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Abstract

Importance of the field—Increased localization of Zn, Fe, Cu and Al within the senile plaques 

(SP) exacerbates amyloid beta (Aβ)-mediated oxidative damage, and acts as catalyst for Aβ 
aggregation in Alzheimer’s disease (AD). Thus, disruption of aberrant metal-peptide interactions 

via chelation therapy holds considerable promise as a rational therapeutic strategy against 

Alzheimer’s amyloid pathogenesis.

Areas covered in this review—The complexities of metal-induced genesis of SP are 

reviewed. The recent advances in the molecular mechanism of action of metal chelating agents are 

discussed with critical assessment of their potential to become drugs.

What the reader will gain—Taking into consideration the interaction of metals with the metal-

responsive elements on the Alzheimer’s amyloid precursor protein (APP), readers will gain 

understanding of several points to bear in mind when developing a screening campaign for AD-

therapeutics.

Take home message—A functional iron-responsive element (IRE) RNA stem loop in the 5′ 
untranslated region (UTR) of the APP transcript regulates neural APP translation. 

Desferrioxamine, clioquinol, tetrathiolmolybdate, dimercaptopropanol, VK-28 and natural 

antioxidants, such as curcumin and ginko biloba need critical evaluation as AD therapeutics. There 

is a necessity for novel screens (related to metallobiology) to identify therapeutics effective in AD.
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1. Introduction

The two predominant pathological features of Alzheimer’s disease (AD) are the extracellular 

amyloid plaques and intracellular neurofibrillary tangles in the brain. The abnormal 

processing of the amyloid precursor protein (APP) is the initiating event in AD 

pathogenesis, subsequently causing aggregation of amyloid beta (Aβ), specifically Aβ42. 

Formation of neuritic plaques instigates the formation of neurofibrillary tangles, composed 

of hyperphosphorylated microtubule-associated tau protein, and results in significant loss of 

neurons and synapses leading to cognitive impairment and dementia [1–4].

One of the physiologically relevant environmental factors able to affect the conformation of 

amyloidogenic proteins/peptides is metal ions. The ‘metal hypothesis’ of AD proposes that 

the interaction of APP and its proteolytic product ‘Aβ’ with specific metals drives Aβ-

pathogenicity [5]. Increased concentrations of Fe, Cu and Zn [6] have been observed within 

the amyloid plaques (Figure 1) [7] that are released from glutamergic neurons at synapses 

[5]. The Fe and Zn levels have been reported to reach as high as 1 mM in the vicinity of 

amyloid plaques [8]. When compared with the surrounding tissue, levels of Zn, Cu, Fe and 

Ca inside the plaque were higher by 9.09 ± 0.20-fold, 11.72 ± 1.24-fold, 5.74 ± 3.31-fold 

and 98.40 ± 31.56-fold respectively [9]. Proton-induced X-ray emission, epifluorescence 

microscopy, immersion autometallography [10] and synchrotron X-ray fluorescence 

microprobes confirmed ‘hot spots’ of Fe, Cu, and Zn co-localized with Aβ in the rims and 

cores of the senile plaques [6,11,12]. Fe-rich Aβ plaques could be seen in AD-mouse brains 

in vivo through MRI and susceptibility-weighted MRI with significant increases in the basal 

ganglia cortex [13,14]. Furthermore, laser capture micro-dissection coupled with X-ray 

fluorescence microscopy could determine elemental profiles in Aβ amyloid plaques (Figure 

1) [7].

Metals play a key role in the aggregation of hyperphosphorylated tau into insoluble paired 

helical and straight filaments, which are involved in the pathogenesis of AD. Fe and Al were 

reported to accumulate in neurons within neurofibrillary tangles (NFTs) of AD brain [15], 

and, notably, tau pathology with hippocampal neurons was exacerbated in copper-exposed 

triple transgenic (Tg)-AD mice [16].

Thus chronic exposure to metal(s) (mainly Cu, Al, Fe and Zn) accelerates amyloid and tau 

pathology in AD, and trapping of these metals might be necessary to protect the brain from 

susceptible degeneration during AD.

2. Metals and AD

2.1 Fe-APP, Aβ and AD

A unique CAGA box, ‘amyloid’ (+83/+86), present only in the APP gene from amyloid 

plaque-forming species and absent in genes of APP-like-proteins (APLP1 and APLP2), 
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plays a key role in APP gene regulation [17]. The functional iron responsive element (IRE)-

Type II around the amyloid CAGA in the 146 nt-5′-untranslated region (UTR) of APP 

mRNA (+ 51 to + 94 from the 5′-cap site) [18] binds to the iron regulatory proteins (IRP1 

and IRP2) and controls mRNA translation rate [8]. In normal human brain extracts, the IRP 

is detected as a double IRE-IRP complex but in two of six AD brain extracts a single IRE-

IRP complex with decreased mobility was observed. Alterations in the IRP-IRE interaction 

possibly through elevated endogenous RNase activity could be the site in the AD brains at 

which Fe mismanagement occurs and the Fe regulatory system becomes dysfunctional [19].

Fe enhances amyloidogenicity through different mechanisms. Firstly, Fe downregulates furin 

protein levels that promote non-amyloidogenic α-secretase activity [20]. Secondly or 

possibly most commonly Fe participates in the production of the reactive oxygen species 

(ROS) (Figure 2) that upregulate inhibition of matrix metalloprotease and shift aconitase to 

the IRP1 form.

When Fe is scarce, the IRP1 binds to IREs that regulates translation or stability of IRE-

mRNAs (Figure 3), whereas when Fe is abundant IRP1 forms a [4Fe–4S] cluster and is 

converted from an RNA-binding form to an aconitase [21]. Unlike IRP1, IRP2 is degraded 

by the proteasome by a process involving Fe-catalyzed oxidation. IRP-2 colocalizes with 

redox-active Fe, and change in IRP-2 has been reported to be directly linked to impaired Fe 

homeostasis in AD [22]. Such changes could modulate APP mRNA translation and APP 

synthesis in astrocytes [23] and neurons to significantly reduce expression of the 

neuroprotective secreted APP (APP(s)) [24]. In terms of AD pathology, the APP–IRE–RNA 

secondary structure might be disrupted in the presence of an adjacent 5′UTR-specific single 

nucleotide polymorphism that could be genetically linked to increased risk for spontaneous 

AD [25].

A changed IRP-IRE binding modulates expression of the Fe-storage protein (Figure 3), 

transferrin and melanotransferrin in brain white matter [26–28] in a way that parallels the 

pathological lesions in AD [29,30]. Furthermore, genetic evidence implicates synergy 

between the C282Y allele of the hemochromatosis gene (HFE) and the C2 allele of 

transferrin as risk factors for developing AD [31]. It has also been reported that although 

each of the HFE variants alone had relatively little effect on Fe status, the combination of 

either HFE C282Y and HFE H63D or of HFE C282Y and transferrin C2 markedly raised 

transferrin saturation in those without dementia, but had little effect in those with mature AD 

[32].

