has been suggested as 

an indicator of Hh signaling activity [28]. Other Gli targets include genes involved in cell 
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proliferation (MYC, CCND1, CCND2, FOXM1)[29–32], stem cell regeneration (JAG2, 

FST) [30, 33], and cell survival (BCL2, c-FLIP) [34, 35].

In addition to the ligand and receptor-dependent mechanisms, Hh signaling mediators, 

especially Gli, are known to be regulated by different cellular networks including mitogen-

activated protein kinases (MAPK), phosphatidylinositol-3-kinase (PI3K)/AKT, tumor 

necrosis factor (TNF)-α, and transforming growth factor (TGF)-β [36–41]. The activation of 

PI3K/AKT also leads to Gli1/2 up-regulation, where a Gli inhibitor and an AKT inhibitor 

synergistically suppress tumor growth in vitro and in vivo [40]. Recently, TNF-α was found 

to induce Gli1 phosphorylation through mammalian target of rapamycin (mTOR)/S6 kinase 

(S6K) 1 in esophageal adenocarcinoma [39]. Additionally, interaction of β-catenin with Gli1 

and induction of Gli1/2 by TGF-β through Smad3 were implicated in regulation of Hh 

signaling [36, 41]. After it was reported that activated MEK1 induces the expression of the 

Gli protein, and the N-terminus of Gli1 is an important region for extracellular signal-

regulated kinase (ERK) 1/2 [37], interactions between Hh signaling and ERK1/2, ERK5, c-

Jun N-terminal kinase (JNK), and p38 have been demonstrated in different cancers 

(reviewed in [42]).

3. The role of Hh signaling in carcinogenesis

The underlying mechanisms of Hh signaling in cancer development have been extensively 

reviewed [43] and include i) mutation-driven ligand-independent Hh activation in BCC and 

medulloblastoma; ii) ligand-dependent autocrine Hh activation in lung, breast, stomach, and 

prostate cancer, iii) ligand-dependent paracrine Hh activation in pancreatic cancer, iv) 

ligand-dependent inverse paracrine Hh activation in B-cell lymphoma, multiple myeloma, 

and leukemia [10]. Here, we discuss how Hh signaling is involved in the process of tumor 

development and metastasis.

Hh signaling in inflammation

Inflammation is known to be associated with cancer development by driving several 

processes including proliferation, angiogenesis, and metastasis [44]. Recent studies have 

shown that Hh signaling is activated during inflammation. In Helicobacter pylori-induced 

gastric inflammation, nuclear factor-κB (NF-κB) is activated to induce gene expression of 

Shh, Ptch, and Gli [45, 46]. Further, upregulated cytokines, such as IL-6, IL-1β and TNF-α, 

have been associated with uncontrolled activation of Hh signaling [47]. The inhibition of Hh 

signaling by a Smo inhibitor reduces activated macrophages and decreases the expression of 

pro-inflammatory molecules such as TNF-α, IL-1β and IL-6 in hepatic inflammation [48]. 

These results indicate that Hh signaling is associated with inflammatory responses that 

contribute to carcinogenesis.

Hh signaling in cancer cell growth

Hh signaling regulates cell proliferation through modulating the cell cycle- and apoptosis-

related genes. In particular, cyclin D and cyclin E involved in the G1/S transition are known 

to be transcription targets of Hh/Gli signaling in mammalian cells [49–51]. Ptch has been 

shown to regulate cyclin B/mitosis-promoting-factor (MPF) complex where MPF is required 
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for the G2/M transition in most cell types [52]. Shh, an Hh ligand, blocks cyclin-dependent 

kinase inhibitor p21-induced cell cycle arrest [53]. In addition, Hh signaling enhances cell 

survival by inhibiting caspase 8 signaling through regulating cFLIP and FAS, as well as 

activating BCL2 promoter [34, 35, 54]. Recently, it was reported that Shh promotes tumor 

cell survival by inhibiting a Shh receptor, cell adhesion molecule-related/down-regulated by 

oncogenes (CDON) [55]. Hh signaling inhibitors, such as cyclopamine and vismodegib 

targeting Smo, and GANT (GLI ANTagonist) 61 targeting Gli, were reported to inhibit cell 

proliferation through cell cycle arrest and apoptosis in different cancer models [56–58].

