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Purpose: To describe an unsupervised three-dimensional cardiac motion estimation network (CarMEN) for deformable motion esti-
mation from two-dimensional cine MR images.

Materials and Methods: A function was implemented using CarMEN, a convolutional neural network that takes two three-dimensional 
input volumes and outputs a motion field. A smoothness constraint was imposed on the field by regularizing the Frobenius norm of 
its Jacobian matrix. CarMEN was trained and tested with data from 150 cardiac patients who underwent MRI examinations and was 
validated on synthetic (n = 100) and pediatric (n = 33) datasets. CarMEN was compared to five state-of-the-art nonrigid body registra-
tion methods by using several performance metrics, including Dice similarity coefficient (DSC) and end-point error.

Results: On the synthetic dataset, CarMEN achieved a median DSC of 0.85, which was higher than all five methods (minimum–
maximum median [or MMM], 0.67–0.84; P , .001), and a median end-point error of 1.7, which was lower than (MMM, 2.1–2.7; P 
, .001) or similar to (MMM, 1.6–1.7; P . .05) all other techniques. On the real datasets, CarMEN achieved a median DSC of 0.73 
for Automated Cardiac Diagnosis Challenge data, which was higher than (MMM, 0.33; P , .0001) or similar to (MMM, 0.72–0.75; 
P . .05) all other methods, and a median DSC of 0.77 for pediatric data, which was higher than (MMM, 0.71–0.76; P , .0001) 
or similar to (MMM, 0.77–0.78; P . .05) all other methods. All P values were derived from pairwise testing. For all other metrics, 
CarMEN achieved better accuracy on all datasets than all other techniques except for one, which had the worst motion estimation 
accuracy.

Conclusion: The proposed deep learning–based approach for three-dimensional cardiac motion estimation allowed the derivation of a 
motion model that balances motion characterization and image registration accuracy and achieved motion estimation accuracy compa-
rable to or better than that of several state-of-the-art image registration algorithms.

© RSNA, 2019

Supplemental material is available for this article.

C haracterizing the motion of the heart using noninvasive 
imaging techniques such as MRI is challenging but po-

tentially very important. On the technical side, this infor-
mation could be used to improve the quality of the MRI 
data acquired by using cardiac gating techniques (1) or to 
minimize the unwanted effects of motion on the PET data 
acquired simultaneously in integrated PET/MRI scanners 
(2). From a more clinical perspective, detailed knowledge 
of the complex three-dimensional motion of the heart dur-
ing the cardiac cycle (eg, myocardial velocity, strain, etc) 
would inform us about its mechanical status (eg, left ven-
tricle dyssynchrony, wall motion hypokinesis, etc), with 
potential diagnostic implications.

Ideally, the motion estimates should be obtained from 
MRI sequences that are routinely used for clinical purposes, 
such as cine MRI. Although this breath-hold sequence al-
lows the acquisition of data corresponding to each specific 
time point in the cardiac cycle (ie, systole, diastole, etc), 
characterizing the three-dimensional motion of the whole 

heart from these images is challenging because the tissue 
intensity is relatively homogeneous and morphologic de-
tails to facilitate the temporal correspondence search are 
limited. Furthermore, because a cine MRI volume in a 
time frame is technically a two-dimensional stack of inde-
pendently acquired sections, rather than an actual three-
dimensional volume where the whole heart is simultane-
ously acquired, out-of-plane motion during the cardiac 
cycle makes the derivation of three-dimensional estimates 
challenging. To date, various methods have been proposed 
to derive motion estimates from cine MRI, including op-
tical flow and registration methods (3,4) and techniques 
based on feature tracking (5). Although each solution has 
specific merits and limitations, a parameter-free, rapid, and 
robust method for cine MRI–based motion estimation is 
still unavailable.

Alternatively, motion estimation can be recast as a data-
driven learning task (6–18), which reduces processing times 
drastically because trained methods can quickly compute 
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centering the images about the center of the left ventricle and 
cropping the resulting images to the size 80 3 80 3 16. For 
each subgroup with 30 participants, 20 were randomly chosen 
for training and the remaining 10 were used for testing, leaving 
100 participants for training and 50 participants for testing.

The second dataset consisted of synthetic cine MRI data that 
enabled us to validate the trained network model on data with 
known ground-truth motion and tissue segmentation. We used 
the established extended cardiac-torso, or XCAT (21), phantom 
software to generate three-dimensional anatomy masks at mul-
tiple time frames with size 80 3 80 3 16 and average resolution 
set to 1.5 3 1.5 3 5 mm3. We used the XCAT extension, MRX-
CAT (22), to simulate the MR acquisitions on the anatomy 
masks. Each simulation consisted of three frames approximately 
at diastole, middiastole, and systole. Motion estimate predic-
tions were made for diastole-middiastole and diastole-systole 
input pairs.