The physiological relevance of Fe to Aβ is demonstrated by their concurrent accumulation in 

Aβ deposits in AD [29,33] as well as in transgenic mouse models [34]. Fe-binding to Aβ 
enhances its aggregation and facilitates the oxidative damage in the immediate vicinity of 

the senile plaques [35–37]. Dysfunction of ferritin with ferroxidase activity [38], particularly 

abundant in myelinated axons and oligodendrocyte processes, results in an increase of toxic 

brain Fe2+ ions. In support of this, null ferritin heterozygous mutants mice of mixed 

C57BL6/J × 129SvEv genetic background have also been found to develop oxidative 

features in the cortex that are reminiscent of AD and Parkinson’ disease (PD) [39].
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In AD pathobiology, intracellular Aβ forms a complex with free heme that results in 

functional heme deficiency [40]. Regulation of cerebral heme biosynthesis is profoundly 

altered in AD and may contribute towards disease pathogenesis by affecting cell metabolism 

as well as Fe homeostasis [41]. A significant decrease in loosely bound Fe has been reported 

in the hippocampal white matter of mild–moderate and severe AD patients with a trend 

towards increased non-heme iron in the hippocampal gray matter of severe AD [42]. The 

AD brain has been observed to have 2.5-fold more heme-b and 26% less heme-a compared 

with controls, with a significant 2.9-fold decrease in the heme-a:heme-b ratio [43]. When the 

rate of production of Aβ exceeds the capacity of heme synthesis or there is an increase in 

free metals, Aβ reacts with free metals and forms aggregates [43]. The Aβ-heme complex, 

being a peroxidase, catalyzes the oxidation of serotonin and 3, 4-dihydroxyphenylalanine by 

H2O2 that leads to oxidative damage to macromolecules and depletes specific 

neurotransmitters. The intracellular oxidative stress-induction of the astroglial and neuronal 

hemoxygenase-1 gene through a ‘common pathway’ leads to pathological brain Fe2+ 

deposition. This further causes enhanced free radical generation [44], mitochondrial 

insufficiency, enhanced cytochrome c oxidase activity [45] and H2O2-generation that 

releases free radical hydroxyl (OH) via the Fenton reaction: Fe+2 + H2O2 → Fe+3 + OH− + 

OH or by virtue of hypervalent iron compounds, as observed in vitro [46,47]. Oxidative 

stress triggers activation and/or translocation of NF-κB, p53 and c-Jun transcription factors 

resulting in enhanced apoptosis [48]. This is accompanied by DNA damage, blood–brain 

barrier (BBB) disruption [49] and age-related myelin breakdown [50,51]. The toxicity of Aβ 
is mediated, at least in part via redox active Fe that precipitates lipid peroxidation and 

cellular oxidative stress [52].

2.2 Zn and AD

In AD, recurrent episodes of focal high Zn release are observed from the presynaptic 

vesicles to the postsynaptic neurons of the neocortex, hippocampus and amygdale in a Ca2+-

and depolarization-dependent fashion [53]. This indicates prior injury with toxic ‘floods’ of 

free Zn in the brain as a major risk factor in AD-development [54]. A decreased 

concentration of astrocytic growth inhibitory factor that chelates Zn [55] causes the highest 

concentration of Zn in the hippocampus. This is associated with increased extracellular Zn 

metalloproteinase activities [56] due to cholinergic deafferentation of the hippocampus [57]. 

The sequestration of Zn in Aβ-Zn complexes further leads to reduced Zn availability at 

synaptic terminals and consequent loss of Zn modulatory activity at excitatory synapses 

[58].

The Zn transporter proteins (ZNTs, ZnT2 – 8), abundantly expressed in Aβ plaque, and 

cerebral amyloid angiopathic vesicles [59,60] induce an abnormality in the uptake or 

distribution of Zn in the AD brain [61]. The ZnT immunoreactions were detected in the 

amyloid plaques and amyloid angiopathic vessels of brains of APPswe/PS1dE9 transgenic 

mice. ZnT1 and ZnT4 are extensively expressed in all parts of the plaques. ZnT3, ZnT5, and 

ZnT6 are expressed most prominently in the degenerating neurites in the peripheral part of 

the plaques, while ZnT7 is present in the core of the plaques. The amyloid angiopathic 

vessels showed a strong ZnT3 immunoreactivity [59]. The disruption in neuronal Zn 

homeostasis triggers ZnT1 expression that caused increased efflux of Zn ions in the 
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extracellular space. This might involve altered homeostasis of metallothionein and other Zn-

binding proteins such as α2 macroglobulin, or pro-inflammatory cytokine polymorphism 

[62]. ZnT2 – ZnT8 are localized in the intracellular membranes and transport Zn ions into 

different intracellular compartments when the intercellular level of Zn ions is raised [63]. 

The synaptic ZnT3 activity promotes cerebral amyloid angiopathy by indirectly increasing 

exchangeable Zn concentrations in the perivascular spaces of the brain [59,64,65]. The 

increase in synaptic Zn correlates well with higher levels of insoluble Aβ and plaque loads 

in aging females, and these sex differences completely disappear in ZnT3−/− mice, 

suggesting the role for synaptic Zn in the sex differences in AD [65].

Zn interaction may play an important, evolutionary conserved role in APP function and 

metabolism. The sequence of APP harboring the Zn binding site (181 – 200 amino acids) is 

evolutionarily conserved with the coordination sites as Glu-185, Cys-188 and Cys-189, and 

a saturation binding KA of 750 nmol/l [66]. The obligatory motif for the ectodomain Zn 

binding region on APP is a novel sequence for a Zn binding site, GVEFVCCP that is highly 

conserved in APLP l and APLP2, as well as in the Drosophila and Caenorhabditis elegans 
APP-like protein [67]. The Zn binding domain may play a role in regulating the 

adhesiveness of APP through its control over the Kunitz-type protease inhibitory insert and 

heparin binding affinity of APP695 [66,68]. Disturbed homeostasis of extracellular Zn2+ in 

AD may interfere with the normal binding of APP to heparin-like molecules such as heparan 

sulfate moiety of proteoglycans (known to alter protein conformation, and the clearance and 

processing of bound proteins) [66]. It also modulates the binding of APP to extracellular 

matrix components such as laminin [69] that controls crucial cell–cell and cell–matrix 

interactions [70].

Indeed, Zn-binding may also influence APP processing and has been found to specifically 

inhibit the α-secretase cleavage of APP [71]. Exogenous Zn enhances the synthesis of 

presenilin in a dose-dependent manner. This further elevates γ-secretase activity that could 

result in increased production of Aβ and the formation of more senile plaques, which in turn 

could trap more Zn [72]. The Zn-dependent transcription factors NF-κB and specific 

protein-1 (Sp1) bind to the promoter region of the APP gene, and also inhibit enzymes that 

degrade APP to non-amyloidogenic peptides and degrade the soluble form of Aβ [73]. A 

reduction in Zn-stimulated protein tyrosine kinase activities in AD hippocampus indicates a 

possible connection of neuronal protein tyrosine kinase activity loss to severe memory and 

intellectual impairment that is characteristic of AD [74].