Hh signaling in angiogenesis

Tumor progression requires the formation of new blood vessels to supply oxygen and 

nutrients mediated by vascular endothelial growth factor (VEGF) signaling [59]. Activation 

of the Hh pathway was found to enhance vascularization by regulating VEGF and VEGF 

receptor in triple negative breast cancer [60, 61] and hepatocellular carcinoma [62]. Ectopic 

overexpression of Shh in colon xenografts increased tumor blood vessel density and 

angiogenesis via Hh-induced VEGF [63]. Harris et al. reported that constitutive expression 

of Shh enhanced vascularization in breast cancer by upregulating a Hh signaling target gene, 

cysteine-rich angiogenic inducer 61 (cyr61), although in a VEGF-independent mechanism 

[64]. Overall, these results suggest an important role of Hh signaling in regulating 

angiogenesis.

Hh signaling in invasion and metastasis

Tumors metastasize by invading the basement membrane, extravasating into circulatory 

system including lymph and blood vessels, and intravasating to distant locations [65]. Gli1 

was found to directly bind the promoter region of human CXCR4 gene and stimulate ERK 

phosphorylation in breast cancer which results in cellular invasiveness and metastasis [66]. 

Further, TNF-α induced Gli1 expression increased the migration and invasion of breast 

cancer cells by activating MMP-9 [67]. In gastric cancer, Shh activated PI3K/AKT signaling 

and enhanced cellular motility and invasiveness [68]. Chong et al reported that galectin-1, 

which stimulates invasiveness of gastric cancer, increased the expression of Gli1 

independently of Smo and further promoted metastasis [69]. In glioblastoma, Shh dose-

dependently upregulated the expression of MMP-2 and MMP-9, leading to enhanced cell 

migration and invasion [70].

Hh signaling in cancer stem cells

Cancer stem cells (CSC) have been functionally defined by their capacity to undergo self-

renewal and differentiation that may participate in tumor relapse and drug resistance [71]. 

The involvement of Hh signaling in CSC has been suggested in studies of multiple human 

cancers (reviewed in [72]). Activated Hh signaling in CSC was found in glioblastoma [73], 

breast cancer [74], colon cancer [75], and pancreatic cancer [76], where the suppression of 

Hh mediators by inhibitors, a ligand-neutralizing antibody, and/or siRNA treatment resulted 

in inhibition of stem-like properties. Hh signaling is activated in Bcr-Abl positive leukemia 

stem cells (LSC), and pharmacological inhibition of Smo reduced LSC in vivo [77], 

suggesting that Smo inhibition could be an effective treatment strategy in reducing tumor 

relapse and drug resistance in chronic myeloid leukemia.
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4. Regulation of Hh signaling by natural and dietary compounds

Natural and dietary compounds generally target multiple signaling pathways and are not 

known to be specific or direct modulators of individual signaling pathways. Only a limited 

number of studies have attempted to identify direct molecular targets of natural and dietary 

compounds in Hh signaling. However, it may be worth the effort because natural compounds 

often uncover novel mechanisms or chemical structures that are useful as platforms for drug 

development. Here, we provide an overview of studies with natural and dietary compounds 

active in modulating the Hh signaling pathway. The studies use both non-specific tumor 

models as well as models specific to molecules involved in Hh signaling pathways. The 

effects of natural products and dietary components reported to inhibit Hh signaling from in 
vitro and in vivo studies are summarized in Tables 1 and 2, respectively.

4.1. Direct inhibitors of Hh signaling from natural and dietary sources

Berberine—This isoquinoline alkaloid from the Berberis species was reported to suppress 

Gli1 transcriptional activity induced by a Shh ligand or a Smo agonist (SAG) [78]. Berberine 

inhibited Hh signaling activity by targeting Smo, most likely by directly binding to Smo on 

the same site as cyclopamine, and suppressesed Hh-dependent medulloblastoma growth in 
vitro and in vivo [78].

