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Abstract

Video-based activity and behavior analysis for mice has garnered wide attention in biomedical 

research. Animal facilities hold large numbers of mice housed in ‘home-cages’ densely stored 

within ventilated racks. Automated analysis of mice activity in their home-cages can provide a 

new set of sensitive measures for detecting abnormalities and time-resolved deviation from 

baseline behavior. Large scale monitoring in animal facilities requires minimal footprint hardware 

that integrates seamlessly with the ventilated racks. Compactness of hardware imposes use of 

fisheye lenses positioned in close proximity to the cage. In this paper, we propose a systematic 

approach to accurately estimate the 3D pose of the mouse from single monocular fisheye-distorted 

images. Our approach employs a novel adaptation of a structured forest algorithm. We benchmark 

our algorithm against existing methods. We demonstrate the utility of the pose estimates in 

predicting mouse behavior in continuous video.
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I. Introduction

Vision systems have greatly impacted animal-based research [1]–[3]. Researchers in various 

disciplines have relied on the precise and detailed measures afforded by automated vision 

systems to formulate and/or validate research hypotheses [4]–[6]. Vision systems have been 
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used to quantify activity and behavior for many model organisms [6], [7]. Many commercial 

and academic systems target mice which, due to their small size and ease of use including 

relative ease for sophisticated genetic manipulation, are the most frequently characterized 

and used mammals in biomedical research [8]. Despite the availability of video monitoring 

systems for mice, automated behavioral analysis has yet to be deployed on a large scale. 

Generally speaking, only a minute fraction, if at all, of the mice under experiment at any 

particular institution are profiled automatically via vision systems, leaving hidden a wealth 

of information critical to research and well-being of the animals. Large scale use of vision 

systems will not only reveal data critical to researchers, it can also profoundly transform the 

corresponding animal care and health assessment. When there are hundreds or thousands of 

cages in one institution, monitoring of animal health and activity is infrequent, of limited 

measures, and rather subjective. Automating assessment of research mice in animal vivaria 

would increase efficiency and reduce bias (e.g., due to fatigue or drift [9]).

A. Target problem

One major impediment to wider use of vision systems in research institutions is the lack of 

integration of video monitoring systems with the typical housing for mice in the animal 

vivaria. Animal facilities utilize ventilated cage-racks to achieve high-density housing while 

maintaining consistent and controlled microenvironments in each individually ventilated 

cage (Figure 1). Wide use of vision systems is contingent on availability of minimal 

footprint hardware with seamless integration in ventilated racks. Salem et al. [10] reported 

on the first video-based hardware design specifically targeted for use in cage-racks. This 

system integrates into the ventilated rack without modification to the cages or racks nor 

alteration to animal husbandry procedures. The resulting video poses processing challenges 

as mouse appearance exhibits large variations induced by the nonlinearity of fisheye lenses 

exacerbated by lens placement in very close proximity to the cage. While the authors 

compute simple motion measures to demonstrate the utility of the system, they leave largely 

unsolved the problem of accurate action analysis of the mouse in video produced by the 

system. Providing a method for pose estimation and behavior detection in compact video 

systems introduced by [10] would result in a complete solution that could potentially 

revolutionize animal care and animal-based research. Continual in-rack automated 

monitoring can identify events of interest to animal care personnel as well as researchers 

including birth and death events. Automated detection of abnormalities in behavior patterns 

can also lead to early detection of illness, which can in turn be quickly treated or managed. 

Perhaps most impactful to research is the utility of continuous video-based automated 

detection of behavior in phenotyping and disease progression studies, characterizing animal 

models, and profiling social behavior [1], [7], [11], [12].

B. Challenges

Deriving meaningful activity and behavior measures for scalable compact systems, such as 

the one in [10], is hindered by the challenging optical configuration compounded by the high 

defomability and near featurelessness of the target. The majority of work in the field of pose 

estimation assumes scaled orthography [13]. The assumption is violated in systems, such as 

the one described in [10], suited for scalable use in animal vivaria. The nonlinearities 

introduced by the fisheye lens and the proximity of the lens to the arena render the common 
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methods used in pose estimation inapplicable, without major revision, to the videos 

produced by the systems of interest. Furthermore, even if a 2D image pose estimate were 

obtained using existing methods, the physical meaning of the estimate would be unclear due 

to the ambiguity in relation between 2D image coordinates and 3D physical coordinates in 

the recording setups of interest. In particular, it would be difficult to infer actual physical 

motion that is quantifiable in terms useful for biomedical researchers (e.g., distance traveled 

by mouse in mm or distance in mm of mouse nose from objects of interest in the cage) from 

the 2D pose estimate obtained for the distorted mouse image. The distortion in the image 

would also preclude easy application of established structure from motion methods [14] to 

the problem. Lastly, established methods such as [15], [16] use parts detectors and affinity 

maps which would be expected to have superior performance with humans over mice, due to 

the extent of visible articulation in the target.

C. Motivation

A practical solution would be to estimate the pose in 3D on a coordinate system defined 

relative to the cage. A per-frame pose estimate would be critical for accurate action analysis: 

Pose estimates immediately yield position and posture information, while the temporal 

evolution of the 3D pose estimates yields activity and behavior measures. However, as 

mentioned earlier, the current state of the art in pose estimation does not target (or is of 

limited applicability to) the problem at hand. Hence, in what follows is a systematic 

approach to obtaining accurate 3D pose estimates from compact video systems, such as [10], 

[17], that integrate in vivaria racks.

D. Summary of work

We propose a systemic approach to 3D pose estimation of mice applicable in compact 

systems aimed for large scale monitoring in animal vivaria. The methods described 

capitalize on the constrained recording environment to overcome challenges posed by the 

optical configuration as well as the high deformability and near featurelessness of the target. 

As opposed to pose estimation in the wild, many strong assumptions can be made and 

leveraged including target count, target appearance, illumination consistency, static arena 

(i.e., cage) size and features, and fixed camera placement. We outline means of construction 

of a unique training set for mouse key-points (Figure 1) to estimate the 3D pose of the 

mouse in each frame using a novel adaptation of a structured forest algorithm [18]. To our 

knowledge, we are the first to produce a 3D pose estimate (i.e., 3D physical coordinates of 

mouse keypoints) for the mouse from a monocular image in conventional video. We show 

that our 3D pose estimation algorithm yields greater accuracy when compared to two other 

methods. We use a rich manually annotated mouse behavior dataset to demonstrate that our 

single-image pose estimates can be used to accurately predict behavior in continuous video. 

This work extends our initial work on 3D position [17] and pose estimation [19], [20]. In 

particular, we introduce a novel pose-indexed features based ensemble model for the 

structured forest that reduces error rates by approximately 8% compared to those reported in 

[20]. Furthermore, we introduce a new behavior annotation training set and develop a 

behavior detection model based on 3-D pose estimates produces by the structured forest.

Salem et al. Page 3

IEEE Trans Image Process. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



E. Contributions

Our contributions are:

• 3D mouse pose estimation method from single fisheye-lens distorted images. In 

all previous works, the pose parameters are defined in 2D image domain. We, 

however, use a novel structured-forest implementation to directly estimate 3D 

coordinates of the mouse key-points.

• A viable algorithmic path suited for scalable mouse-ethology vision systems. 

The methods outlined in our manuscript target compact systems that integrate 

with existing animal vivaria racks with minimal or no change to the racks. All 

previous works are based on systems that are not suited for densely populated 

ventilated racks, and hence allow assumptions (e.g., scaled orthography, image-

domain pose) that might not hold in scalable systems.