Human Aβ specifically and saturably manifests high-affinity (Ka =107 nM) binding [75] 

(concomitant with Zn-induced Aβ aggregation) with Zn in less than a millisecond [76] at a 

Zn2+: Aβ stoichiometry of 1:1 [77], and induces tinctorial amyloid formation [61]. A low-

affinity binding with the second Zn ion at 2:1 stoichiometry seems to have a moderate effect 

on peptide conformation [77]. The 1 – 16 region represents a possible initiation site for the 

entire Aβ transconformation, and the minimal Aβ fragment required for Zn binding [77]. 

The Zn is coordinated i) at the N-terminal hydrophilic region of Aβ with the imidazole side 

chain of His6, His13, His14 [78–80], ii) with Asp1 either with the N-terminus or/and the 

carboxylate group and iii) with the carboxylate side chain of Glu11 [80–82]. The 

dissociation constant (Kd) of Zn for the fragment Aβ-peptide 1 – 28 (measured by 
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fluorescence study) and that for Aβ-peptide 1 – 40 (through NMR) had values in the μM 

range at pH 7.2 and 286 K. Zn also has a second, weaker binding site involving residues 

between 23 and 28 [79]. Moreover, the apparent dissociation constant (Kd, app) of Zn 

binding to all forms of Aβ (soluble Aβ, Aβ fibrils, or Zn-induced Aβ aggregates) is in the 

low μM range (1 – 20 μM) [80,83]. Isomerization of Asp7 or the substitution of Asp7 with 

Asn (in Tottori–Japan mutation with higher susceptibility of spontaneous conversion to iso-

aspartate) in Aβ promotes Zn-induced oligomerization of the Aβ–Zn binding domain [84]. 

The Zn-Aβ binding prevents the formation of the typical amyloid fibrils, the inhibitory effect 

(IC50 =1.8 μM) being three times stronger than that for Cu(II). It further induces the 

accumulation of large unorganized aggregates of smaller non-fibrillar pathogenic forms of 

Aβ [76,85]. The promotion of Aβ28 aggregation by Zn is based on the transformation of the 

partially α-helical conformer (intermediate) towards the Aβ-sheet amyloid [80] structure by 

destabilization of the α-helix in the intermediate [86].

With regard to the tau-protein-mediated AD pathology, the Zn-binding protein S100β has 

been identified as an interacting partner with tau. S100β-tau binding, promoted by Zn, may 

represent a key pathway for neurite development, possibly through S100β modulation of tau 

phosphorylation and/or functional stabilization of microtubules and process formation [87]. 

Interestingly, S100β-tau interaction may be disrupted by hyperphosphorylation and/or 

imbalances in Zn metabolism and this may contribute to the neurite dystrophy associated 

with AD. Zn has also been reported to enhance tau binding as an important factor in the 

internalization of S100β [87].

2.3 Cu and AD

The possibility that Cu may contribute to AD pathology is suggested by the ceruloplasmin 

fragmentation that indicates improper Cu transport, together with the ‘free’ Cu rise in AD 

[88]. Cu2+ levels in the brain increase with age in transgenic Tg2576 mice [89], and Cu 

along with ROS homeostasis are compromised in AD patients [6,89–93]. Even a small 

increase in the serum free Cu can be of significance, particularly over a long period of time 

[94]. The free Cu can cross the BBB in living patients and supply the brain with a 

continuous flux of noxious redox Cu. Cu2+ levels in the AD neuropil are 400% higher than 

in the neuropil of a healthy brain [6], and oxidative damage [95] involving Fenton cycling is 

the probable source of ROS [96].

Neurotoxicity of Aβ with Cu-induced dityrosine crosslinking of Aβ 1 – 28, Aβ 1 – 40, and 

Aβ 1 – 42 [97] has been linked to H2O2 production [98], with the generation of highly toxic 

hydroxyl radical species [99]. The oxidative coupling is initiated by interaction of H2O2 with 

a Cu2+ tyrosinate that induces Aβ aggregation under mildly acidic conditions (e.g., pH 6.8 – 

7.0) [100].

Hyperlipidemia is a significant risk factor of an interaction between free copper and Aβ 
[94,101], and Cu alters the structure of lipid rafts through flotillin-2 lipid raft association 

that inhibits APP endocytosis. The primary products of lipid peroxidation are phospholipid 

hydroperoxides that are degraded by free Cu2+ in the presence of ascorbic acid to yield 

hydroxy-2-nonenal, a toxic factor in the pathogenesis of AD [102]. It has also been seen that 

total cellular Cu2+ is associated inversely with lipid raft Cu2+ levels, so that under 
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intracellular Cu2+ deficiency Aβ–Cu complexes are more likely to form [103]. Diffusible Aβ 
oligomers concentrate Cu2+ in a toxic redox-active state at the membrane that in turn causes 

further oxidative stress and upregulation of Aβ. The Aβ accumulation causes altered kinase 

and phosphatase activities leading to neurofibrillar tangles of tau protein and dementia [104].

APP has many of the features of a Cu transporter, and the Cu2+ binding site at residues 135 

– 155 at a Kd APP of approximately 10 nM can promote the reduction of bound Cu2+ leading 

to increased oxidative stress in neurons [105,106]. The APP-Cu binding domain consists of 

an α-helix (residues 147 – 159) packed against a triple-stranded β-sheet (residues 133 – 139, 

162 – 167 and 181 – 188) through Cy- rich disulfide bonds [107]. The metal ligands are 

His147, His151, Tyr168 and two water molecules that are arranged in a square pyramidal 

geometry [108]. There is a clear link between APP processing and Cu2+ homoeostasis in the 

brain with the 24-residue peptide of the C-terminal domain of β-secretase 1 (BACE1) 

binding with high affinity to a single Cu1+ atom through Cys residues. Overproduction of 

BACE1 reduces superoxide dismutase (SOD)1 activity in cells through the interaction of 

cytoplasmic domain of APP with the Cu2+ chaperone for SOD 1 [109]. Perturbations to APP 

metabolism and in particular, its secretion or release from neurons may alter Cu homeostasis 

[110] resulting in increased Aβ accumulation and free radical generation [111].

It is known that monomeric Aβ peptides bind Cu(II) ions in vitro [112], with concomitant 

acceleration of Aβ aggregation and precipitation [100,113,114]. The oxidative damage to 

Aβ amino acid side chains was profound in tests performed in vitro, and some of the 

modified chains, for example, 2-oxo-His, were also found in amyloid plaques [115].