Cyclopamine and jervine—Cyclopamine and jervine, natural steroidal alkaloids isolated 

from Veratrum californicum, are the first small molecule Hh inhibitors identified to bind to 

the transmembrane domain of Smo [79]. Jervine, a metabolically more stable analog of 

cyclopamine, is 5- to 10-fold less potent in inhibiting Smo than cyclopamine [80]. As a lead 

natural Smo inhibitor, cyclopamine suppressed tumor growth in animal models [75, 81–84], 

and topical application of cyclopamine regressed BCC development in patients [85]. 

However, its insolubility in water, poor stability, and relatively high toxicity led to the 

development of pharmacologically more useful inhibitors [86–88]. Based on the 

mechanisms targeting the transmembrane domain of Smo, two novel synthetic Smo 

inhibitors, vismodegib and sonidegib, were developed and recently approved by the FDA for 

the treatment of locally advanced or metastatic BCC [89, 90]. Since cyclopamine and related 

compounds have been extensively described as inhibitors of Hh signaling in recent literature, 

we limit discussion on these compounds in this review.

Glabrescione B—Glabrescione B, identified from the seeds of Derris glabrescens, was 

recently shown by NMR spectroscopy to directly interact with K340 and K350 in zinc finger 

(ZD) domain 4 of Gli1. Because ZD4 and ZD5 domains of Gli1 can bind to a specific 

sequence of DNA, glabrescione B interferes with Gli1/DNA binding resulting in impairment 

of Gli1-dependent transcriptional activity. In biological assays, glabrescione B suppressed 

Gli1 target genes in Gli1-overexpressed HEK293T cells, Smo−/− mouse embryonic 

fibroblasts (MEF), Ptch−/− MEF and SuFu−/− MEF cells [91]. In allograft animal models 

where primary medulloblastoma cells from Ptch+/− mice and Gli1-dependent BCC cells 

(ASZ001) were grafted, glabrescione B inhibited tumor growth and decreased the expression 

of Gli1 and its target genes [91].
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Vitamin D3—Bijlsma et al. first reported that vitamin D3 directly binds Smo at the same 

site as cyclopamine in yeast model transformed with Smo using Scatchard analysis, and its 

treatment of zebrafish embryos mimicked the smo−/− phenotype such as U-shaped somites 

and aberrant extension of the yolk tube [92]. From a structure-activity relationship study, A-

ring of vitamin D3 was important in direct binding to Smo and inhibiting Hh signaling [93, 

94]. Vitamin D3 further showed inhibition of Hh signaling in BCC cells (ASZ) in a vitamin 

D receptor (VDR) independent way, and its topical application reduced Gli1 mRNA 

expression and proliferation of BCC cells in Ptch+/−K14-CreER p53 fl/fl mice [95]. In 

addition, in renal cell carcinoma, vitamin D3 inhibited cellular growth and suppressed the 

expression of Gli2, an effect that was diminished when Smo was not expressed [96]. Oral 

administration or intraperitoneal injection of vitamin D3 also suppressed tumor growth in 

the xenograft model and decreased the expression of Gli2 in tumor tissue lacking VDR [96]. 

Active form of vitamin D3, calcitriol, inhibited cell proliferation in vitro and growth of BCC 

in Ptch mutant mice by targeting Smo [97]. Although vitamin D3 and its metabolites were 

reported to inhibit Hh signaling in a VDR-independent manner [95–97], it was recently 

demonstrated that VDR enhances the expression of SuFu through regulating miR-214 in 

breast cancer cells [98]. Overall, these findings suggest the interplay between vitamin 

D/VDR axis and Hh signaling in cancer.

4.2. Potential inhibitors of Hh signaling from natural and dietary sources

Curcumin and bisdemethoxycurcumin—Curcumin, a main active ingredient of 

Curcuma Longa (turmeric), induced cell cycle arrest and apoptosis via down-regulating the 

Hh signaling mediators including Gli1 in medulloblastoma and glioma cells [99, 100]. It 

suppressed the transcriptional activity of Gli1 and inhibited growth of mouse prostate cancer 

cells [101]. Recently, several studies demonstrated that curcumin, via inhibiting the Hh 

signaling pathway, reversed epithelial-mesenchymal transition (EMT) induced by TGF-β1 

or hypoxia in pancreatic cancer cells [102, 103] and by γ-irradiation in glioma cells [104]. 