Finally, a pediatric dataset of 33 participants consisting of 
cine MR images and expert-provided segmentations was used to 
assess how CarMEN generalizes to unseen datasets (23). Most of 
the participants displayed a variety of heart abnormalities such 
as cardiomyopathy, aortic regurgitation, enlarged ventricles, 
and ischemia, providing a realistic and challenging performance 
benchmark. Preprocessing steps included centering, cropping, 
and zero padding the sections such that the size of the images 
was 80 3 80 3 16.

CarMEN Architecture
In standard three-dimensional image registration formulation, 
a moving image M:  is registered onto a fixed im-
age F: , yielding the motion estimates ø: , 
which characterizes the motion from F to M (ie, they represent 
the backward mapping). Most existing registration algorithms 
iteratively estimate ø based on solving:

         

(1)

where L
dsim

 measures the image dissimilarity between  
and F, the regularization term L

smooth
 enforces smoothness 

in ø, and l is the regularization parameter. Here we instead 
modeled a function g (F,M) = ø by using a convolutional 
neural network architecture (Fig 1). The input to the net-
work was a pair of cine MRI volumes F and M of size 80 3 
80 3 16 that were used to derive the multiresolution mo-
tion estimates. F corresponds to a frame at diastole and M 
to a frame later in the cardiac cycle. The input images were 
concatenated into a two-channel three-dimensional image. 
The network has eight convolutional layers with stride of 
two in three of them and a leaky rectified linear unit non-
linearity after each layer. Convolutional filter sizes were 3 
3 3 3 3 for all layers. The number of feature maps in-
creases in the deeper layers, roughly doubling every second 
layer with a stride of two. The refinement section has four 
“upconvolutional” layers consisting of unpooling followed 
by convolution. We applied the upconvolution to feature 
maps and concatenated it with corresponding feature maps 
from the contractive part of the network and an upsampled 

motion estimates from new data by using the learned parameters 
without the need of case-specific optimization (15,17). Recent 
work on MRI brain image registration has demonstrated the ad-
vantage of allowing real-world data to guide the efficient repre-
sentation of motion through a structured training process while 
operating orders of magnitude faster (17). For more complex 
cardiac applications, Qin et al (19) have proposed a learning-
based joint motion estimation and segmentation method for 
cardiac MRI. However, this method has only been validated on 
two-dimensional sections.

We present an unsupervised three-dimensional cardiac mo-
tion estimation network (CarMEN) for deformable motion 
modeling from two-dimensional cine MR volumes. Our aims 
were to train, test, and validate CarMEN by using real and syn-
thetic data from adult and pediatric participants, and to compare 
its accuracy to that of several popular state-of-the-art registra-
tion packages in the presence of out-of-plane three-dimensional 
movement, acquisition artifacts, and pathologic changes. We 
hypothesized that CarMEN would achieve better accuracy com-
pared with all other registration techniques. Although we used 
the method to register cardiac cine MR images here, CarMEN 
is in principle broadly applicable to other cardiac image registra-
tion tasks.

Materials and Methods

Datasets
Three datasets were used in this study (see Appendix E1 [sup-
plement] for a full description). The Automated Cardiac Diag-
nosis Challenge dataset (20) was used for training and testing 
CarMEN. This dataset consisting of cine MR images and cor-
responding segmentations was obtained from 150 participants 
divided evenly into five subgroups: healthy participants, pa-
tients with myocardial infarction, patients with dilated cardio-
myopathy, patients with hypertrophic cardiomyopathy, and 
patients with abnormal right ventricle. All image frames were 
resampled to a grid of 256 3 256 3 16 with resolution of 
1.5 3 1.5 3 5 mm3. Preprocessing steps included manually 

Abbreviations
CarMEN = cardiac motion estimation network, DSC = Dice simi-
larity coefficient, IQR= interquartile range

Summary
A deep learning–based three-dimensional nonrigid body motion 
estimation technique based on cine MR images was implemented; 
the method was validated against five state-of-the-art nonrigid body 
registration methods by using several image and motion metrics.