• Behavior detection method using 3D pose estimates. Earlier works have shown 

the utility of 2D pose parameters in generating discriminant trajectory features 

for behavior detection in continuous video [5], [21]. We extend the prior art to 

3D and extract features from the 3D pose estimates for use in behavior detection.

• Rich data sets of manually annotated video with mouse key-points and mouse 

behavior. The training sets are available on the website (scorhe.nih.gov) to 

encourage further contributions to the field.

F. Outline

Our manuscript is organized as follows. In section II, we review the state of the art in pose 

estimation and behavior detection for laboratory mice. In Section III, we describe the dataset 

used for the 3D pose estimation task. Section IV describes our adaptation of the structured 

forests algorithm [18] to the 3D pose estimation problem. Section V describes the methods 

used for behavior detection including our extension of trajectory features to those obtained 

from the 3D pose estimates. The results of the 3D pose estimation algorithm are presented in 

Section VI and compared to other methods. Section VI also presents the results of the 

behavior detection methods. The manuscript ends with discussion and conclusions.

II. Related Work

The majority of the work in pose and behavior detection is done for human subjects [15], 

[16], [22]. Automated analysis of mice activity and behavior has attracted commercial and 

academic interest over the past two decades [1], [6], [9], [11]. Hardware designs employ 

sensors [23], [24], conventional video [11], thermal imaging [25], and, more recently, depth 

imaging [26]. Video-based hardware systems for home-cage monitoring employed in 

academic works are typically simple prototypes and ad hoc setups with standard lens 

cameras positioned at a sufficient distance away from the side of the cage to capture full 

view of the cage (e.g., [12]). Some setups are based on overhead cameras [3], [21]. Neither 

placement, however, is suited for scalability due to space constraints, as well as cage and 

rack obstructions, in high-density ventilated housing [27]. Commercial hardware systems 

include Noldus [28] and CleverSys [29]. Desired output from automated analysis methods 
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include position and pose estimation [3], [30]–[32], detection of predefined behaviors [12], 

[33], [34], and profiling social interactions [3], [21], [30]. Popular tools for automated 

ethology of mice and other animals are summarized in [1], [2]. We limit our review to video-

based methods for mice home-cage monitoring.

A. Pose estimation methods

One sought output of automated analysis is a per-frame pose estimate, which can be used for 

motion analysis. We use ‘pose’ to refer to the posture and/or position of the mouse. Two 

defining components of pose estimation are the pose representation (i.e., pose parameters) 

and pose estimation/detection method. We review the literature works with respect to these 

two components. It is noted that in all the works reviewed, a segmentation step is applied 

first to isolate foreground pixels, with [21] being the exception.

a) Pose representation—The simplest representation of the mouse is by its binary 

silhouette centroid or its bounding box [21], [32]. A common pose representation is the 

ellipse and is used by [3], [33], [35]. Oriented ellipses, i.e., with one end of the ellipse 

aligned with the anterior of the mouse, are used in [26], [36], [37] and the commercial 

Ethovision package by Noldus [28]. More elaborate pose representations are employed in 

Branson and Belongie [31] and de Chaumont et al. [30]. In [31], an ellipse is used as a 

coarse pose which then guides estimation for more refined pose consisting of twelve 

manually constructed deformable 2D contour templates that are assumed to be 

representative of the mouse postures. de Chaumont et al. [30] model the mouse as a head, 

belly, and neck, with corresponding constrained displacements between each part. Each part 

is represented by a 2D articulated rigid body model.

b) Pose estimation/detection—For pose detection, Burgos-Artizzu et al. [21] use a 

trained detector [38] to estimate the bounding box of the mouse without the intermediate 

step of segmentation. Segmentation followed by an identity detection method is used in [32]. 

The centroid of the segmented foreground is then used for tracking. A more elaborate 

cascaded pose regression method [36], [39] is used in [26], [37]. Ohayon et al. [3] fit the 

foreground binary pixels to a 2D Gaussian Mixture Model (GMM) via Expectation 

Maximization (EM). Branson and Belongie [31] use a multiblob tracker for the ellipse 

detection and particle-filter contour tracker for contour refinement. de Chaumont et al. [30] 

use the foreground binary mask and edges for initial alignment and mean-shift processes 

drive the physics engine for refinements.

III. Training set

We seek to estimate the 3D position of four key-points on the mouse: tail (tl), left-ear (le), 

right-ear (re), and nose (no). Hence, the mouse pose ϕ is defined by the position of the 

landmarks, i.e., ϕ = γtl, γl − e, γr − e, γno , where γ = (u, v, w) is the 3D position defined 

relative to a right-handed Cartesian coordinate system with origin at the center of the cage 

floor as shown in Figure 2b. Employing supervised learning algorithms for the 3D pose 

estimation task requires the availability of ground-truth ϕi for each image Ii, i ϵ {1,…,N} in 

the training set consisting of N samples. Obtaining ϕi strictly from Ii is not feasible due to 
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mouse deformability and the non-standard optical configuration. To enable construction of 

Ii, overhead cameras were integrated and synchronized with the side view cameras as shown 

in Figure 2a. The overhead cameras are also fitted with fisheye lenses so as to be integrated 

in the cage with almost no impact on the view of the cage as seen by the side camera (e.g., 

no need to remove cage lid or cage wire-bar). The overhead cameras are strictly used for 

video acquisition related to building training sets, and are not utilized at runtime. In what 

follows we describe the different components required to build the ground-truth dataset, 

define a suitable pose representation, and assess annotation and 3D reconstruction 

consistency. The latter is used to define a pose distance measure to evaluate the quality of 

the estimates.

A. Image-to-physical and physical-to-image coordinates mappings

With images from two orthogonal cameras, the 3-D position of a key-point annotated in both 

images can be recovered. While standard camera calibration and stereo vision methods used 

in 3D reconstruction are well known, extending the methods to work for the challenging 

optical configuration at hand is not a trivial task. Instead, we capitalize on the practical 

constraints (e.g., fixed cage size, fixed camera placement) of the scalable recording system 

design. Namely, we use checkerboard pattern grids, as shown in Figure 2b, to construct a 

lookup table 𝒞I − P indexed by image pixel location σ such that the entry 𝒞I − P σ  in the 

table returns {γ}, a discrete set of physical points within the cage volume that project onto 

pixel σ. The accuracy and resolution with which 𝒞I − P σ  is populated can be set by the 

user. In our case, we use precision cut acrylic to accurately mount a rigid grid and move it in 

increments of 12.7mm. We use linear interpolation to get 2.54mm grid resolution. Armed 

with CS
I − P and CT

I − P, the side and top camera lookup tables respectively, recovering the 3D 

position of a key-point annotated in the side view image at location σS and the top view 

image at σT is straightforward as shown in Figure 2c–d. The 3D position is computed as the 

intersection of the set of 3D points γS = 𝒞S
I − P σS  and the set γT = 𝒞T

I − P σT . Using the 

described methodolgy for reconstruction, the measured reconstruction error for the region of 

the lower half of the cage volume was 2.05mm. For the upper half of the cage, the 

reconstruction error was 6.59mm. It is noted that the vast majority of the mouse time is spent 

on the cage-floor, i.e., the lower half of the cage.

We note that other components of the 3D pose estimation algorithm require computation of 

the image pixel location σ in the side camera image corresponding to a physical point γ. We 

reorder the content of 𝒞S
I − P to generate another lookup table 𝒞S

P − I indexed by 3D physical 

location γ. 𝒞S
P − I(γ) then gives the image pixel location σ to which γ projects.