Cu may participate in oxidative stress through redoxcycling between its + 2 and + 1 

oxidation states to generate ROS that is governed by the binding mode. All of the ligands of 

the high affinity Cu(II) site are contained in the Aβ 16 N-terminal domain [112]. Two 

complexes (components I, at lower pH and component II, at higher pH), distinguishable by 

conventional 9 GHz electron paramagnetic resonance (EPR) spectroscopy are present near 

physiological pH values. Using pulse EPR techniques such as electron spin echo envelope 

modulation and hyperfine sublevel correlation spectroscopy (HYSCORE) Shin and Saxena 

proposed three His bound at pH 7.4 [116]. On the other hand Drew et al. proposed the 

binding of two His and Asp1 by Aβ16 N terminus and side chain carboxylate group at pH 

6.3 – 6.9, and of three His and the carbonyl group of Ala2 at pH 8 [117,118]. Dorlet et al. 
further used a wide range of advanced EPR techniques in conjunction with specific isotopic 

labeling that were able to directly detect and thus identify the ligands of the Cu (II) ion 

coordinated to Aβ16 in the component I and component II forms. They proposed that in 

component I, the two His, the NH2 terminus, and the carbonyl group from Asp1 composed 

the equatorial coordination plane, while the side-chain carboxylate group of Asp1 occupied 

an axial position. In component II, the equatorial ligands were the NH2 terminus, the amide 

and carbonyl groups of Ala2 (due to deprotonation of the amide nitrogen atom of A2 upon 

pH increase), and one His. The side-chain carboxylate group of Asp1 was in an apical 

position [119]. The component I of Dorlet et al. [119] was in close agreement with Drew et 
al. [117,118] but component II differed significantly.
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X-ray absorption (XAS) and EPR spectroscopy revealed that Cu(I) is ligated by the 

imidazole group of His13 and His14 in a linear coordination environment in Aβ and Cu-

mediated oxidative damage of Aβ occurs over multiple redox cycles [120,121]. X-ray 

absorption fine structure spectroscopy and CO-binding studies demonstrated the preference 

of Cu I ions for two-coordinate geometry in binding to Aβ through a contiguous His13 – 

His14 motif [122]. Further, NMR studies revealed that structure is retained, even in the 

presence of three His residues (His6, His13, His14) [121] and additional potential donors 

(Tyr10, Asp7, Glu11, Ser8, backbone carbonyl O, amide N) [122].

The Cu interacts with Aβ to form simple reversible 1:1 complex [123], and at times a 2:1 

complex [124]. At the Cu2+/peptide molar ratios > 0.3 Aβ coordinates a second Cu2+ atom 

in a highly cooperative manner [125]. But EPR spectroscopy indicated that both Cu have 

axial, Type II coordination geometry, square-planar or square-pyramidal, with nitrogen and 

oxygen ligands [124]. The EPR parameters are consistent with a Type 2 Cu2+ center with 

three nitrogen donor atoms and one oxygen donor atom in the coordination sphere of Cu2+, 

and this coordination in retained during organization of Aβ monomers into fibrils [126].

The rate constant for the reaction of superoxide with Cu2+-Aβ has been found to be much 

slower than that with SOD, and the His residues of Aβ 1 – 42 control the redox activity of 

transition metals present in senile plaques [127]. The addition of Cu2+ to Aβ in a negatively 

charged lipid environment caused a conformational change from β-sheet to α-helix, 

accompanied by peptide oligomerization and membrane penetration [128]. Buffer-

independent conditional Kd for Cu(II)-αβ40 complex at pH 7.4 is equal to 0.035 μmol/l 

[129]. The dissociation constant of the Cu(αβ) complexes ranges from μM to pM values 

[113], with a preference for the region between 100 pM to 1 nM [79,80].

The modulation of oxidative stress related to Cu-dysfunction may also be one of the 

mechanisms that make apolipoprotein E4 gene a risk factor for AD [130–132].

2.4 Al and AD

High consumption of Al from drinking water has been epidemiologically reported to be a 

risk factor for AD [133–135]. Al neurotoxicity as a factor for AD onset or AD-like 

pathology has been observed in Al-dust exposed workers [136]. Although the role of Al in 

the etiology of AD remains controversial, energy-dispersive X-ray spectroscopy combined 

with transmission electron microscopy has detected Al colocalized with Aβ peptides in the 

cores of SP located in the hippocampus and the temporal lobe that facilitates iron-mediated 

oxidative reactions [137]. Aβ peptide (1 – 42) and Al have been found to induce helical 

transitions in supercoiled DNA, as a first step to AD neuropathology [138]. It further 

disturbs heme metabolism [139], perturbs neuronal [Ca2+]i homeostasis and mitochondrial 

respiration with enhanced Aβ accumulation and neurodegenerative damage [140].

A study in Tg2576 mice indicated that the Al-dietary supplementation increased soluble and 

insoluble Aβ levels and the levels of an isoprostane marker of oxidative stress in the 

hippocampus and iso-cortex [141]. This situation was associated with increased total number 

of proliferating neuronal cells in the dentate gyrus of hippocampus compatible with an 

accelerated neurodegeneration [142] and significant Al deposit in the cortex [143]. Al has 
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also been suggested to interact with plasmin proteases involved in the degradation of Aβ and 

promotion of α-cleavage of the APP [144].

The NFTs observed in human neurons always developed in conjunction with cytoplasmic 

Al, suggesting that Al played an important role in their formation [145]. Al in brain bulk was 

observed to be colocalized with NFTs [146] probably as aluminosilicates [147]. In rat and 

mouse neurons Al was found to be accompanied by transition of both phosphorylated and 

unphosphorylated form of NFT peptides from α-helix to β-pleated sheet [148,149]. The 

NFTs were prone to dissolution by desferrioxamine (DFO) or EDTA [150].

3. Metal chelators as therapeutic agents

Disruption of aberrant metal–peptide interactions via metal chelation could play a crucial 

role in overcoming Alzheimer’s amyloid pathogenesis. The strategy of using chelators to 

block intracellular APP expression, Aβ fibrilization and Aβ-dependent metal oxidative 

stress-induced neurotoxicity could well produce a major new therapeutic effect on AD 

progression.

3.1 5-chloro-7-iodo-8-hydroxyquinoline (CQ)

CQ (Figure 4A) has selective affinities for Cu and Zn and form relatively stable complexes 

[151]. Being hydrophobic CQ molecule crosses the BBB and inhibits homeostatic defects of 

brain metal ion metabolism in APP transgenics it redistributes Cu from plaques (as observed 

through NMR spectroscopy) to the cells, disaggregates the metal-ion-induced aggregates of 

Ap1 – 40 through metal chelation, retards the fibril growth along with Zn2+ [152] and 

dissolves Aβ with about 30 times greater efficiency and speed [153] than Aβ vaccine 

therapy [154]. CQ might work by a combined action that facilitates disaggregation of the 

Zn-mediated Aβ collections [100,155], while also inhibiting Cu- or Fe-mediated H2O2 

production with increased Aβ clearance [96,156]. A paradoxical increase in Cu and Zn in 

CQ-treated APP2576 mice might be explained by CQ preventing Cu2+ and Zn2+ from 

sequestering with extracellular Aβ, and then diverting metal ions for uptake into metal-ion-

deficient brain tissue [157]. The resolubilized Aβ may either be removed into the blood or 

degraded by intracellular uptake and hydrolysis. As observed in Caenorhabditis elegans and 

in mice, CQ chelates mitochondrial enzyme clock abnormal protein 1 that results in slowing 

down of the aging process in AD [158].