In a tumorsphere culture of lung CSC, curcumin suppressed formation of the tumorsphere 

and increased expression of stem cell markers, CD133, CD44, aldehyde dehydrogenase 

(ALDH) 1, Nanog, and Oct4, as well as expression of Gli and Smo, all of which were 

induced by Smo activator purmorphamine [105].

Epigallocatechin gallate (EGCG)—EGCG, a well-known catechin in green tea, was 

found to down-regulate the expression of Gli1 and inhibit the proliferation of mouse prostate 

cancer cells [101] and human chondrosarcoma cells [106]. In pancreatic CSC, EGCG 

inhibited cellular self-renewal capacity through regulating stem cell markers, Nanog, c-Myc 

and Oct4, as well as Hh signaling mediators, Smo, Ptch and Gli1/2 [107]. In an animal 

model of carcinogen-induced liver cancer, oral administration of EGCG reduced the 

population of α-fetoprotein- and CD44-positive cells and inhibited the expression of Gli1, 

Smo, cyclin D1, cMyc, and EGFR [108, 109].

Genistein and daidzein—Genistein, one of major isoflavones in soy products, inhibited 

transcriptional activity and expression of Gli1 in prostate cancer cells [101]. An additional 

study reported that genistein suppressed tumorsphere formation and decreased Gli1 and 

CD44 expression [110]. In a xenograft model of docetaxel-resistant prostate cancer cells, 
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genistein inhibited tumor growth and down-regulated the expression of Gli1 and CD44 in 

tumor tissues whereas docetaxel showed no effect [110]. In MCF-7 breast cancer cells, 

genistein reduced the size and number of tumorspheres, decreased the percentage of the 

CD44+/CD24− subpopulation, and inhibited the expression of Smo and Gli1 [111]. This 

finding was further confirmed in MCF-7 xenograft tumors by demonstrating that genistein 

decreased tumor weight, and reduced the expression of Smo, Gli1, and a key stem cell 

marker ALDH1 [111]. Similar results showing regulation of Gli1 and CD44 expression and 

CSC properties by genistein were reported from a study of gastric cancer [112]. Another 

isoflavone, daidzein, was found to reverse cellular migration and invasion stimulated by 

TNF-α via inhibiting Gli1 expression and its transcriptional activity as well as MMP-9 

activity in estrogen receptor (ER)-negative breast cancer cells [67].

Resveratrol—The compound, a stilbenoid found in grapes, blueberries and peanuts, 

inhibits Gli1 transcriptional activity [101]. Recent studies demonstrated resveratrol-mediated 

suppression of proliferation and induction of apoptosis in pancreatic cancer by modulating 

the expression of Gli1, Ptch and Smo [113]. Resveratrol inhibited the invasion capacity of 

gastric cancer cells by blocking the expression of Gli1, Snail, and N-cadherin and by 

increasing levels of E-cadherin [114]. In addition, hypoxia-stimulated Hh activation and 

invasiveness was suppressed by resveratrol in pancreatic cancer cells [115]. It is noteworthy 

that all studies of resveratrol targeting the Hh signaling have been conducted in cultured 

cells but not in vivo.

Silibinin—The compound present in seeds of milk thistles inhibited cell proliferation, 

induced apoptosis, and reduced Gli1 expression in renal cell carcinoma cells [116]. Silibinin 

decreased expression of phosphorylated AKT, mTOR, Gli1 and BCL2 in a renal cell 

carcinoma xenograft model [116]. Importantly, it is recently reported that silibinin inhibited 

the growth of Smo inhibitor-resistant basal cell carcinoma cells via targeting EGFR-MAPK-

AKT, suggesting the possible combination of Smo inhibitors and other Hh targeting natural 

molecules [117].

Sulforaphane and sulforaphene—Sulforaphane, commonly found in cruciferous 

vegetables, suppressed the expression of Smo and Gli as well as Nanog and Oct4 in 

pancreatic cancer cells, which may indicate depletion of CSC [118]. A subsequent study 

using a xenograft model implanted with CD133+/CD44+/CD24+/ESA+ pancreatic CSC 

showed that oral administration of sulforaphane inhibited tumor growth and expression of 

Smo, Gli, Nanog, and Oct4 [119]. A sulforaphane analog, sulforaphene, was also found to 

inhibit Hh signaling mainly through reducing Gli1 expression and altering its localization 

which resulted in decreased migration and invasion of breast cancer cells [120].