Another component of the 3D pose estimation algorithm requires defining fixed pre-

specified ‘anchor’ points in 3D physical corrdinates corresponding to each image pixel 

position. A mapping ℳ is generated that associates with each 2D image point σ a 3D 

reference ‘anchor’ point γσ = ℳ(σ). The fixed mapping ℳ is utilized in defining 3D 

translation-tolerant pose representations as will be described in Section III–C. To describe 

the generation of the mapping ℳ, we first note that for each image coordinate σ, the earlier 
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described lookup table 𝒞I − P(σ) supplies a set of points {γσ} in 3D physical space that map 

to pixel location σ. The reference 3D ‘anchor’ position is chosen from the point set {γσ} 

(i.e., in physical space) which projects onto the 2D image point σ. Therefore, we define an 

image-to-physical coordinate mapping ℳ(σ) that assigns to each image pixel σ a 3D position 

ℳu(σ), ℳv(σ), ℳw(σ)  in the same Cartesian coordinates system on which the 3D pose is 

defined. Specifying ℳ fully involves choosing a specific point from the set {γ} by applying 

an arbitrary constraint. Figure 3 pictorially shows the mappings ℳu, ℳv, and ℳw. Mainly, 

for all pixels with 3D points set intersecting the cage-floor, we choose the initial mapping by 

constraining w to lie in the cage-floor plane. For all the pixels with 3D points set intersecting 

the food basket, the initial mapping is chosen to be the basket plane. Likewise the ceiling 

plane is chosen for all pixels having lines intersecting the ceiling. Lastly, the cage side-wall 

planes are chosen for pixels with lines intersecting the side-walls.

B. Image annotations and 3D pose reconstruction

The key-points are marked in both orthogonal views as shown in Figure 2. Approximately 

90,000 frames were manually annotated to account for the large variation in appearance due 

to the hardware configuration and mouse posture. A separate set of 1,100 frames were 

annotated to be used for testing. Recovering the 3D position of each key-point is 

straightforward using the lookup tables 𝒞S
I − P and 𝒞T

I − P described above. We note that 

methods such as Structure from Motion (SfM) [40] could have been employed to semi-

automate the generation of the training set.

C. Pose Representation

In 2D landmark estimation tasks, the landmarks are expressed in relative terms rather than 

absolute image pixel locations. Typically, the landmarks are expressed as relative offsets 

from the object detection window. Such a representation achieves scale and translation 

invariance. For the 3D pose estimation problem at hand, we seek to define θ, a translation-

tolerant pose representation derived from ϕ. Similar to ϕ, θ = θtl, θl − e, θr − e, θno , where the 

subscripts correspond to tail, left-ear, right-ear, and nose respectively. Two steps are taken to 

compute θ. First, the ears and nose are represented as 3D offsets relative to the tail point, 

i.e., θ l − e, r − e, no = ϕ l − e, r − e, no − ϕtl. Referencing the landmarks to the tail point gives a 

similar representation in pose-space to similar mouse postures. Hence a mouse with an 

elevated bipedal stance, for example, would have the same representation of θl–e, θr–e, θno 

regardless of tail position. The second step addresses the representation of the tail point 

itself. Similar to 2D pose representation, we use a 2D image point within the detection 

window to establish a reference for the tail in order to achieve a translation-tolerant 

representation for the tail. However, the 2D image point cannot be used directly, rather we 

use the 3D ‘anchor’ point associated with the 2D image position as described in Section III–

A. Specifically, the tail is expressed relative to ℳ σa , where σa is chosen based on the 

binary silhouette of the mouse. Namely, σa is the foreground ellipse fit major axis endpoint 

closest to the lower left corner of the image, as shown in Figure 3. The binary silhouette is 

obtained by thresholding a segmentation map returned by a trained classifier. The classifier 
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is trained on images where mouse pixels were annotated manually as described in [17]. For 

each image I, the segmentation map S is thresholded to produce a binary silhouette B. The 

statistics of the binary silhouette (ellipse-fit parameters, ellipse axes end points, bounding 

box, eccentricity, major axis to minor axis length ratio, and area) are computed. Of the 

computed statistics, σa, the ellipse-fit major axis endpoint is used to obtain the 3D ‘anchor’ 

as described above. Overall,

θ = ϕtl − ℳ σa , ϕ l − e, r − e, no − ϕtl (1)

As seen in (1), the definition of θ expresses the key-points of the mouse (other than the tail) 

relative to the tail coordinates ϕtl = (utl, vtl, wtl).

D. Annotation Consistency—To assess the consistency of annotations and establish a 

meaningful measure for evaluating estimation accuracy, a set of ~ 6, 500 frames was 

annotated by two different trained annotators. The redundant annotations are used to define a 

distance metric, as proposed in [36], which equalizes the error from each pose parameter by 

weighing it with the inverse of its variance as observed in the redundant annotations. The 

distance measure between two poses θ1 and θ2 is

d θ1, θ2 = 1
D ∑

i = 1

D 1
var(θ(i)) θ1(i) − θ2(i) 2

i ∈ {1, ⋯, D}

(2)

where D is the number of pose parameters. The var(θ(i)) term in (2) refers to the variance in 

the ith pose parameter distance between two human annotators. The distance measure in Eqn 

(2) weighs the error contribution of each parameter by the observed variance in the 

redundant annotations, hence equalizing the error from each parameter and providing a 

direct comparison between our method and human annotators. Following [36], we define a 

normalized distance threshold dthr for a successful estimate. dthr is set to be such that the 

normalized distance for 99% of the redundantly annotated frames falls below dthr. So if the 

estimation output has a normalized distance (i.e., that computed via Eqn (2)) exceeding dthr, 

then it is considered a failed estimate. Using the redundant annotations, dthr was computed to 

be 3.77mm.

IV. 3D pose estimation

We first review standard decision forests as well as the extension by Dollár and Zitnick [18] 

to structured output spaces, after which we describe our adaptation of the method to 

structured pose estimation.
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A. Standard decision forests and structured forests

A quick review of standard decision forests [41] and structured forests [18] helps set 

terminology and mathematical notation for the forthcoming sections. For consistency, the 

review herein closely follows the work on which we are expanding [18]. For a training set 

𝒮: 𝒳, 𝒴 , a binary decision tree f t(x), x ∈ 𝒳 is a partition of the input feature space into 

regions storing an assigned output prediction y = g yk  where yk ∈ 𝒴 are the output 

labels falling in the regions having input feature vectors xk ∈ 𝒳. Each node in the tree 

defining a partition is referred to as a split or internal node, whereas the terminal node 

representing the region containing the prediction y is referred to as leaf node. The 

partitioning is done in a recursive manner until criteria on the information content of the 

node or the depth of the tree is met, thereby reaching a leaf node, wherein a prediction g(·) is 

stored. A decision forest ℱ is a collection of T separately trained trees ft(x), t ∈ {1,...,T} 

along with an ensemble model that produces a prediction yF = ℰ yt , t ∈ {1,…,T} from all 

the individual tree predictions yt. The main tasks in training a forest are training each 

individual tree and defining a suitable prediction aggregation model, i.e. defining ℰ( ⋅ ). 
Training each tree entails finding an optimal node split for each internal node and defining a 

prediction model for each leaf node, i.e., a suitable y. The split node function is obtained by 

maximizing an information gain criterion. The standard information gain relies on defining 

an information measure function H. For classification, it is common to define H as the 

Shannon entropy, Gini impurity, or the twoing criterion. For single-variate regression, a 

common H is one that minimizes variance of the child nodes.