Key Points
 n An unsupervised three-dimensional cardiac motion estimation 

network (CarMEN) based on cine MR images achieved motion 
accuracy comparable to or better than five state-of-the-art nonrigid 
body registration methods.

 n This method substantially improves and streamlines cardiac mo-
tion estimation with potentially important technical and diagnos-
tic implications.

https://pubs.rsna.org/journal/ai
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Figure 1: Image shows cardiac motion estimation network (CarMEN) architecture. A, Pair of two-dimensional stacks of 
cine MR images corresponding to two time points enable CarMEN to generate motion estimates ø (0, t), where t can range 
from 0 to T, the number of frames acquired. Each motion vector was color coded with red, green, and blue scheme as indi-
cated. During training, diastole frame was maintained (t = 0) as fixed (F) stack and moving (M) stack varied with frames at 
later time point in cardiac cycle (t . 0). Once trained, CarMEN can generate motion estimates for specific input pair (eg, 
diastole to systole) or sequence of inputs covering entire cardiac cycle. B, Input stacks F and M are concatenated 
into two-channel three-dimensional volume.  and  denote F,M downsample by 2n, where n = 0,…,4. Network 
generates estimates øn at multiple resolutions that are used to warp multiresolution moving images. Loss function penalizes 
absolute difference between  and  and regularizes øn.

estimates (see Equation 1). L
dsim

 was defined as the standard 
mean absolute difference and

                 

(2)

The derivative ø was approximated by finite differences by 
applying the one-dimensional filter [-1,1] to ø along each di-
mension by convolution. We implemented CarMEN in Ten-
sorFlow (version 1.6; Google, Mountain View, Calif ) and 
incorporated the regularization functional by using basic Ten-
sorFlow convolutional operations (see Appendix E1 [supple-
ment] for architecture and training motivation).

Training and Testing
A sample is defined as a pair of image frames at diastole and 
at a later time point in the cardiac cycle; therefore, a single 

coarser motion prediction. Each step increases the resolu-
tion twice, and a convolutional filter of 3 3 3 3 3 is used 
to generate a coarse prediction. This was repeated five times, 
resulting in a predicted estimate in the final layer for which 
the resolution is equal to that of the input. The output of 
the network is an 80 3 80 3 16 3 3 tensor, represent-
ing the required voxelwise deformation in the x, y, z direc-
tions. The multiresolution predicted motion was then used 
to warp the moving image, also at multiple resolutions, to 
the fixed image space by using linear interpolation. This was 
performed through a spatial transform layer within the con-
volutional neural network. This step was akin to a multires-
olution pyramid strategy used in conventional optimization 
techniques to improve the capture range and robustness of 
the registration (24). The network loss function used was 
the dissimilarity function L

dsim
 combined with a regulariza-

tion term L
smooth

 that regularizes the full-resolution motion 

https://pubs.rsna.org/journal/ai
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(3)

In practice, we use the average end-point error value for all 
voxels in the left ventricle.

We evaluated the performance of CarMEN by comparing its 
performance to that of five state-of-the-art methods: two B-spline 
approaches with the Insight Segmentation and Registration Tool-
kit, or ITK, package (https://www.itk.org) (27,28); a B-spline Elas-
tix variation (29); a mass-preserving approach termed Vampire 
(30); and the Diffeomorphic Demons, or dDemons, algorithm 
(31) (see Appendix E1 [supplement] for implementation details).

Statistical Analysis
Data were treated as nonparametric and presented as median 
and interquartile range (IQR) and compared by using two-
sided Wilcoxon signed-rank tests. Statistical analysis was per-
formed in Python (version 2.7; Python Software Foundation, 
Wilmington, Del; https://www.python.org). A two-sided P , 
.001 was considered to indicate statistical significance. All P 
values reported in the next sections refer to comparisons be-
tween an optimization-based method and CarMEN.

Results
The Table and Figure 2 show the performance of CarMEN on 
the three separate datasets relative to other optimized state-of-
the-art registration methods. For the Automated Cardiac Diag-
nosis Challenge test dataset, for each of the 50 test participants, 
only the samples corresponding to images whose first frame is 
at diastole and second frame at systole were used because only 
those samples had expert-provided segmentations. For the pedi-
atric and synthetic validation data, segmentations are available 
for the whole cardiac cycle; therefore, all participants and frames 
were included, and we report the average results of all frames.