Zerumbone and gedunin—Zerumbone, a sesquiterpene identified from the subtropical 

ginger Zingiber zerumbet, was reported to suppress the expression of chemokine receptor 4 

(CXCR4) [121], a direct target of Gli1 involved in migration and metastasis of breast cancer 

cells [66]. These results suggest that zerumbone may regulate metastasis through Gli1/

CXCR4 in breast cancer. Gedunin, a tetranotriterpenoid identified from Azadirachta indica 
known as Neem, inhibited proliferation, migration and metastasis of pancreatic cancer cells 
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and reduced both endogenous and Shh-stimulated levels of Ptch, Smo, Gli1, Shh, and SuFu 

[122]. Gedunin also reduced tumor growth in a xenograft model and decreased the levels of 

Hh mediators and EMT markers such as Notch-2, Snail, N-cadherin and Vimentin [122].

Others—Ishibashi et al employed a tetracyclin-regulated Gli1 expression/Gli1-luciferase 

assay system in HaCaT cells to screen the effects of natural components on Hh signaling and 

further to test their growth inhibitory effects in pancreatic (PANC1) and prostate (DU145) 

cancer cells [123–129]. The compounds identified as suppressors of Gli1 expression and 

transcriptional activity and inhibitors of cell proliferation included acoschimperoside P, 2’-

acetate from Vallaris glabra, betulinic acid and colubrinic acid from Zizyphus cambodiana, 

gitoxigenin analogues from Adenium obesum, taepeenin D, (+)-drim-8-ene and quercetin 3-

O-beta-D-glucopyranosyl-4-O-beta-D-glucopyranoside from Acacia pennata, 

staurosporinone and physalin F & B from Crinum asiaticum, physalin H from Solanum 
nigrum, and vitetrifolin from Vitex negundo [123–129]. Arcyriaflavin C from Tubifera 
casparyi also suppressed the transcriptional activity of Gli1 without affecting cell viability 

[124]. Importantly, physalin H and vitetrifolin blocked the direct interaction between Gli1 

and DNA containing Gli1 binding site, suggesting Gli as a molecular target [127, 128]. 

Deguelin, a natural rotenoid derived from plants including Derris trifoliate, was reported to 

up-regulate SuFu and Ptch1/2, down-regulate Gli1, and inhibit proliferation, migration, and 

invasion in pancreatic cancer cells [130]. Ellagic acid, produced by hydrolysis of tannins 

from different fruits and vegetables, inhibited pancreatic tumor growth when orally 

administered and suppressed the expression of Gli1 and Gli2 in tumor tissues [131]. It was 

recently reported that crocetinic acid purified from crocetin inhibited the sphere formation of 

pancreatic cancer cells and decreased the expression of Shh, Smo, Gli1 and SuFu [132]. 

Germacranolide, a sesquiterpene lactone from Siegesbeckia glabrescens, suppressed the 

expression of Gli1 and Gli1-luciferase activity in pancreatic cancer cells [133]. Apigenin, 

baicalein, and quercetin inhibited cell growth and Gli1 expression in TRAMP-C2 cells 

although they did not affect Shh-induced Gli transcriptional activity in Shh Light II cells 

[101]. Recently, Infante et al. employed in silico screening of an in house compound library 

against the crystallographic structure of Smo bound to cyclopamine [134]. Based on the 

virtual hits fitting the Smo binding site and interaction with Smo residues, N219, Y394, 

K395, R400 and E518, the Smo antagonists were selected by using the FRED docking 

program and by ranking the Chemgauss4 score [134]. The biological function of selected 

molecules were then confirmed in Gli-responsive luciferase assay system, and 

isosophoranone, sorocein A, kuwanol E, and derrustone were found to exert an inhibitory 

activity [134]. Overall, modulation of the specific molecules in the Hh signaling pathway by 

natural and dietary inhibitors does not necessarily indicate that these compounds are specific 

or direct Hh inhibitors. The tumor inhibitory effects of these natural products and dietary 

components in the Hh-specific model systems need to be further examined to confirm 

whether molecular mechanisms involved are dependent on Hh signaling.