Realizing the challenge of defining an information gain criterion for structured output 

spaces, Dollár and Zitnick [18] map the output space to discrete labels. The mapping would 

be defined such that similar structured labels are assigned the same discrete label. The 

information gain is then computed for the discrete classes, rather than the structured labels 

themselves, using the standard information gain criteria along with standard H used in 

classification training task. The mapping is used to train the split functions at each internal 

node. The structured labels arriving at each node, however, are stored and propagated until a 

leaf node is reached. A prediction model for each leaf node, and an ensemble model for the 

whole forest would then be formulated based on the stored structured labels. The success of 

this elegant solution is contingent upon finding an effective mapping from structured labels 

space to discrete labels, i.e., 𝒴 𝒞, such that each label y ∈ 𝒴 is mapped to a discrete label 

c ∈ 𝒞, where 𝒞 = 1, …, k . Given that measuring similarity for structured labels might not 

be well defined, [18] employed an intermediate mapping Π:𝒴 𝒵 such that 𝒵 is a space 

on which similarity can be measured by computing Euclidean distance. A discretization 

maping 𝒵 𝒞 is then used to assign class identities.

B. Structured forests for 3D pose estimation

Our goal is to estimate the 3D pose of the mouse from a single camera, where pose is 

defined as the 3D coordinates of a set of key-points. We here propose a 3D pose estimation 

method which relies on the structured forest framework to estimate the 3D coordinates of 

key-points of the mouse while capitalizing on the underlying structure of these coordinates. 
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Our method adapts the structured forest in [18] to the regression task such that each tree in 

the forest produces a pose- proposal (i.e., a full set of pose parameters). We propose a novel 

ensemble model ℰ( ⋅ ) to select the single ‘best’ pose-proposal. Our ensemble model 

employs a single-variate regression model trained to estimate a distance measure between 

each pose-proposal and the ‘ground-truth’ pose (although unavailable at test-time) relying on 

pose-indexed features similar to those introduced and used in [36], [42]. The overall method, 

therefore, employs a two-layer composite statistical learning model. The first layer is a 

structured forest adapted to produce pose-proposals. The second is a standard regression 

forest used to chose the best pose-proposal. Each learning model will have its own training 

set. For clarity and distinction, we refer to the structured forest as ℱ and the standard 

regression forest employed in the ensemble model as ℰ. For ℱ, (x, y) will denote a training 

sample pair composed of feature vector x and target output y. For ℰ, xℰ, yℰ  will be used to 

denote its training sample feature vector and corresponding target output.

In the subsections that follow, we detail the key components for setting up and training 

structured forest to accomplish the pose-estimation task. Namely, we define: the input 

feature space 𝒳, the mapping function Π, the discretization mapping 𝒵 𝒞, the leaf node 

prediction model g(·), and the ensemble model ℰ( ⋅ ).

1) Input Feature Space—Each training sample (x, y) is composed of a set of input 

features x ∈ 𝒳 derived from the image of the mouse having ground-truth pose y ∈ 𝒴, where 

y in our case has been referred to as θ as in Eqn (1). Recall that images are first segmented, 

as described in section III–C, to identify the binary silhouette of the mouse. The features are 

derived both from the binary silhouette and the intensity image, more specifically the 

foreground bounding box region of the intensity image.

We utilize pixel look-up, gradient, and HOG features similar to those in [18]. However, as 

opposed to drawing features from a fixed size image patch, the features positions are chosen 

as offsets within the foreground binary silhouette bounding box. Furthermore, we augment 

our feature vector with the binary silhouette statistics described in III-C. In human pose 

estimation methods, intensity-value based features are not desirable due to the lack of 

robustness to illumination changes. However, given the constrained environment (e.g., 

consistent coat color of mice and fully controlled illumination in the system), intensity-value 

based features have been shown to be reliable and discriminative [36]. For purposes of 

comparison, we also use gradient and HOG features from the pixel-to-pixel registered 

feature channels as described in [38].

2) Intermediate mapping function—One key component of the structured forest 

approach is the mapping Π from the structured labels to an intermediate space on which 

dissimilarity can be measured. To generate the intermediate mapping, first a binary string 

representation, b, of the pose θ is generated. The binary string generation is controlled by 

two hyper-parameters. The first hyper-parameter is the length, l, of the string. The second is 

a binary indicator to choose one of two methods, either ‘fixed’ or ‘adaptive’, for assigning 

bit depth ld to each pose parameter θ(d). In the ‘fixed’ method, each pose parameter θ(d) is 

mapped to ld = l
D , where D = 12 is the total number of pose parameters. In the ‘adaptive’ 
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method, the observed dynamic range of each pose parameter in the training set reaching the 

node is first computed. The number of bits assigned to parameter d is proportional to its 

range r(d) in the training set, namely ld = l × r(d)/∑i = 1
D r(i). If the variance of a parameter 

falls below a certain empirically set threshold, the parameter is not represented in the string, 

i.e. the ld corresponding to the parameter is set to zero. Once the number of bits for each 

parameter has been set, we seek to represent parameter θ(d) with a bd bit string of length ld. 

To generate the binary sequence for θ(d), the full range of the parameter in the N training 

samples arriving at the node is computed as r(d) = maxiθi(d) – miniθi(d), i ∈ 1,…,N. The 

range r(d) is uniformly partitioned into bd bins. If θi(d), falls in the kth range bin, the kth bit 

in bd is set. Once all the parameters are represented in binary strings, the binary 

representations for each parameter are concatenated to form the initial z vector. 

Mathematically, the mapping Π generating z is then defined as Π = ⋁d = 1
D bd(θ(d)), where ⋁

denotes concatenation and bd(θ(d)) is the binary string representation of the dth parameter of 

θ.

3) Discretization mapping—The goal of intermediate mapping function is to allow for 

discrete label assignments to the structured output labels, such that similar y’s ∈ 𝒴 are 

assigned the same class label c ∈ 𝒞, where 𝒞 = 1, …, k . We set k = 2 and follow the same 

two approaches (K-means and PCA) as in [18] to obtain a discrete label assignments for the 

set of y’s (i.e., θ’s) at each node. Figure 4 shows the output of the discretizing function on a 

sample set of poses.

We note that the discretization mapping as described in the original structured forest work 

[18] was needed in order to define a distance metric for similarity between image patches. In 

our case, however, the Euclidean distance can be used directly to measure similarity between 

poses since pose is defined as landmark positions in Euclidean space. Therefore, clustering 

on poses can be done directly without the intermediate discretization mapping step. The 

intermediate mapping, however, does offer two added benefits: more control of the 

clustering afforded by the adaptive bit depth, and the denoising of pose parameters resulting 

from the binning operation when generating the binary string. In the Experiments section 

(Section VI), we compare the performance of the structured forest in which the intermediate 

mapping was used to an implementation where class label assignment is done via direct 

clustering (i.e., without employing an intermediate mapping).

4) Leaf node prediction model—Each leaf node stores a pose-proposal θ, i.e., a full 

set of pose parameters. In [18], the leaf node prediction is set to be the label ym whose zm is 

the medoid of all zm’s at the node. Although we experimented with different approaches, we 

chose to retain the same leaf node prediction model as in [18]. Hence, our leaf node 

prediction is the pose whose zm is the medoid.