Automated Cardiac Diagnosis Challenge Dataset
CarMEN and Vampire showed significantly (P , .001; n 
= 50) better performance relative to the other four state-
of-the-art methods on all the metrics except for the DSC. 
However, there was no significant difference between the 
DSCs obtained across all methods and CarMEN except for 
Vampire, which had a significantly lower DSC (median, 
0.33 [IQR, 0.25–0.42] vs 0.73 [IQR, 0.68–0.78]). Relative 
to CarMEN, Vampire had a significantly higher normalized 
cross-correlation (0.98 [IQR, 0.97–0.99] vs 0.97 [IQR, 
0.96–0.98]) and multiscale structural similarity index met-
ric (0.96 [IQR, 0.95–0.97] vs 0.93 [IQR, 0.91–0.94]). 
There was no significant difference in the mean squared er-
ror and peak signal-to-noise ratio metrics. Representative 
images of the four patient groups for a B-spline method, 
dDemons, Vampire, and CarMEN are shown in Figure 3. 
Different sections from base to apex are shown in Figure E5 
(supplement). Except for Vampire, all optimization-based 
methods performed worse in patients with hypertrophic 
cardiomyopathy at visual inspection, in some instances re-
sulting in unrealistic anatomies. In contrast, although only 

participant with 26 time frames corresponds to 25 samples. 
We trained CarMEN with 2512 samples from 100 partici-
pants of the Automated Cardiac Diagnosis Challenge train-
ing set (see Appendix E1 [supplement]), using minibatches of 
10 image pairs. Data augmentation included random z-axis 
rotations and x, y, z translations. A step decay learning rate 
schedule initialized at 1 3 10−4 and reduced by half every 10 
epochs was used. The regularization parameter l was set to 1 
3 10−7. The network was trained for 100 epochs, each epoch 
corresponding to one complete pass through the 2512 sam-
ples. To reduce overfitting of the network to one particular 
anatomy or image property, the 2512 samples were random-
ized at the beginning of each epoch (ie, each batch was made 
up of different participants and different cardiac phases). 
Once trained, CarMEN was tested by using the Automated 
Cardiac Diagnosis Challenge testing set with 1310 samples 
from 50 other patients. Next, we further tested the network 
on two other separate datasets: 200 samples from 100 simula-
tions and 627 samples from 33 participants of the pediatric 
dataset (see Appendix E1 [supplement]). The training time 
was 4 hours and motion estimates for a single test input pair 
were generated in 9 seconds.

Evaluation
Obtaining the dense ground-truth motion estimates for the 
real testing data is not feasible because many motion fields 
can yield similar-looking warped images. Hence, an advan-
tage of using synthetic data to validate our method is that 
we have the ground-truth motion and can therefore evalu-
ate the motion estimates by directly comparing them to the 
simulated (yet realistic) cardiac motion. The ground-truth 
segmentation of the tissues in these data is also completely 
accurate; therefore, metrics such as the Dice similarity coef-
ficient (DSC) are more indicative of the registration accu-
racy. Furthermore, although the most common measures to 
measure image similarity are mean squared error and peak 
signal-to-noise ratio because they are fast and easy to im-
plement, they correlate poorly with registration quality as 
perceived by a human observer (25). To address this limita-
tion, we also evaluated our method by using the multiscale 
structural similarity index metric, a state-of-the-art metric 
that accounts for changes in local structure and correlates 
with the sensitivity of the human visual system (26). We 
also measured the normalized cross-correlation because it is 
less sensitive to linear changes in the MRI signal intensity in 
the compared images.

To compute the DSC on the left ventricle, the left ven-
tricle myocardium was segmented by warping the expert-
provided segmentation M

mask
 using the predicted motion ø = 

g
u
 (F,M). If the estimates ø represent accurate anatomic cor-

respondences, then we expect the regions in F
mask 

 and M
mask 

(ø) corresponding to the same anatomic structure to overlap 
well (ie, a DSC score of 1 indicates the left ventricle struc-
tures are identical). The accuracy of the motion estimates was 
evaluated by using the end-point error, or EPE, defined as the 
Euclidean distance between the predicted registration field ø 
and the ground truth ø*,

https://pubs.rsna.org/journal/ai
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Metrics Comparison

Elastix B-Spline ITK B-Spline 1 ITK B-Spline 2 Diffeomorphic Demons Vampire CarMEN Dataset