CQ has been shown to reduce APP translation and Aβ production in vitro with reduced 

APP-5′UTR levels in APP Tg2576 [159]. Oral treatment with CQ caused 49% reduction in 

cerebral Aβ deposition and approximately 30 times greater reduction in absolute Aβ in APP 

2576 Tg mice with its dissociation (1.45% elevated) into soluble form of Aβ [156] without 

affecting APP processing. It also showed a decrease in the amyloid plaque surface area 

without appreciable effects on weight loss or mean survival, and improved motor activity, 

alertness and general health. CQ was effective in liberating Aβ from postmortem brain 

samples of AD patients and may be the first credible drug candidate based on the amyloid 

hypothesis of AD [157]. A Phase II double-blind clinical trial on the effects of oral CQ has 

shown reduced cognitive decline and decreased plasma Aβ42 levels in moderate to severe 

AD patients [160].
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In silico techniques that incorporate chelating properties into well-known intercalation 

compounds have designed new multifunctional agents for application in AD. The 

combination of main features of thioflavin-T, with strong affinity for fibrillar amyloid 

proteins, and CQ led to the three compounds 2-(2-hydroxyphenyl) benzoxazole, 2-(2-

hydroxyphenyl)-benzothiazole, and 2-(2-aminophenyl)-1H-benzimidazole. They increased 

lipophilicity and suitability for crossing the BBB, obeyed Lipinski’s rules for 

pharmacokinetic properties, enhanced antioxidant properties and increased affinity for Aβ 
fibrils [161].

The second-generation 8-hydroxy quinoline analogue PBT2 is found to be superior to and a 

safer ionophore than CQ or CQ-PBT1 [162]. It promoted the transport and clearance of Cu, 

Zn and Fe across cell membranes, and prevented formation of Aβ aggregates through 

enhanced soluble Aβ formation. It also showed increased activities of the matrix 

metalloproteases such as neprilysin, insulin degrading enzyme and tissue plasminogen 

activator. PBT2 accelerated the degradation of soluble interstitial Aβ and reduced AD-like 

neuropathology and cognitive dysfunction in Tg models of AD [163]. AD patients (78 in 

number) who were treated with PBT2 (250 mg) in a Phase IIa double-blind, randomized and 

placebo-controlled trials showed a dose-dependent reduction in cerebrospinal fluid level of 

Aβ42 [164]. They demonstrated improvement in two executive function component tests of 

the neuropsychological test battery and in the executive factor z-scores without any serious 

adverse events [164,165].

DP-109, a diester derivative of BAPTA (1,2-bis(2-aminophenyloxy) ethane-N,N,N′,N′-tetra 

acetic acid), selectively chelated transition metals such as Zn, Cu and Fe within membrane 

compartments [166]. DP-109 could be similar to CQ in attenuating Aβ plaque deposition, 

inflammation and neuronal damage in hippocampus. It reduced cerebral amyloid angiopathy 

and increased soluble:insoluble Aβ40:42 ratio. DP-109 effectively crossed the BBB 

neuronal and vesicular membranes to quench free Zn in synaptic vesicles to reach the brain 

of Tg2576 mice. However, with DP-109, possible chelating effects on other metals cannot be 

ignored [166].

1-(benzimidazole-2-ylmethyl)-1,4,7-triazacyclononane and 1,4-bis(benzimidazole-2-

ylmethyl)-1,4,7-triazacyclonone), quite similar to CQ exhibited radical-scavenging potential 

with metal-protein-attenuating ability. The imidazole in the both compounds held sites that 

could be modified for preventing Aβ aggregation [167].

However, in contrast to previous studies, it has also been observed that CQ promoted the in 
vitro aggregation/fibrillogenesis of human Aβ in the presence of Cu and Zn with decreased 

viability in neuroblastoma cells [168]. There was an increased lethality of APP transgenics 

upon CQ treatment, which could be rescued by a co-treatment with Cu, confirming toxicity 

of CQ. Moreover, the exposure to Cu with CQ led to a modest but significant increase in 

cerebral Cu levels, most probably due to enhanced transport of CQ–Cu complexes with a 

secondary role as a chelator. Most conspicuously, until 1975 there were 10,000 cases of 

subacute myelo-optic neuropathy (SMON) associated with CQ administration. SMON 

resembled an accelerated form of sub acute combined degeneration due to vitamin B12 

deficiency [156,169,170].
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3.2 DFO

DFO (Figure 4B) has become the mainstay of iron- and Al-chelating therapy [171] (later on 

the beneficial effect was suggested to be due to the chelating of Cu and Zn also [172]) with 

probable inhibition of free radical formation and inflammation [173]. DFO either prevented 

the formation of β-pleated amyloidal fibrils or it initiated the dissolution of febrile amyloidal 

plaques [150]. In a clinical trial that involved the treatment of AD patients, the 

administration of DFO led to a significant reduction in the rate of decline of daily living 

skills as assessed by both group means and variances (p < 0.04) [171].

DFO is non-oral, rapidly metabolized and relatively unstable molecule, and is administered 

via painful intramuscular injections [172]. It is a highly costly drug with the need for 

parenteral administration. Systemic metal ion depletion (anemia) as a side effect of DFO are 

important reasons to search for an orally effective, cheaper and less toxic chelating agent 

than DFO [172].

3.3 Bifunctional metal chelators

New oral Fe chelators, 5-[N-methyl-N-propargylaminomethyl]-8-hydroxyquinoline (M-30) 

(Figure 4C) and the 8-hydroxyquinoline derivative, VK28 (Figure 4D), are being developed 

for the treatment of AD and other neurodegenerative diseases [174,175]. The 

neuroprotective activity of propargylamines led to the development of several novel 

bifunctional iron chelators, (5-[4-propargylpiperazin-1-ylmethyl]-8-hydroxyquinoline) 

HLA-20, M30 and M30A from the prototype brain-permeable iron chelator, VK-28. The 

chelators had cholinesterase and monoamine oxidase B inhibitory activities and retained the 

in vitro and in vivo neuroprotective activity of rasagiline. The N-propargyl moiety of the 

anti-PD drugs rasagiline (Azilect, Teva) and selegiline have been found to be the most 

effective that exerted Fe chelation potency, served as radical scavengers and inhibited Fe-

induced membrane lipid peroxidation features [176].

Fe chelators of low molecular weight, minimal toxicity and satisfactory lipophilicity have 

added a new facet in the etiology of AD therapy. Fe-binding drugs may also stabilize 

hypoxia-inducible factor that in turn would transactivate the expression of established 

protective genes, including VEGF, erythropoietin, aldolase and p21.

The metal-complexing bifunctional molecule, XH1 (Figure 4E), ([(4-benzothiazol-2-yl-

phenylcarbamoyl)-methyl]-{2-[(2-{[(4-benzothiazol-2-yl-phenylcarbamoyl)methyl]-

carboxymethyl- amino}-ethyl)-carboxymethyl-amino]-ethyl}-amino)-acetic acid, which 

crosses the BBB and holds the potential of being an amyloid-targeting metal chelator for AD 

treatment [177] contains two identical amyloid-binding and one metal-chelating moiety that 

specifically targets amyloid. It i) binds to Aβ1 – 40 peptide putatively, ii) decreases Zn(II)-

induced Aβ aggregation in vitro, iii) specifically reduces APP protein expression in human 

SH-SY5Y neuroblastoma cells and iv) attenuates cerebral Aβ amyloid pathology in 

PS1/APP transgenic mice without inducing apparent toxicity and behavior disturbances 

[177].