5) Ensemble model—A feature vector xn derived, as described in Section IV–B1, from 

a novel image In and applied to a T-tree structred forest produces T pose proposals yj, j ∈ {1,

…,T}, i.e., one proposal from each of the T trees. In this work, we define an ensemble 

model to choose the ‘best’ pose proposal y out of the T pose proposals yj’s. The best pose y
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is chosen based on its estimated distance to ground-truth pose yn
gt, i.e., if yn

gt were known, 

y = yi, i = arg min jd(y j, yn
gt), where d(·) is defined in Eqn (2). Clearly, the ground-truth pose 

yn
gt for the mouse in the test image In is not known, as indeed it is the quantity to be 

estimated. However, we utilize the training set consisting of images Im and their known 

ground-truth poses ym to model the correlation between image appearance and the actual 

distance d(y, ym) of an arbitrary pose proposal y from the ground-truth pose ym. Namely, for 

a pose-proposal yj generated for image Im, we train a model to estimate the distance 

d (y j, ym
gt). The distance estimate d (y j, ym

gt) is marked with a caret to indicate that indeed it is an 

estimate as opposed to the actual distance d(y j, ym
gt) computed when ym

gt is known. The model 

to produce d  is trained using image features x j
ℰ, where the superscript ℰ emphasizes that the 

features are derived for the ensemble model task, and the subscript j denotes the pose-
indexed nature of the features, i.e., the dependence of the feature values on the pose-

proposal yj. In training, each image feature vector x j
ℰ computed for pose yj is paired with 

output target value d(y j, ym
gt), i.e., the actual distance between pose proposal yj and the 

ground-truth pose ym
gt (which is available for the training set images). In test-time, i.e., when 

the ground-truth pose is not available, for each pose proposal yj, a feature vector x j
ℰ is 

formed and an estimate of d (y j, ygt) is obtained based on the learned correlation between xℰ

and ygt in the training set. Hence, the proposed ensemble model employs a regression model 

that produces an estimate d j for each pose proposal yj relying on feature vector x j
ℰ which is 

mainly composed of pose-indexed features. The pose proposal with the lowest distance 

estimate is chosen to be the output predicted pose y.

Given that the ensemble model ℰ employs a regression model trained in a supervised 

learning framework, the three main tasks to fully specify ℰ are to specify 1) the learning 

method, 2) the input features xℰ, and 3) the target output yℰ. Note that the superscript ℰ is 

used to distinguish the feature vectors and the target output values used in the ensemble 

model from x and y described in Section IV–B1 used to trained the structured forest.

We chose to use standard single-variate regression forests (Section IV–A) as the learning 

method for out distance estimation task, as the output target is a single variable: the distance 

estimate. Hence our ensemble model ℰ relies on a standard regression forest to supply a 

distance estimate for each pose-proposal. Each training sample for the regression forest 

comprises a set xℰ, yℰ  where xℰ = q(I, ϕ) are the features derived from image I with 

features indexed by pose ϕ, and yℰ is the distance between pose ϕ and the ground-truth pose 

ϕgt associated with image I, i.e., yℰ = d ϕ, ϕgt . In what follows, we thoroughly describe the 

method for generating training samples xℰ, yℰ  used to train ℰ’s regression model.
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Generating yℰ’s: The images used to train the ensemble model regression forest are Im, m ∈ 

{1,…,M}. Each Im has an associated ground-truth pose ϕm
gt. One training sample in the 

training set is that due to the ground-truth pose itself. Namely, xm
ℰ would be the vector 

derived from image Im with features indexed by ground-truth pose ϕm
gt. The corresponding 

distance would be ym
ℰ = d(ϕm

gt, ϕm
gt) = 0. Clearly, however, if we limit ourselves to the ground-

truth samples, the training set will have no variety in pose deviations, and hence distance, 

from the ground-truth pose. We can inject variety in the pose-distances by generating poses 

ϕ j, m which deviate from the ground-truth pose ϕm. We generate P poses ϕ j, m, j ∈ {1, …, P}

each of which will have distance y j, m
ℰ = d(ϕ j, m, ϕm

gt) from the ground-truth pose. Generating 

the poses ϕ j, m could be done by randomly perturbing the ground-truth pose ϕm
gt similar in 

concept to the training set augmentation procedures described in [36], [39]. However, we 

utilize the fact that a P-tree pose-estimation structured forest can be trained to readily yield P 

pose proposals. Namely, we train a P-tree structured forest F′ using the training set (Im, ϕm
gt), 

m ∈ {1,…, M} which is a randomly chosen subset of the full annotated set described in 

Section III, i.e., M < N. Each tree in F′ produces a pose proposal ϕ j, m. Once F′ is trained, 

each image Im in the training set is fed into F′. F′ produces (P − 1) proposals ϕ j, m. The 

distance y j, m
ℰ = d(ϕ j, m, ϕm

gt) is computed. The feature vector x j, m
ℰ = q(I, ϕ j, m) is also 

computed. The pair (x j, m
ℰ , y j, m

ℰ ) is entered into the training set for the ensemble model ℰ

regression forest. As noted earlier, the ground-truth pose ϕm
gt itself also contributes a sample, 

i.e. (xgt, m
ℰ , 0). Hence, each image and ground-truth annotation pair (Im, ϕm

gt) contribute a total 

of P + 1 samples for ℰ’s regression model training set.

Generating xℰ’s: Recall that each image in the training set Im, m ∈ {1,…,M} has a 

corresponding segmentation map Sm generated as described in Section III–C as well as a 

binary silhouette image Bm obtained by thresholding Sm. The feature vector x j, m
ℰ  paired with 

y j, m
ℰ  is composed of three sets of features derived from Bm and Sm. Namely, 

x j, m
ℰ = [xBS − m

ℰ , xPL − j, m
ℰ , xHTd − j, m

ℰ ] . xBS − m
ℰ  are the binary silhouette statistics obtained 

from Bm as described in Section III–C. xPL − j, m
ℰ  and xHTd − j, m

ℰ  are pose-indexed features. 

The subscript j in xPL − j, m
ℰ  and xHTd − j, m

ℰ  indicates the dependence of the features on pose 

ϕ j, m. The pose-indexed features are derived from the images Sm and Bm. In order to derive 

image features that are dependent on the 3D pose ϕ j, m, the pose is projected onto the images 

Sm and Bm utilizing the mapping 𝒞S
P − I. For simplicity, rather than projecting all four key-

points in ϕ j, m, we limit the projection to two points. The first point is the 3D tail point. The 

second point, to which we refer as the ‘head’ point, is computed in 3D as the Euclidean 

mean of the two ears and the nose points. We use σ j, m
T  to refer to the 2D image position 
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returned by 𝒞S
P − I for the 3D tail point in ϕ j, m, while σ j, m

H  is used to refer to the 2D image 

position corresponding to the 3D head point. In what follows, we describe in detail the 

content of the feature vectors xPL − j, m
ℰ  and xHTd − j, m

ℰ . For less cluttered notation, we leave 

out the subscripts j, m.

The set of features xHTd
ℰ  derived from the binary silhouette image Bm constitute thirteen 

distance-based measurements made between the projected points (σH, σT) and the binary 

silhouette Bm. The first element of xHTd
ℰ  is the Euclidean distance between σH and σT 

normalized by the binary silhouette major axis length, i.e. xHTd
ℰ (1) = σH − σT

lma j
, where lmaj 

denotes the major axis length. The second element of xHTd
ℰ  is the minimum distance between 

σT and the binary silhouette. Namely, the distance between σT and each point comprising 

the binary silhouette in Bm is computed and the minimum distance is assigned to xHTd
ℰ (2). 

The third element is the minimum distance between σH and the binary silhouette. The fourth 

and fifth elements are obtained by normalizing the second and third elements by lmaj, i.e. 

xHTd
ℰ (4) =

xHTd
ℰ (2)
lma j

, xHTd
ℰ (5) =

xHTd
ℰ (3)
lma j

. The sixth element is the minimum distance between 

σT and the perimeter pixels of the binary silhouette. The seventh element is the minimum 

distance between σH and the perimeter pixels of the binary silhouette. The eighth and ninth 

elements are the sixth and seventh elements normarlized by lmaj respectively. To compute the 

remaining elements of xHTd
ℰ , a pairing of the binary silhouette major axis endpoints with 

{σH, σT} is chosen such that the overall distance between the two paired sets is minimized. 