Conclusion and Future Directions

The role of Hh signaling in carcinogenesis has been demonstrated in experimental models 

and confirmed by clinical efficacy of two FDA-approved selective Smo inhibitors, 
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vismodegib and sonidegib. However, the acquired resistance to vismodegib in cancer 

patients demonstrates clinical limits of targeting Smo and sheds light on the roles of 

different mediators of the Hh signaling pathway. As reviewed in this article, numerous 

studies have evaluated the effects of natural products and dietary components on Hh 

signaling through Smo, Gli, SuFu and other factors. Results from these studies can provide 

new insights into the development of promising agents for cancer prevention and treatment. 

However, there are several important issues to highlight before considering inhibition of Hh 

signaling by natural products and dietary components as a viable cancer preventive strategy.

First, although results from numerous studies of natural products have demonstrated their 

inhibitory role in Hh signaling, many have not been proven to be direct inhibitors of the Hh 

signaling molecules. Because Hh signaling can be modulated by both canonical regulation 

and interaction with different cellular pathways, it is critical to conduct detailed 

investigations using appropriate in vitro and in vivo models to identify the natural 

components’ direct cellular targets. Second, many natural products are poorly bioavailable 

and metabolized by the intestinal microflora and/or hepatic metabolizing enzymes. In 

addition, the concentrations used in some in vitro studies may not be achievable in 

physiological conditions. Therefore, the natural products’ blood levels necessary for activity 

need to be determined. Third, experience from clinical trials with Smo-targeted drugs 

showed the importance of selecting cancer patients with aberrantly activated Hh pathway to 

achieve tumor response. Thus, it is important to systematically characterize the Hh signaling 

profiles in cancer cells and in animal tumor models. Fourth, combining natural products to 

maximize inhibition of Hh signaling may be necessary to provide optimal efficacy while 

overcoming resistance.

Overall, despite the outlined challenges, exploring natural products and dietary components 

that target the complex network of signaling molecules in the Hh pathway is a promising 

direction in the effort of searching for novel agents to prevent and treat cancer.
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ERK extracellular signal-regulated kinase

GANT Gli antagonist

Gli glioma associated oncogene

GSK glycogen synthase kinase

Hh Hedgehog

Ihh Indian Hedgehog

JNK c-Jun N-terminal kinase

LSC leukemia stem cells

MAPK mitogen-activated protein kinase

MEF mouse embryonic fibroblasts

MMP matrix metalloproteinase

MPF mitosis promoting factor

NFκB nuclear factor-κB

PI3K phosphatidylinositol-3-kinase

PKA protein kinase A

S6K S6 kinase

SAG Smo agonist

Shh Sonic Hedgehog

Smo Smoothened

SuFu suppressor of fused

TGF transforming growth factor

TNF tumor necrosis factor

mTOR mammalian target of rapamycin

VEGF vascular endothelial growth factor

VDR vitamin D receptor
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Table 2.

Natural and dietary compounds regulating Hedgehog signaling in vivo

Compound In vivo model Treatment Effect and Target Ref

Berberine
Primary intracranial medulloblastoma 
cells from Ptch +/− p53−/−mouse s.c. in 
athymic nude mice

100 mg/kg BW, p.o., daily for 
3 weeks

↓Gli1, ↓Ptch ↓Tumor growth 
(37.5% reduction) [78]

Curcumin U87-Luc (3×105 cells) intracranial 
injection to female nude mice

60 mg/kg BW, i.p., daily for 
40 days

↓Gli1 ↓Tumor growth (71.4% 
reduction) [99]

EGCG N-Nitrosodiethylamine (NDEA) into oral 
cavity of female Swiss albino mice

8 μg/kg BW, p.o., up to 30 
weeks

↓Gli1, Smo, CD44, Cyclin D1, c-
Myc, EGFR ↓BrdU incorporation 
↓Dysplasia progression

[109]

CCl4/NDEA in female Swiss albino mice 8 μg/kg BW, p.o., up to 30 
weeks

↑Ptch1 ↓Smo, Gli1, CD44 Cyclin 
D1, c-Myc, EGFR ↓BrdU 
incorporation ↓Dysplasia 
progression

[108]

Ellagic acid
Pancreatic cancer cells PANC-1 
(2×106 cells) s.c. in BALB/c nude mice