Due to the attached carbohydrate moiety responsible for increased tissue specificity at a 

physiological pH, and due to the phenolic moieties as suitable antioxidants the 
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tetrahydrosalens such as (N,N′-bis[(5-β-D-glucopyranosyloxy-2-hydroxy)benzyl]-N, N′-

dimethyl-ethane-1,2-diamine (H2GL1) and N,N′-bis[(5-β-D-glucopyranosyloxy-3-tert-

butyl-2-hydroxy)benzyl]-N,N′-dimethyl-ethane-1, 2-diamine (H2GL2)) were developed 

[178]. Both H2GL1 and H2GL2 were found to reduce Zn-and Cu-induced aβ1 – 40 

aggregation in vitro, with a higher affinity for Cu over Zn with H2GL1 displaying better 

coordinating ability at physiological pH [179]. The moderate affinity of H2GL1 and 2 for 

metal ions at physiological pH might obviate the toxicity commonly associated with 

chelating therapy [179].

3-hydroxy-4-pyridinones that contain phenol groups for antioxidant functionality are further 

elaborated with pendant glucose moieties for improved BBB targeting. Glycosidase removal 

of the carbohydrate substituents gives ligands that are ready to passivate excess metal ions, 

especially Cu and Zn, in the brain [180,181].

Curcumin and other polyphenols are anti-inflammatory and antioxidant agents, and 

structurally interfere with Aβ aggregation and metal dyshomeostasis [182]. The use of 

synthetic activity to rescue protein-aggregate-mediated cellular toxicity led to the synthesis 

of apocyclen attached to selective Aβ recognition motifs (KLVFF or curcumin). The 

resultant complexes interfere with Aβ aggregation and degrade Aβ into fragments, 

preventing H2O2 formation and toxicity in neuronal cell culture [183].

3.4 Al chelators

Tacrine, ascorbate plus Feralex-G have also been found to be particularly effective in 

removing Al(III) from the nuclear matrix in addition to enhancing cholinergic transmission 

[184]. Feralex-G disaggregated compacted paired helical filaments isolated from aged 

human brain [185]. Feralex could also dissociate binding of Al and Fe with 

hyperphosphorylated Tau of AD [185]. Simultaneous administration of two Al chelators, 

DFO and tacrine as a palliative treatment for AD patients has also been taken into 

consideration. Administration of N-(2-hydroxyethyl) EDTA, a potential antidote for Al 

overload, in combination with citric acid has been proposed as a chelation therapy for AD 

[186].

3.5 Nanoparticle chelator delivery

Chelator-delivery with the help of nanoparticles has been suggested to be a significantly 

improved method of chelation therapy with higher efficacy, reduced toxicity and substantial 

tissue-specific targeting. Covalent conjugates of Fe chelators with nanoparticles, such as 

prototype nanoparticle–chelator conjugate, could attenuate the lipophilic character of the 

chelator. They provided better BBB permeability and safe treatment with higher chelator 

bioavailability in AD, without affecting metal binding ability of chelators. The nanoparticle–

chelator conjugates could effectively inhibit Aβ aggregate formation and, thereby, protect 

human brain cells from Aβ-related toxicity. Using in vitro studies, it was shown that 

chelator–nanoparticle system complexed with Fe. When incubated with human plasma it 

preferentially adsorbed apolipoprotein E and apolipoprotein A-I that would facilitate 

transport of chelators and chelator–metal complexes in both directions across the BBB. The 
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system thus provided safer and more effective chelation treatment in AD and other 

neurodegenerative diseases [187–190].

4. Targeting neuronal signalling

A novel neurotherapeutic approach involved the activation of neuronal cell signaling 

mechanisms using metallo-complexes. The metal ligand-Cu complexes as with CQ or PBT2 

or alternative metal-complexes such as Cu/Zn-bis(thiosemicarbazone) (Figure 5A) complex 

entered brain cells and upregulated MMP. This involved activation of ERK signaling to 

cleave the monomeric Aβ (Figure 6) [90]. In another situation, inhibition of PI3K and C-

JNK prevented depletion of Aβ by the metallo-complexes [191].

Lipoic acid (LA) (Figure 5B) or dihydrolipoic acid (DHLA) exhibited the ability to chelate 

metal ion with the disulfide group of dithiolane ring [192]. They reduced liposomal 

peroxidation [193] and activated the pro-survival PI3K and ERK1/2 signaling pathways. LA/

DHLA protected cultured hippocampal neurons against Aβ and Fe/H2O2 [194] and 

improved learning-memory in a Tg2576 mouse model for AD [195,196].

5. Natural antioxidants

Curcumin (Figure 7A) molecules chelated cations with the diketone and pairs of phenol and 

methoxy groups, reduced oxidative stress and prevented amyloid aggregation. Its two 

molecules bind the Cu and Fe on Aβ at Kd1 ~ 10 – 60 μM and Kd2 ~ 1.3 μM (for binding of 

the first and second curcumin molecules, respectively) [197,198]. But the antioxidants like 

curcumin and ginkgo (common name kaempferol) (Figure 7B) extracts fail to reach the 

target site in sufficient amounts during oxidative stress, and hence are best as prophylactics 

to complex the metals before the stress cascade starts [199].

Human epidemiology confirms that tea extract contains nutrients endowed with possible 

prospective neurobiological-pharmacological actions. They are beneficial to human health 

due to the natural antioxidant, catechin polyphenol constituent (–)-epigallocatechin-3-gallate 

(EGCG) (Figure 7C) [200]. EGCG targets APP 5′UTR and decreases Aβ levels [169] and 

plaques in the cingulate cortex, hippocampus, and entorhinal cortex. It was found to promote 

non-amyloidogenic α-secretase proteolytic pathway in ‘Swedish’ mutant APPsw and in 

Tg2576 mice with a disintegrin and metalloprotease (ADAM)-10 activation. EGCG 

administration also markedly suppressed sarkosyl-soluble phosphorylated tau isoforms with 

significant behavioral improvements [201,202].

Moderate consumption of wine and increased intake of fruits and vegetables is associated 

with a lower incidence of AD [203–205]. The antioxidant, resveratrol (a bioactive compound 

in red wine), through the protein kinase pathway could lower Aβ peptide formation, and 

promote Aβ degradation in 15-week-old male APP/PS1 transgenic mice (B6C3-Tg 

(APPswe, PSEN1dE9)85Dbo/J), The Jackson Laboratory [206].

Antioxidants, such as α-tocopherol (Vitamin E) and ascorbic acid had modest benefits in 

elderly subjects [207]. Gossypin (3,3′,4′,5,7,8-hexahydroxyflavone 8-glucoside) [208] and 

ginko biloba [209] protected cortical cell cultures from Aβ-induced toxicity. They exhibited 
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neuroprotective effects in several mouse models and maintained and improved cognitive 

function in AD patients [208]. It was found that 6-hydroxy melatonin administration proved 

successful in reducing Fe2+-induced neurotoxicity, lipid peroxidation and necrotic cell 

damage in the rat hippocampus in vivo [210].

A pilot study examining the efficacy of the Cu-chelating agent D-penicillamine (treatment 

for Wilson’s disease) in AD patients showed decrease in oxidative damage with depletion of 

bio-available Cu and increased excretion of Cu in the urine [211]. But, the role of D-

penicillamine in antioxidant balance remains inconclusive, possibly due to the action of 

vitamin B6 that was administered to placebo- and D-penicillamine-treated patients [212]. 