The tenth element is then computed as the distance between σT and the major axis endpoint 

with which it was paired. The eleventh element is the distance between σH and the major 

axis endpoint with which it was paired. Lastly, the twelfth and thirteenth elements are the 

tenth and eleventh normalized by lmaj respectively.

The set of features comprising xPL
ℰ  consist of pose-indexed pixel lookups from the 

segmentation map Sm. The position of the pixels are defined relative to the tail/head points. 

Namely, during training a set of normalized position offsets 

oN = ow
N, oh

N , ow ∈ [0.5 − r, 0.5 + r], oh ∈ [ − r, r] are randomly chosen on a Cartesian 

coordinate system where (0, 0) corresponds to σT and (0, 1) point corresponds to σH. To 

compute xPL
ℰ , a 2D similarity transformation 𝒯N − I is computed between the normalized 

offsets space and the image head/tail points. The computed transformation is applied to the 

set of offsets {oN} to generate the image positions oI = ow
I , oh

I  of the pixels. xPL
ℰ  is then 

populated with the values of the segmentation map at the image locations {oI}, i.e. Sm({oI}). 

Figure 5 graphically illustrates the main components of the training and testing procedures 

for ℰ.
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V. Behavior detection

One problem of great interest in video analysis is that of identifying bouts of predefined 

behaviors [43]. Video-based detection of pre-defined behaviors for mice has attracted wide 

attention from the scientific community as it serves as an effective tool to non-invasively 

measure well-being, social-interaction, and phenotypical changes [11], [12], [44]. 

Classification models utilize spatio-temporal features and/or trajectory features [21]. In what 

follows, we describe the dataset, the trajectory features, and the intensity-based features used 

in training a behavior detection model. We train multi-class boosting classifiers [45] based 

on trajectory features and, in Section VI, compare the results to classifiers trained on 

intensity features.

A. Dataset

We sought to identify six behaviors of interest to scientists and researchers. The behaviors 

are: walking, drinking, unsupported rearing, supported rearing, climbing, and foraging. An 

‘other’ label is given to a frame which the mouse is engaged in a behavior that does not fall 

under any of the aforementioned six categories. Hence, the dataset has seven labeled 

categories. The dataset is divided into a training set and a test set. Table I details the 

annotated frames counts for all seven categories.

B. Trajectory features

Trajectory features are generated from a lower dimensional representation of the pose 

estimates. Namely, the pose estimates are reduced to two 3D points: the 3D position of tail 

ϕtl = (utl, vtl, wtl) and the 3D position of ‘head’ ϕhd = (uhd, vhd, whd). ϕhd is defined, similar 

to sect IV–B5, as the Euclidean mean of the positions of the ears and nose. Our trajectory 

features closely follow the work of Burgos-Artizzu et al. [21]. In [21], however, features 

were derived from the image centroids of two mice. The trajectory features included each 

mouse’ position, velocity, and acceleration, the distance between the two mice, and the 

movement direction of each mouse. Our adaptation of the trajectory features generates 29 

measures based on the 3D head/tail positions of the mouse. The features include: 3D 

position of tail, 3D position of head, tail-to-head distance ||ϕhd −ϕtl||, interframe change in 

the tail-to-head distance, the pitch between head and tail α = tan−1 vhd − vtl
uhd − utl

, the yaw 

between head and tail β = cos−1 whd − wtl
ϕhd − ϕtl

, the interframe change in α, the interframe 

change in β, tail velocity, head velocity, velocity of 3D centroid (i.e., mean of ϕhd, ϕtl 

positions), tail acceleration, head acceleration, and centroid acceleration. Using a 15 frame 

time-window, we compute the same weak trajectory features introduced by Burgos-Artizzu 

et al. [21].

C. Intensity-based features

Our intensity feature are also derived from a 15-frame time window centered at the current 

frame. The overall feature vector for the center frame is the concatenation of 15 feature 

vectors one from each frame in the time window. Each frame’s feature vector is comprised 

of three types of features. The first set of features are the binary silhouette statistics for the 
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foreground object in the frame. The second set is intensity image pixel lookup values 

computed in the same fashion as was done in the structured forest pose estimation task. As 

described in section IV–B1, the positions of the pixels are randomly chosen during training 

as offsets relative to the binary silhouette bounding box. The third set of features 

incorporates optical flow information. For each frame in the time-window, optical flow is 

computed relative to the subsequent frame. An optical flow magnitude ‘image’ pixel-to-pixel 

registered with the intensity image is formed. The optical flow features constitute pixel 

lookups from the magnitude image. The positions of the pixels are also randomly chosen 

during training as offsets relative to an enclosing bounding box. The enclsoing bounding 

box, however, is the box enclosing both frames’ binary silhouette bounding boxes.

VI. Experiments

In this section, we assess the performance of both the 3D pose estimation algorithm and 

behavior detection methods. For the 3D pose estimation, first we evaluate the accuracy of 

the models as a function of training parameters. Namely, we investigate the effect of the 

parameters of (1) the intermediate mapping function, (2) discretization mapping, (3) 

ensemble model, (4) feature choice, and, lastly, we also investigate (5) general structured 

forest parameters. Second, we analyze the estimation results and identify the reasons for 

estimation failures. Third, we compare our structured forest implementation to other 

methods. For the behavior detection, we provide a qualitative assessment of the potential for 

use of the per-frame pose estimates in detecting behavior in continuous video. Namely, we 

compare the accuracy of the behavior classifier trained on intensity-based features to a 

classifier trained solely on 3D trajectory features. We also report on the increased detection 

accuracy resulting from supplementing the intensity features with the 3D trajectory features.

A. Model parameters sweeps

The accuracy of the 3D pose estimation structured forest implementation is dependent on the 

choice of model parameters. We investigate the effect of four sets of parameters on accuracy: 

The intermediate mapping, the discretization mapping, the ensemble model, feaure choice, 

and the general model parameters. The models are applied to the test set described in III-B. 

We report on the failure rate as well as the mean distance for all the successful estimates. 

The sweeps performed are described below.

1) Intermediate mapping parameters—In section IV–B2, we describe two variables 

that control the generation of the binary string representation of the pose parameters, which 

is subsequently used to assign a discrete class label to each pose. We sweep over the string 

length l for both ‘fixed’ and ‘adaptive’ bit assignment. The results of the sweeps are shown 

in Table II, where the string length l is expressed in multiples of D = 12, the number of pose 

parameters. The bolded entry in the table is the optimal parameter choice used in the final 

implementation.

2) Discretization mapping parameters—Once the binary string is generated and 

reduced in dimensionality by PCA, two methods can be used to cluster the samples for class 

label assignment. The first, as per section IV–B3, is for the class label to be based on the 
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sign of the projection on the principal component. The second is k-means. The results are 

shown in Table III. We also show in Table III the results of using direct clustering on poses 

foregoing the intermediate mapping.

3) Ensemble model parameters—The ensemble model ℰ utilizes a regression model 

trained to predict a pose proposal’s distance from ‘true’ pose. As per section IV–B5, for 

each ground-truth pose ϕn a set of P pose proposals ϕi, i ∈ {1, …, P} are generated using a 

structured forest ℱ′. In our implementation, ℱ′ has P = 24 trees and was trained using a 

subset obtained by randomly discarding half of the samples in the full training set. The main 

parameter for building ℰ’s regression model is the pose-indexed features offset radius r, 
described in Section IV–B5. Table IV shows the results of sweeping over r.