Dice Similarity Coefficient

0.74 (0.69–0.78]; 
P =.7981

0.75 (0.71–0.78); 
P =.0148

0.73 (0.67–0.77); 
P =.0921

0.72 (0.68–0.77);  
P =.1812

0.33 (0.25–0.42); 
P ,.0001*

0.73 (0.68–0.78) ACDC

0.71 (0.69–0.72); 
P ,.0001*

0.72 (0.70–0.74); 
P ,.0001*

0.67 (0.63–0.71); 
P ,.0001*

0.84 (0.81–0.86); 
P ,.0001*

0.80 (0.78–0.82); 
P ,.0001*

0.85 (0.81–0.89) Synthetic

0.78 (0.75–0.81); 
P =.3423

0.77 (0.73–0.80); 
P =.7910

0.76 (0.71–0.80); 
P =.0005*

0.74 (0.69–0.78); 
P ,.0001*

0.71 (0.58–0.80); 
P ,.0001*

0.77 (0.72–0.81) Pediatric

1000 × Mean Squared Error
8.8 (5.5–17.0); 
P ,.0001*

7.3 (4.8–10.4); 
P ,.0001*

6.6 (4.7–11.0); 
P ,.0001*

15.0 (9.9–18.6); 
P ,.0001*

1.8 (1.0–4.3); 
P =.3771

2.5 (1.7–3.6) ACDC

5.5 (4.0–7.6); 
P ,.0001*

9.4 (6.9–12.4); 
P ,.0001*

4.5 (3.3–6.0); 
P ,.0001*

5.3 (4.4–6.6); 
P ,.0001*

1.8 (1.3–2.4); 
P ,.0001

2.4 (1.9–3.0) Synthetic

1.9 (0.88–5.3); 
P ,.0001*

3.6 (1.9–5.1); 
P ,.0001*

2.5 (1.5–4.2); 
P ,.0001*

1.4 (0.57–3.0); 
P ,.0001*

0.15 (0.10–0.52); 
P ,.0001

0.96 (0.42–1.8) Pediatric

Peak Signal-to-Noise Ratio
20.5 (17.7–22.6); 
P ,.0001*

21.4 (19.8–23.2); 
P ,.0001*

21.8 (19.6–23.2); 
P ,.0001*

18.2 (17.3–20.0); 
P ,.0001*

27.6 (23.6–29.8); 
P =.0591

26.0 (24.4–27.6) ACDC

22.6 (21.2–23.9); 
P ,.0001*

20.3 (19.1–21.6); 
P ,.0001*

23.4 (22.2–24.8); 
P ,.0001*

22.8 (21.8–23.6); 
P ,.0001*

27.4 (26.1–29.0); 
P ,.0001

26.2 (25.3–27.2) Synthetic

27.2 (22.8–30.5); 
P ,.0001*

24.5 (22.9–27.3); 
P ,.0001*

26.1 (23.8–28.2); 
P ,.0001*

28.4 (25.2–32.4); 
P ,.0001*

38.2 (32.9–40.2); 
P ,.0001

30.2 (27.5–33.8) Pediatric

Normalized Cross-Correlation
0.91 (0.78–0.95); 
P ,.0001*

0.93 (0.88–0.95); 
P ,.0001*

0.93 (0.89–0.96); 
P ,.0001*

0.86 (0.83–0.89); 
P ,.0001*

0.98 (0.97–0.99); 
P ,.0001

0.97 (0.96–0.98) ACDC

0.97 (0.96–0.98); 
P ,.0001*

0.95 (0.93–0.96); 
P ,.0001*

0.98 (0.97–0.98); 
P ,.0001*

0.97 (0.96–0.98); 
P ,.0001*

0.99 (0.99–1.00); 
P ,.0001

0.99 (0.98–0.99) Synthetic

0.98 (0.97–0.98); 
P ,.0001*

0.96 (0.95–0.97); 
P ,.0001*

0.98 (0.98–0.98); 
P ,.0001*

0.98 (0.97–0.98); 
P ,.0001*

1.00 (0.99–1.00); 
P ,.0001

0.99 (0.99–0.99) Pediatric

Multiscale Structural Similarity Metric Index
0.79 (0.74–0.85); 
P ,.0001*

0.83 (0.80–0.86); 
P ,.0001*

0.85 (0.81–0.87); 
P ,.0001*

0.75 (0.70–0.78); 
P ,.0001*

0.96 (0.95–0.97); 
P ,.0001

0.93 (0.91–0.94) ACDC

0.91 (0.88–0.93); 
P ,.0001*

0.88 (0.84–0.91); 
P ,.0001*

0.93 (0.90–0.96); 
P ,.0001*

0.93 (0.91–0.94); 
P ,.0001*

0.97 (0.96–0.98); 
P =.5554

0.97 (0.96–0.98) Synthetic

0.92 (0.89–0.95); 
P ,.0001*

0.89 (0.82–0.95); 
P ,.0001*

0.90 (0.86–0.94); 
P ,.0001*

0.94 (0.91–0.97); 
P ,.0001*

0.99 (0.99–1.00); 
P ,.0001

0.96 (0.95–0.98) Pediatric

End-Point Error
1.6 (1.4–1.9); 
P =.7298

2.2 (1.8–3.3); 
P ,.0001*

1.7 (1.4–2.1); 
P ,.0001

2.1 (1.9–2.2); 
P ,.0001*

2.7 (2.3–3.3); 
P ,.0001*

1.7 (1.3–2.1)* Synthetic

Note.—Data are medians, with interquartile ranges in parentheses. Included are the Automated Cardiac Diagnosis Challenge (ACDC), 
pediatric, and synthetic datasets. For all datasets, image metrics included the Dice similarity coefficient (DCS), mean squared error (MSE), 
peak signal-to-noise ratio (PSNR), normalized cross-correlation (NCC), and the multiscale structural similarity metric index (MS-SSIM). 
Motion estimates on the synthetic dataset are compared against the ground truth by using the average end-point error (EPE). Low MSE 
and EPE values are considered good, whereas high values of PSNR, NCC, and MS-SSIM are better. P values are relative to the method and 