Further studies with larger cohorts of AD patients are needed to elucidate the real 

therapeutic efficacy of D-penicillamine.

A relatively new concept deals with possibility of using Zn compounds (used for Wilson’s 

disease treatment [213]) that could induce or maintain a state of Cu-malabsorption. 

Successful clinical trials with Zn could lead to safe, inexpensive and effective biological 

anti-Cu agent in AD [214,215].

6. Expert opinion

Over the last few decades, researchers have provided a wealth of information on the 

underlying nature of AD therapy. Although the amyloid-based pathogenic mechanisms that 

result in the onset and progression of AD are yet to be clearly understood, there are several 

growing bodies of evidence to support a central role for bio-metals in many critical aspects 

of the illness. The APP and Aβ still remain the current focus of AD research that is 

associated with their integral function in iron metabolism and homeostasis of metal stores in 

the brain. The deposition of metals in the plaque of AD patients and the demonstration of 

metal dependent translation of APP 5′UTR mRNA have distinctly indicated the involvement 

of metals in amyloid-associated characteristc pathological feature of AD. However, further 

research is necessary to fully understand the complex and interdependent pathways of 

biometal homeostasis and amyloid metabolism in AD.

In this review we have provided an update on the development of potential therapeutic 

agents for AD based on the modulation of metal bioavailability. The compounds could target 

the metal binding sites on APP and Aβ, deprive the biological systems of metal ions, or 

promote metal uptake into cells, and thus inhibit Aβ:metal-mediated redox activity.

The metal chelating drug, CQ, was well tolerated and did appear to produce some modest 

benefits in AD patients that could support the proof of concept in humans that drugtargeting 

metal-Aβ interactions can have a significant beneficial effect on the progression of AD. But 

the study only involved a small number of patients and required further observations in 

larger groups of patients.

The metal chelating drugs DFO (Figure 4B), tetrathiolmolybdate (Figure 4F), and 

dimercaptopropanol (Figure 4G) [47,216] have shown a significant effect on Aβ metabolism 

in vitro and/or in vivo. A transfection-based screen of a library of FDA drugs to identify 

compounds that limited APP luciferase reporter expression translated from the APP 5′UTR 
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in neuroblastoma cells (SY5Y) cells identified the leads, paroxetine (Paxil™) and 

dimercaptopropanol. The compound limited Aβ peptide secretion from lens epithelial cells 

(B3 cells), the former probably through chelation of or change in distribution of 

interacellular iron [217]. Tetrathiolmolybdate (Cu2+ chelator), dimercaptopropanol (Pb2+ 

and Hg2+ chelator) [217] and XH1 (Figure 4E), with Aβ-binding and metal-chelating 

moieties [177], suppressed APP holoprotein expression and Aβ secretion; 

tetrathiolmolybdate also showed excellent efficacy in animal models [218]. In addition to 

these compounds, phenserine, which is a novel and highly selective acetylcholinesterase 

inhibitor, is being tested for the treatment of AD [219]. Phenserine was extremely efficient 

in blocking translation under conditions of intracellular Fe chelation with DFO, suggesting 

that the anticholinesterase operated through an Fe-dependent pathway at the APP 5′-UTR 

site. The FDA-preapproved drugs had the major advantage of being pharmacologically fully 

characterized, with respect to the toxicity, half-life, capacity for oral administration, and 

capacity to cross the BBB.

However, a major problem associated with the widespread clinical use of the available 

metal-complexing agents is their poor target specificity and consequent clinical safety. The 

long-term use of these agents is likely to perturb the homeostasis of many biometals and 

normal physiological functions of essential metal-requiring biomolecules. Thus, the 

development of metal passivating agents with necessary water solubility, efficacy, minimum 

toxicity and specific targeting is essential for new effective therapies for AD.

New screening approaches targeting APP 5′UTR could thus be very useful in identifying 

novel metal-complexing agents from world-wide drug libraries. We have performed such a 

high-throughput screen (HTS) of 110,000 compounds obtained from the library of the 

Laboratory for Drug Discovery on Neurodegeneration that yielded several non-toxic specific 

inhibitors of APP mRNA 5′UTR-driven luciferase in the stable SH-SY5Y transfectants 

[220]. The identified compounds could be expected to hold therapeutic promise as metal 

chelators at least for those retaining long-term bio-activity. Use of transgenic models of AD 

could be the next and required step for testing our APP-directed compound hits. We could 

test the efficacy of lead APP 5′UTR-directed drugs to limit amyloid burden in CRND8 mice 

wherein the human APP-695 transgene (London/Swedish double mutations in APP-695 

cDNA) is expressed under the transcriptional control of the prion protein gene promoter and 

the translational control of the natural APP 5′UTR [221].

It has been observed that intracellular modifiers of levels of Zn [159] and Fe [222] adjust α-

secretase to limit Aβ peptide. Thus, the screening of chemical compounds or antioxidants 

that could selectively target and promote metal-dependent catalysis of ADAM-protease and 

the decrease in Aβ levels could serve as a strategy for identifying anti-AD drugs 

[220,223,224]. Signaling events involved in the non-amyloidogenic, metalloprotease-α-

secreatse activity could be the site of pharmacological intervention in AD. Activators of 

PKC, adenylate cyclase/protein kinase A system, phoslpholipase C (PLC) and the MAPK-

signaling system could also claim to be potential and new anti-amyloid agents [225].

The selective expression of human metal-binding protein biomarker S100A7 in the brain of 

transgenic mice resulted in significant promotion of α-secretase activity. Furthermore, the 
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promotion of S100A7 expression in the brain selectively promoted α-secretase activity in 

the brain of AD [225]. Thus upregulating S100A7 in the brain or cerebrospinal fluid could 

be developed as another strategy for promoting of ‘non-amyloidogenic’ α-secretase/

ADAM-10 mediated responses.

Although development of drugs that target abnormal metal accumulation of Aβ is in process, 

we still need to explore new screening approaches and technologies to identify novel 

therapeutics that could promote neuroprotective signalling pathways in AD with minimum 

adverse effects.
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Article highlights

• Metal dependent amyloid formation: Amyloid precursor protein (APP) is a 

Cu-, Zn- and Fe- binding protein, and these metals clearly provide one of the 

pathological requirements for polymerization of amyloid-beta (Aβ) peptide. 

Fe (perhaps Cu/Zn) controls iron-responsive element (IRE)-iron regulatory 

protein (IRP) binding to APP mRNA to reset and increase its translation rate 

thus worsening metal-associated pathological lesions in Alheimer’s disease 

(AD). Al is also a long-known risk factor for AD.

• Chelation therapy: Metal chelation serves as a therapeutic strategy for 

treatment of AD. Clioquinol inhibits binding of Cu and Zn to Aβ and 

promotes Aβ clearance. Desferrioxamine (DFO) has been shown to be 

therapeutic after intramuscular injection. A new range of bifunctional metal 

chelators (M-30, VK-28, HLA-20, XH1, curcumin and polyphenols) are 

being assessed for AD treatment. Simultaneous administration of two 

chelators is being taken into consideration. Nanoparticle chelator delivery 

should significantly improve the efficacy and reduce the toxicity of chelation 

therapy.