To highlight the gain in performance due to utilization of pose-indexed features, we carry 

out two tests. In the first, we eliminate xPL from the feature vector. The failure rate increases 

from 24.9% to 30.6%. In the second test we replace xPL with pixel lookups that are not pose-

indexed but rather taken at randomly chosen pre-specified offsets relative to the detection 

window. These features are similar to the pixel lookup features described in section IV–B1 

but are taken from Sn rather than In. The ‘static’ features (i.e., as opposed to pose-indexed 

features) caused the failure rate to increase to 29.2% from 24.9%.

Lastly, we report that our ensemble model produces results that are far more accurate that 

standard ensemble models. Namely, if we use the medoid, as proposed in [18], the failure 

rate is 40.7%. When using more traditional methods, such as the mean and median, the 

failure rates are 42.4% and 33.2% respectively. We note, however, that using mean and 

median of each pose parameter produces poses that are not guaranteed to be plausible 

physically.

4) Feature choice—To investigate the robustness of the raw intensity based features, we 

run experiments in which the feature vector is augmented with gradient and HOG features. 

When the feature vector was augmented with gradient features, the failure rate increased 

slightly from 24.9% to 26.6%. With inclusion of HOG features, the performance was further 

degraded and the failure rates went up approximately 8% to 32.7%. These experiments 

prove that raw intensity features are more robust for the task at hand.

5) General forest parameters—The last set of sweeps involved general forest 

parameters as well as training set size. We sweep over the number of trees in the structured 

forest, noting that increasing the number of trees in the forest reduces the number of samples 

used to train each tree. The results are shown in Table V. We sweep over the size of the 

training sets. The size of the training set is reduced by discarding a randomly chosen subset 

of the whole set. When the full set was used, the failure rate of 24.9% was at its lowest. The 

failure rate went up to 29.8% when the structured forest was trained with 0.8 of the training 

samples and 33.9% when 0.4 of the training samples were used. The distance distribution for 

the optimal model is shown in Figure VI-C2.
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B. Analysis of estimation results

Figure 7 shows ten example pose estimates, six successful ones (Figure 7a–f) and four failed 

estimates (Figure 7g–j). The shown successful estimates were chosen to illustrate the 

deviation from ground-truth for a range of distances within the success threshold. The failure 

cases were chosen to highlight the typical reasons for failure. In Figure 7g–i, the predicted 

pose has ~ 180° reversal relative to the ground-truth. In Figure 7g, the mouse is the furthest 

it could be from the camera and has its head completely occluded by the rest of the body. 

The example in Figure 7h exhibits a large degree of self occlusion due to the mouse 

orientation and proximity to the lens. In Figure 7i the mouse is in a novel pose (i.e., 

descending from the basket). The closest pose in feature space is the one to which it was 

wrongly assigned, namely the more commonly observed pose in which the mouse is on its 

hind legs with its forearms against the basket. Lastly, Figure 7j illustrates a failure case due 

to the strong occlusion of the silhouette by the tail.

C. Comparison to other methods

In this section we compare the results of our proposed algorithm to two methods. The first 

method is an adaptation of a state-of-the-art 2D pose estimation algorithm. The second is 

Deep Neural Networks. The distance distribution for both methods are shown in Figure VI-

C2.

1) Three dimensional Cascaded Pose Regression—We compare our structured 

forest method to an established structured pose estimation algorithm. The Cascaded Pose 

Regression (CPR) algorithm [36] and its variants [39], [42] have produced state-of-the-art 

results in the 2D landmark estimation problem. The CPR algorithm has also achieved 

success when applied to 2D mouse pose estimation [26], [36]. We have adapted and 

optimized the CPR algorithm to the 3D mouse pose estimation task using the same training 

set described in this paper. For the details of our 3D CPR implementation, the reader is 

referred to [19]. The parameters of the method were modified to reduce the failure rate to 

48.9%, a ~ 3% improvement over what was reported in [19]. Clearly, the structured forest 

method produces estimates with 24% lower failure rates than the 3D CPR.

2) Deep Neural Networks—Considering the large number of training examples at 

disposal, for completeness we also compare our approach against Deep Learning techniques. 

We first considered state-of-the-art human pose estimation approaches such as HourGlass 

[16] or OpenPose [15]. However, these approaches are designed to deal with multiple 

objects and articulated poses estimated directly from 2D image locations. Their final output 

is an ensemble of 2D image part detectors, very different from what is required for our task, 

which consists of estimating directly 3D absolute coordinates from two synchronized views 

of a single, easily detectable object. Therefore, we instead adapted two more “universal” 

Convolutional Neural Networks (CNN) state-of-the-art architectures which have been 

proven to work well on a wide range of tasks: VGG-M [46] and ResNet-50 [47]. 

Benchmarking both ensures that different choices of convolutional blocks types, 

normalization and network depth are tested. The CNNs were first trained using ImageNet 

(downloading pre-trained models available online), then fine-tuned using our 90K training 

images and finally applied to our test set. To adapt them to our task, some design and image 
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handling changes had to be made. The first convolutional layer was changed to work on two 

channels (our two synchronized views) instead of three (single RGB image). The final Fully 

Connected layer was changed to have 12 outputs (each predicting the location of one 

keypoint in 3D). During fine-tuning, a L2 loss was used between the 12 predicted positions 

and ground-truth. Ground-truth locations were previously normalized using known cage 

dimensions so that 3D positions always in the range [−1, +1], greatly helping convergence 

compared to using absolute positions. Both image views were fed to the network after 

performing background subtraction (background was computed as the average of all training 

images). This achieves zero-mean input and helps the network instantly locate the 

foreground pixels (the mouse), similar to what achieved by our mouse segmenter. DropOut 

[48] was used in the final layers of VGG-M, while BatchNorm normalization [49] was used 

on ResNet-50 throughout. Both networks were trained with minibatch gradient descent 

using adam optimizer [50] and early-stopping conditions to avoid overfitting (stopping when 

no further improvement was observed on the test set during 5 epochs). The VGG-M 

implementation has a failure rate of 33.3%, while the ResNet-50 implementation has a 

failure rate of 25.7%. The distance distributions for both implementations are shown in 

Figure VI-C2.

D. Behavior detection

We qualitatively assess our pose-estimation method by designing three different behavior 

classifiers: a classifier based on trajectory features only, a classifier based on spatial and 

spatio-temporal intensity features, and lastly a classifier trained on both trajectory features as 

well as intensity based features. The optimal structured forest pose estimation model was 

used to generate pose estimates for all frames in the training set video clips. Trajectory 

features were derived from the pose estimates as described in V. Similarily intensity features 

were derived from the videos as described in V. Three different REBEL classifiers [45] were 

built. The test set was applied to all three classifiers. To compare the results, we use the 

diagnostics introduced by [51] for multiclass behavior detection problems. For each 

classifier we compute two matrices: the conventional confusion matrix which measure the 

recall of each class and the ‘precision’ confusion matrix which measures precision for each 

class. The matrices along with the diagonal mean are shown in Figure 8. It is clear from the 

results that, despite a 24.9% failure rate in pose estimation, the classifier based on trajectory 

features derived from our estimates parallels the accuracy of the intensity-features-based 

classifier (78% vs 78%) and has better precision (85% vs 83%). Furthermore, when the 

trajectory features are combined with the intensity features the resulting classifier has a 5% 

gain in recall (83% vs 78) and 3% gain in precision (86% vs 83%) over the classifier trained 

solely on intensity-features.