were obtained by using two-sided Wilcoxon signed-rank tests. ITK = Insight Segmentation and Registration Toolkit.
* Indicates that cardiac motion estimation network (CarMEN) significantly outperformed (P , .001) metric of another method.

20% of the training data consisted of this patient group, 
CarMEN successfully achieved a better registration with the 
exception of some outliers (see Fig E4 [supplement]). An 
example of how CarMEN may be used for motion-based 
cardiac assessment is shown in Figure 4.

Synthetic Dataset
The Table, Figure 2, and Figure 5 show the performance 
of the network on the synthetic dataset. CarMEN had a 
significantly (P , .001; n = 200) higher DSC (0.85 [IQR, 
0.81–0.89]) relative to all the other methods. CarMEN and 

https://pubs.rsna.org/journal/ai


6 radiology-ai.rsna.org n Radiology: Artificial Intelligence Volume 1: Number 4—2019

Implementation and Validation of a 3D Cardiac Motion Estimation Network

Vampire showed significantly better performance relative 
to the other four methods on all other metrics. Relative to 
CarMEN, Vampire had a significantly lower 1000 3 mean 
squared error (1.8 [IQR, 1.3–2.4] vs 2.4 [IQR, 1.9–3.0]), 
and a significantly higher peak signal-to-noise ratio (27.4 
[IQR, 26.1–29.0] vs 26.2 [IQR, 25.3–27.2]) and normal-
ized cross-correlation (0.99 [IQR, 0.99–1.00] vs 0.99 [IQR, 
0.98–0.99]). There was no significant difference in the mul-
tiscale structural similarity index metric. The image met-
ric distributions of Elastix and ITK B-spline 2 were mostly 
bimodal, each peak in the distributions corresponding to 
data at the diastole and systole positions (see Fig 2). Fig-
ure 5 shows the accuracy of the three-dimensional motion 
estimates. CarMEN had a significantly lower average end-
point error (1.7 [IQR, 1.3–2.1]) relative to Vampire (2.7 
[IQR, 2.3–3.3]), ITK B-spline 1 (2.2 [IQR, 1.8–3.3]), and 
dDemons (2.1 [IQR, 1.9–2.2]). There was no significant 
difference in the end-point error between CarMEN and 
Elastix B-spline. A comparison of the estimated motion and 
the ground truth can be seen in Figure 4, A. Separate DSC 
(Fig E6 [supplement]) and end-point error (Fig E7 [supple-
ment]) figures show the results for middiastole and systole 
separately.

Pediatric Dataset
On the pediatric dataset, CarMEN and Vampire showed sig-
nificantly (P , .001; n = 627) better performance relative 
to the other four state-of-the-art methods for all the metrics 
except the DSC. CarMEN has a significantly higher DSC 
(0.77 [IQR, 0.72–0.81]) relative to Vampire (0.71 [IQR, 
0.58–0.80]), dDemons (0.74 [IQR, 0.69–0.78]), and ITK 
B-Spline 2 (0.76 [IQR, 0.71–0.80]). There was no significant 
difference in the DSC between CarMEN and the other two 
methods. Relative to CarMEN, Vampire had a significantly 
lower 1000 3 mean squared error (0.15 [IQR, 0.1–0.52] 
vs 0.96 [IQR, 0.42–1.8]), higher peak signal-to-noise ratio 
(38.2 [IQR, 32.9–40.2] vs 30.2 [IQR, 27.5–33.8]), higher 
normalized cross-correlation (1.00 [IQR, 0.99–1.0] vs 0.99 
[IQR, 0.98–0.99]), and higher multiscale structural similar-
ity index metric (0.99 [IQR, 0.99–1.0] vs 0.96 [IQR, 0.95–
0.98]). Representative images of various patient groups are 
shown in Figure 6. A common feature of some optimization-
based methods is the disappearance of the papillary muscles 
in the warped images. In contrast, these structures are better 
visualized in most of the images obtained with our method 
(Fig 6, white arrows). CarMEN is also more robust to ac-
quisition artifacts (Fig 6, black arrows), and better preserves 