• Neuroprotective signaling: A promising future lies in the use of metallo-

complexes to trigger neurotherapeutic signaling pathways with subsequent 

inhibition of tau phosphorylation and Aβ generation.

• Anti-oxidants: Curcumin, kaempferol, epigallocatechin-3-gallate (EGCG), 

resveratrol, vitamin E and D-penicillamine are beneficial to counteract the 

toxicity of the redox interaction between metals and Aβ peptide.

• Future directions: The challenge of a transfection-based screening approach 

will be to find new drugs that suppress APP holoprotein translation and 

thereby limit Aβ peptide. Use of transgenic models of AD is the next and 

required step for testing the novel APP directed lead compounds.

This box summarizes key points contained in the article.
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Figure 1. Synchrotron X-ray fluorescence (XRF) microprobe images of human Alheimer’s 
disease AD plaque.
Elemental profiles (S, Fe, Cu, and Zn) in a typical Alzheimer’s amyloid beta (Aβ) amyloid 

plaque. The cryo-sectioned (10 μm thickness) AD brain tissues were stained with 0.1% 

Thioflavin-T for amyloid plaques. The amyloid plaque-bearing human brain tissues were 

procured by laser capture microdissection (LCM) (Arcturus Pixcell IIE platform) and 

mounted on Si3N4 membrane grids (2.0 × 2.0 mm). Guided by the optical amyloid plaque 

images, the samples were excited with incident synchrotron X-ray of 10 keV for elemental 

Kα characteristic emission lines. Elemental profiles (S, Fe, Cu, and Zn) were obtained using 

synchrotron scanning X-ray fluorescence microscopy (μ-XRF) at the Advanced Photon 

Source of the Argonne National Laboratory. Red depicts the hottest spot of the metals in 

plaques. (The significance of sulfur (S) element may reflect its high abundance in 

proteinaceous elemental composition and as an indicator for amyloid plaque-associated 

oxidative stress since protein S-glutathionylation is a salient feature of oxidative stress).

Reproduced from [7].
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Figure 2. The proteolytic processing of amyloid precursor protein (APP) to produce Aβ that 
coordinates the metal ions (M: Zn, Cu and Fe) to induce aggregation, and generation of ROS.
APP (695, 751, 770 amino acid isoforms that predominate in brain) can be processed in the 

plasma membrane as it travels from the intracellular origin to extracellular matrix through 

the non-amyloidogenic route that involves cleavage at the α-secretase site at amino acid 17 

of the 40 – 42 amino acid Aβ domain resulting in two fragments, sAPPα and a C-terminal 

fragment (CTFα). Further proteolysis of the CTFα fragment by α-secretase generates the 

non-amyloidogenic peptide p3 and a C-terminal fragment CTFγ. When APP escapes 

processing at the α-site, it undergoes β-secretase cleavage at the beginning of Aβ domain, 

resulting in a C-terminal fragment CTFβ and sAPPβ. Next, the resultant β-stub becomes the 

substrate for γ-secretase cleavage, culminating in extracellular Aβ secretion. The hyper-

metallated (by Zn, Fe and Cu) state of Aβ as a consequence of age-dependent elevations in 

tissue metal concentrations can induce Aβ aggregation. H2O2 can initiate a number of 

oxidative events, including Fenton reactions to form toxic hydroxyl radicals and calcium 

dysregulation, and subsequent reactive oxygen species (ROS) generation.
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Figure 3. Model for the iron-induced change of iron regulatory protein (IRP) interaction with the 
APP/ferritin iron-responsive element (IRE) to modulate APP/ferritin translation.
The APP IRE is homologous with the canonical L-and H-ferritin IRE mRNA stem-loop that 

binds the iron regulatory proteins (IRP1 and IRP2), and modulates translation of ferritin to 

control intracellular iron homoeostasis [226]. Iron influx increases ferritin mRNA translation 

by releasing IRP1–IRP2 binding to the 5′ cap site of IRE stem–loop. The iron-induced 

change of IRP1 interaction with the APP-IRE activates either 5′cap translation or internal 

40S ribosome entry and the onset of APP protein synthesis [227]. The IRE of APP interacts 

with IRP1, whereas the canonical H-ferritin IRE RNA stem-loop binds to IRP2 in neural cell 

lines, in human brain cortex tissue and human blood lysates. The canonical H-ferritin IRE 

RNA stem-loop binds also to IRP2. The APP mRNA acute box domain, as for H-ferritin 

mRNA, is located immediately upstream of the start codon and may well also interact with 

RNA poly(C)-binding proteins, CP-1 and CP-2 and control cytokine-induced APP mRNA 

translation.
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Figure 4. Important metal-chelators characterized as suppressors of APP and Aβ aggregation.
Chemical structures of A. Clioquinol, which inhibits Zn, Cu- or Fe-mediated oxidative stress 

and reduces clinically observed AD-induced cognition; B. Desferrioxamine, intracellular 

Fe3+ chelator that suppresses APP translation without changing α-secretase activity; C & D 
M-30 and VK-28. M-30 being derived from a prototype iron chelator, VK-28; both being 

developed for anti-amyloid efficacy and α-secreatase co-activation; E. Bifunctional XH1: 

[(4-benzothiazol-2-yl-phenylcarbamoyl)-methyl]-{2-[(2-{[(4-benzothiazol-2-yl-

phenylcarbamoyl)methyl]-carboxymethyl-amino}-ethyl)-carboxymethyl-amino]-ethyl}-
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amino)-acetic acid, with amyloidtargeting metal chelating property; F. Tetrathiomolybdate, 

which shows excellent efficacy in animal AD models and is presently under clinical trial. G. 

Dimercaptopropanol, which has a significant effect on Aβ metabolism in vitro and/or in 
vivo.
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Figure 5. Metallo-complexes that target neuronal signaling.
Chemical structures of A. Cu-bis(thiosemicarbazone) that reduces tau phosphorylation 

through PI3K and ras/raf signalling; B. Lipoic acid that chelates metal ion and promotes pro-

survival signaling pathways.
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Figure 6. Proposed metal ligand action that targets neuronal cell signaling in treatment of AD.
Metal-free ligands (L) such as CQ or PBT2 may bind with Cu of the Aβ peptide-Cu 

complex resulting in dissolution of Aβ into Cu-free monomers. The metal ligand–Cu 

complexes or alternative metal complexes such as Cu-bis(thiosemicarbazone) then enter 

cells, activate PI3K followed by sequential phosphorylation of AKT and glycogen synthase 

kinase beta (GSK3β) that inhibits tau phosphorylation [228]. The complex-mediated 

activation of ras/raf signalling activates ERK, upregulates MMP activity, which cleaves the 

monomeric Aβ.

Adapted from [90].
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Figure 7. Important metal-chelators characterized as natural antioxdants for AD.
Chemical structures of A. curcumin, a polyphenol that binds Fe and Cu on Aβ and prevents 

amyloid aggregation; B. Ginko biloba, inhibits a free radical scavenger that reduces 

clinically observed AD-induced cognition; C. (−)-epigallocatechin-3-gallate (EGCG) 

decreased Aβ levels and plaques via promotion of α-secretase activity.
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