VII. Discussion and Conclusion

We have proposed a systematic approach for 3D mouse pose estimation in compact, fisheye-

lens based, vision systems. The structured forest algorithm employed in our solution 

preserves the structural relationships between the pose landmarks. Paired with the unique 

ensemble model, the structured forest implementation seems to overcome the challenges 

presented by the optical configuration as well as the deformability of the mouse. 
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Furthermore, the predicted pose is by construction physically plausible, which is not 

guaranteed for the other 3D estimation methods to which we compared our implementation. 

In particular, we note that a maximum of only 25% of the estimates produced by the DNN 

implementations were plausible (e.g., preserving distance between ears and distance 

between nose and ears). We believe that the success of the two-layered approach (i.e., 

structured forest followed by pose-indexed-features-based ensemble model) is tied to the 

target’s properties. on one hand, the mouse is deformable and nearly featureless. on the other 

hand, the number of pose configurations of the mouse is limited (e.g., as compared to a 

human). Because of the more limited pose-space for the mouse coupled with the inherent 

ambiguity in pose, it makes sense to use the structured forest to generate a set of plausible 

pose configurations. The ensemble model then employs the finer pose-indexed features to 

select from the limited set of plausible poses. our novel ensemble model is superior to 

conventional ensemble models employing mean, median, or medoid as demonstrated in the 

Section VI–A3. The superiority in performance is attributed to the fact that the selection of 

the pose is guided by pose-indexed image features, as opposed to conventional methods 

where image features are not employed in the computation of the final output pose.

Our method is not only the first reported to estimate 3D mouse pose from conventional 

video, but tackles the additional challenges of estimation from a single image (i.e., with no 

temporal context) and the unique optical configuration required for systems suited for 

scalability in animal vivaria. Accurate per-frame 3D pose estimates constitute a very 

informative measure of mouse activity and behavior. We have further demonstrated the 

utility of the pose-estimates in behavior analysis by accurately identifying predefined 

behavior bouts in continuous video based on novel 3D trajectory features derived form the 

temporal evolution of the 3D poses.

The work presented estimates the 3D pose in a single image without consideration to 

temporal constraints. The accuracy of the algorithm will likely improve by incorporating a 

temporal consistency model. While our novel ensemble model greatly improved the 

selection of the best proposal over standard methods, Figure 6 shows that there remains 

better pose proposals to be chosen from the pool of proposals produced by the structured 

forest. Imposing temporal constraints can improve the selection of best pose. One advantage 

of our method is that several pose proposals are produced at each time step. Methods that 

merge pose proposals across time and space, such as [37], can be employed to further reduce 

the error rate. Additional accuracy in the pose estimates will very likely translate to 

improvements in the accuracy of the trajectory-features-based behavior detection model. 

Overall, the proposed approach is a step in the direction of ubiquity of vision systems in 

animal vivaria, transforming animal care and revealing large-scale experimental data for 

researchers in various disciplines.
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Fig. 1. 
(a) Typical animal vivarium cage-racks and the compact video acquisition system installed 

in the rack. (b) A close-up of the acquisition unit along with a 3D CAD drawing to highlight 

the close placement of the fisheye lens cameras to the cage. (c) An example image acquired 

by the system and the corresponding 3D pose estimate obtained from the image through the 

methods described in this work. The stick-figure is keyed as follows: the black circle denotes 

the tail, the blue × denotes the left-ear, the red * denotes right-ear, and the green square 

denotes the nose.
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Fig. 2. 
(a) 3D CAD illustrating the video acquisition unit augmented with overhead cameras 

enabling synchronized stereo acquisition. (b) Cartesian coordinate definition for cage with 

origin at the center of the cage floor. Each checkerboard pattern grid is moved at known 

increments to generate the image-to-physical coordinates lookup tables. (c) Example manual 

annotation of the key-points from top and side camera. (d) Reconstruction of the nose 3D 

position using the lookup tables 𝒞I − P. The red line is due to the nose annotation in the side 

camera image while the green line is due to the top camera annotation. The black dots in 

each line show the actual 3D points comprising the set {γ} corresponding to each annotated 

image position. (e) The 3D reconstructed ground-truth pose
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Fig. 3. 
The initial image-to-physical coordinates mappings applied to the ellipse-fit endpoint 

(marked by ×) for an example image. The 3D tail position of the mouse is represented 

relative to the (u, v, w) obtained through ℳu, ℳv, ℳw respectively. The images are 240 × 

320 pixels. The ranges of cage physical coordinates are u ∈ [−76mm, 76mm], v ∈ 
[−150mm, 150mm], w ∈ [0,178mm].
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Fig. 4. 
Example output of the discretization function. The function was applied to eight randomly 

chosen poses. The red (left-column) and green (right-column) outlines group the images for 

which the poses received the same class label by discretization function. The results are 

intuitive as all the poses in which the mouse nose was at greater elevation are grouped 

together.
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Fig. 5. 
A graphical illustration of the procedure of generating the feature vector used in the 

ensemble model. The image is fed to the structured forest. The resulting proposals are 

projected onto the segmentation map. The solid red line shows an example projection for 

one pose-proposal though different proposals will have different projections. Aside from the 

binary silhouette features, head/tail distance measures are computed along with pose-

indexed pixel lookups. During training, the target value is the computed distance for each 

pose proposal from the ground-truth pose. Also during training, the ground-truth pose is 

used as a training sample with a distance of 0.
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Fig. 6. 
Distance distributions for the test set comparing the proposed structured forest 

implementation with the pose-indexed features based ensemble model (SF-PI), to the CPR 

3D implementation as well as the standard regression forests (RF) implementation. Also 

shown is the distance distribution for an ensemble model used in [18] in which the medoid 

of all proposals is the chosen prediction (SF-medoid), rather than the ensemble model 

described in section IV–B5. We also show the distance distribution for the best proposal 

(SF-Best) prior to applying the ensemble model, i.e. the pose proposal having the minimum 

distance to the ground-truth.
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Fig. 7. 
Example successful estimates (a)-(f) and failed estimates (g)-(h). The solid stick-figure is the 

ground-truth pose while the dashed stick-figure is the pose estimate.
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Fig. 8. 
Confusion matrices and ‘precision’ confusion matrices for behavior detection model based 

on intensity features only (a) trajectory features only (b) and both sets of features (c). For 

each matrix, the mean of its diagonal is also shown.
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TABLE I

Behavior annotations - training and testing datasets

Behavior Label Training samples Test Samples

drinking 11,901 876

walking 17,235 768

rearing (u) 15,036 876

rearing (s) 21,674 1,172

climbing 76,224 3,536

foraging 6,862 655

other 81,057 2,346
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TABLE II

Intermediate mapping - string length sweep

Failure Rate (%) Success mean d Failure Rate (%) Success mean d

l adaptive fixed

1 × D 68.2 2.64 68.8 2.64

3 × D 31.4 2.00 30.5 2.04

5 × D 24.9 2.04 29.4 2.04

7 × D 29.3 2.00 30.2 2.00

9 × D 28.0 1.99 28.7 2.04
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TABLE III

Discretization mapping sweeps

Failure Rate (%) Success mean d Failure Rate (%) Success mean d

method Clustering with Π Clustering w/out Π

PCA 24.9 2.04 35.0 2.15

K-means 31.0 2.04 32.5 2.13
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TABLE IV

Ensemble Model - Feature position offset radius sweep

Offset radius r 0.3 0.4 0.5 0.6 0.7

Failure Rate (%) 26.6 27.7 24.9 26.8 28.7

Success mean d 2.08 2.09 2.04 2.06 2.04
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TABLE V

Structured forest parameters - Tree count

Tree count 4 8 16 24 32 64

Failure Rate (%) 37.0 31.8 24.9 31.6 28.0 30.9

Success mean d 2.12 2.06 2.04 2.02 2.09 1.97
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