Figure 2: Image shows image registration results on three datasets measured through five different image similarity metrics and 
represented with nonparametric violin plots. Violin plots are essentially mirrored density plots. Low mean squared error values are 
considered good, whereas high values of all other metrics are better. P values are relative to method and were obtained by using 
two-sided Wilcoxon signed-rank tests. * = P , .05, ** = P , .001; *** = P , .0001. ACDC = Automated Cardiac Diagnosis Chal-
lenge, CarMEN = cardiac motion estimation network, dDemons = Diffeomorphic Demons, ITK = Insight Segmentation and Registration 
Toolkit, MS = multiscale.
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anatomic features (Fig 6, arrowheads). Movie 1 (supplement) 
of the motion fields is provided as a sample.

Discussion
By reframing the nonrigid three-dimensional cardiac mo-
tion estimation problem as an unsupervised learning task, 
we achieved better accuracy relative to several state-of-the-art 
methods, especially under abnormal conditions such as hyper-
trophic cardiomyopathy.

On real data, CarMEN and Vampire showed significantly 
better performance relative to all other methods on all image 
metrics except the DSC. Comparing the two, Vampire per-
formed better than did CarMEN in several metrics, although 
Vampire had the lowest DSC among all methods. In contrast, 
CarMEN had an equal or better DSC relative to the other tech-
niques. Our results on the synthetic dataset show that Vampire 
has the highest motion estimate error despite having good per-
formance on image metrics. This result is also demonstrated in 
Figure 4, in which CarMEN-derived motion estimates on the 
synthetic dataset show better agreement with the ground truth. 
Thus, although Vampire produces visually accurate registrations, 
because warped and reference images look almost identical, the 
motion fields produced are largely inaccurate. The opposite is 

observed for Elastix B-spline and B-spline 1, both with lower 
motion estimate errors but decreased image registration accu-
racy. The bimodal distribution in the image metrics of these 
methods implies they have variable performance for small and 
large motion amplitude, the error being higher in the latter case. 
In contrast, CarMEN has a mostly normal distribution for all 
metrics. These results confirm that our method achieves a bet-
ter registration accuracy while maintaining a lower or similar 
motion estimate error. Thus, given the challenging problem of 
nonrigid three-dimensional motion estimation from cine MRI 
data, our method learns a motion model that balances image 
similarity and motion estimate accuracy.

At visual inspection, we found CarMEN to be reliable across 
multiple patient subgroups including patients with hypertrophic 
cardiomyopathy, and also capable of preserving fine-detailed 
pathologic features present in patients with myocardial infarction. 
These performance features are essential to assess the mechanical 
status of the heart because participants with pathologic features as 
described here often present with abnormal wall motion. In con-
trast, most other methods were unable to handle highly abnormal 
left ventricular anatomy. We note that the real datasets used here 
originated from different institutions, were acquired with two 
types of scanners (Siemens Healthineers, Erlangen, Germany; GE 

Figure 3: Image shows Automated Cardiac Diagnosis Challenge dataset. Cardiac motion estimation network (CarMEN) outper-
forms optimization-based methods across four pathologic subgroups. First and second columns correspond to heart at systole and 
diastole, accordingly. Moving image at systole is warped to diastole position by using predicted registration field for each method. 
dDemons = Diffeomorphic Demons, ITK = Insight Segmentation and Registration Toolkit.
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Healthcare, Waukesha, Wis), and came from distinct patient pop-
ulations. This flexibility is important because merely having good 
performance on a single test set does not guarantee good perfor-
mance in predicting the values for future inputs from a different 
dataset due to possible overfitting to the training sampling space 
(eg, scanner, site, population). As shown in the representative 

images, our method better handles off-section three-dimensional 
movement, is more robust to acquisition artifacts, and better pre-
serves abnormal anatomic information (ie, it does not overfit to a 

Figure 4: A, Representative images of synthetic motion estimate in-plane components. Predicted estimates (blue) are compared with 
ground truth (red). B-E, Example of assessment of left ventricle dyssynchrony with cardiac motion estimation network (CarMEN) in, B, 
C, a healthy individual and, D,E, a patient with myocardial infarction. B, Cardiac MR image in short-axis orientation. Sample spherical 
volumes are placed at anteroseptal (AS) and inferolateral (IL) walls near base. C, Corresponding displacement graphs show absence 
of left ventricle dyssynchrony as both AS and IL walls reach peak displacement simultaneously (black dotted lines). D, E, In a patient 
with myocardial infarction, IL wall reaches peak displacement four frames earlier (orange dotted lines) relative to AS wall (blue dotted 
lines) corresponding to approximately 120 msec for frame resolution of 30 msec. This difference may indicate left ventricle dyssyn-
chrony related to infarcted tissue in septal wall. dDemons = Diffeomorphic Demons, ROI = region of interest.