40 mg/kg BW, p.o., 5 days a 
week for 6 weeks

↓Gli1, Gli2 ↓Tumor growth and 
metastasis (41.2% reduction) [131]

Gedunin Pancreatic cancer cells HPAC (1×106 

cells) s.c. in female athymic nude mice
20 mg/kg BW, i.p., 5 days a 
week for 1 month

↓Gli1, Ptch1, Ptch2, Shh ↑SuFu 
↓Tumor growth (82.2% reduction) [122]

Genistein
Breast cancer cells MCF-7 (1×106 cells), 
mammary fat pad injection in female 
nude mice

20 and 50 mg/kg BW, i.p., 
daily for 2 weeks

↓Smo, Gli1, ALDH ↓Tumor growth 
(46% and 68% reduction, 
respectively)

[111]

Tumorsphere (104 cells) from prostate 
cancer cells 22RV1 s.c. in male BALB/c 
nude mice

10 mg/kg BW, i.p., daily for 2 
weeks

↓Gli1, CD44 ↓Tumor growth 
(58.3% reduction) [110]

Tumorsphere (105 cells) from prostate 
cancer cells DU145 s.c. in male BALB/c 
nude mice

10 mg/kg BW, i.p., daily for 2 
weeks

↓Gli1, CD44 ↓Tumor growth 
(57.1% reduction) [110]

Glabrescione B
Medulloblastoma (2×106 cells) from Ptch
+/− mice s.c. in female BALB/c nude 
mice

75 μmol/kg BW, daily for 18 
days

↓Gli1, Ptch1 ↓Tumor growth 
(63.6% reduction) [91]

Basal cell carcinoma ASZ001 (2×106 

cells) s.c. in female NOD/SCID mice
100 μmol/kg BW, daily for 18 
days

↓Gli1, PTCH1 ↓Tumor growth 
(71.4% reduction) [91]

Silibinin Renal cell carcinoma 786-O cells s.c. in 
male BALB/c nude mice

200 mg/kg, p.o., daily for 30 
days

↓Gli1, ↓Gli2 ↓Tumor growth 
(64.9% reduction) [116]

Sulforaphane

Orthotopic implantation of pancreatic 
cancer stem cells (CD133+/CD44+/
CD24+/ESA+, 1×103 cells) in the pancreas 
of male NOD/SCID/IL2R gamma mice

20 mg/kg BW, p.o. 5 days a 
week for 6 weeks

↓Smo, Gli1, Gli2 ↓Nanog, Oct4, 
PDGFRα, VEGF, ZEB1 ↑E-cad 
↓Tumor weight (45.0% reduction)

[119]

Vitamin D3 Renal cell carcinoma 786-O cells s.c. in 
male athymic nude mice

250 IU/mouse, every 2 weeks, 
i.p. Up to 12 weeks 
(Prophylactic, therapeutic 
treatment)

↓Gli2 ↓Tumor growth (92.0% and 
81.4% reduction, respectively) [96]

Renal cell carcinoma 786-O cells s.c. in 
male athymic nude mice

10,000 IU/kg BW diet. Up to 
12 weeks (Prophylactic, 
therapeutic treatment)

↓Gli2 ↓Tumor growth (45.0% and 
25.0% reduction, respectively) [96]

Ionizing radiation treated Ptch1+/− K14-
Cre-ER p53 fl/fl mice developing basal 
cell carcinoma

Topical application of vitamin 
D3 (1.3 and 2.6 mg/kg BW) 
up to 30 days

↓Gli1 ↓Ki67 expression [95]

ALDH, Aldehyde dehydrogenase; BW, Body weight; E-cad, E-cadherin; EGCG, Epigallocatechin gallate; EGFR, Epidermal growth factor 
receptor; Gli, Glioma-associated oncogene; i.p., intraperitoneal injection; Oct4, octamer-binding transcription factor 4; PDGFR, Platelet-derived 
growth factor receptor; p.o., per os (oral administration); Ptch, Patched; s.c., subcutaneous injection; Shh, Sonic hedgehog; Smo, Smoothened; 
SuFu, Suppressor of fused; VEGF, Vascular endothelial growth factor; ZEB1, Zinc finger E-box-binding homeobox 1.
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