Figure 5: Image shows synthetic dataset. Cardiac motion 
estimation network (CarMEN) has lower or similar transformation 
error relative to optimization-based methods. Predicted registra-
tion field for each method is compared against ground truth by 
using average end-point error and they are represented with 
nonparametric violin plots. Violin plots are essentially mirrored 
density plots. Each method is compared against CarMEN by using 
two-sided Wilcoxon signed-rank tests. * = P , .05, ** = P , 
.001; *** = P , .0001. dDemons = Diffeomorphic Demons, ITK 
= Insight Segmentation and Registration Toolkit.
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healthy heart). This robustness suggests others could use CarMEN 
with little to no fine-tuning. A potential application of CarMEN 
toward estimating left ventricle dyssynchrony was also shown in 
Figure 4.

Our study had several limitations. Our training dataset was not 
fully independent as we drew 2512 samples from 100 participants. 
To prevent CarMEN from overfitting to any particular participant 
or cardiac phase, we ensured each training batch was made up of 
different participants and different phases and that standard data 
augmentation techniques were applied. By testing and validating 
CarMEN on similar (ie, Automated Cardiac Diagnosis Challenge 
test set) and different (ie, pediatric validation set) data, we have 
demonstrated it did not memorize any particular anatomy or 
phase and that it instead learned a general model of cardiac anat-
omy and motion. Furthermore, its good performance on the pe-
diatric dataset suggests we had a sufficient number of independent 
samples to prevent overfitting. Another limitation was that the use 
of cardiac MRI data acquired during multiple breath holds, as is 
routine for cine MRI, could also lead to section misalignments 
due to differences between breath-hold positions. Although ac-
counting for these differences was beyond the scope of our work, 
a novel learning-based solution for automatic intersection motion 

detection and correction recently proposed by Tarroni et al (32) 
could be incorporated as a preprocessing step. In fact, although the 
current implementation of CarMEN is semiautomated due to the 
required manual centering and cropping of the left ventricle, au-
tomatic convolutional neural network–based techniques exist to 
automate this process (33). However, cropping could potentially 
limit motion compensated reconstructions where motion esti-
mates for the entire field of view are needed. A potential solution is 
to use dual-gating techniques to first correct for respiratory motion 
such that the final images consist of only cardiac motion. Another 
constraint related to characterizing the three-dimensional motion 
from two-dimensional stacks of cine images is that the breath-hold 
acquisition could limit the suitability of CarMEN to correct PET 
data because it is known to affect cardiac motion. In contrast, PET 
data are acquired during free breathing and also inherently three-
dimensional. A potential solution to both these limitations is to 
implement instead a novel three-dimensional free-breathing car-
diac MRI acquisition technique that corrects the large affine and 
even nonlinear transformations due to respiratory motion (34) 
while maintaining excellent functional parameter agreement with 
those from a conventional cine protocol (35). In future work, car-
diac motion derived from specialized MRI sequences (eg, tagged 

Figure 6: Image shows pediatric dataset. Cardiac motion estimation network (CarMEN) outperforms optimization-based methods 
across various subgroups and ages. First and second columns correspond to heart at systole and diastole, accordingly. Moving 
image at systole is warped to diastole position by using predicted motion estimates for each method. Two healthy participants and 
two patients are shown. CarMEN is more robust to image artifacts relative to optimization methods such as Insight Segmentation 
and Registration Toolkit (ITK) BSpline 1 and Vampire (black arrows). Papillary muscles disappear in some optimization-based methods 
but are preserved by proposed method (white arrows). CarMEN does a better job at preserving anatomy relative to ITK BSpline 1 
(arrowheads). COART = coarctation of the aorta.
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MRI) could be used as prior knowledge to improve the accuracy 
of the motion estimates.

In conclusion, we have proposed an unsupervised learning–
based approach for deformable three-dimensional cardiac MR im-
age registration. Our method learns a motion model that balances 
image similarity and motion estimation accuracy. We validated 
our approach comprehensively on three datasets and demon-
strated higher motion estimation and registration accuracy relative 
to several popular state-of-the-art image registration methods.
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