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Abstract

In the current research on measuring complex behaviours/phenotyping in rodents, most of

the experimental design requires the experimenter to remove the animal from its home-

cage environment and place it in an unfamiliar apparatus (novel environment). This interac-

tion may influence behaviour, general well-being, and the metabolism of the animal, affect-

ing the phenotypic outcome even if the data collection method is automated. Most of the

commercially available solutions for home-cage monitoring are expensive and usually lack

the flexibility to be incorporated with existing home-cages. Here we present a low-cost solu-

tion for monitoring home-cage behaviour of rodents that can be easily incorporated to practi-

cally any available rodent home-cage. To demonstrate the use of our system, we reliably

predict the sleep/wake state of mice in their home-cage using only video. We validate these

results using hippocampal local field potential (LFP) and electromyography (EMG) data.

Our approach provides a low-cost flexible methodology for high-throughput studies of sleep,

circadian rhythm and rodent behaviour with minimal experimenter interference.

Introduction

Rodents have been widely used for understanding the aetiology, pathophysiology and pharma-

cology of neurological disorders, due in part to its similar brain architecture to primates and

complex behavioural repertoire. Recent improvement of sophisticated tools used for measur-

ing and manipulating brain activity, including optogenetics, two-photon imaging, wide-field

mesoscale imaging, fibre photometry, mini endoscopes [1–7], as well as the availability of

diverse transgenic lines and disease models, further incentivize their use in mechanistic studies

[8–11]. Though non-human primates have been traditionally used to understand the neural

mechanisms underlying executive function and higher-order cognition (such as decision mak-

ing, motor skill execution, and perceptual discrimination), high-throughput experiments on

non-human primates are not feasible because of cost and regulation constrains [12].

The organization of spontaneous home-cage behaviour of rodents reflects the interplay

between multiple neurobiological processes and can provide a high-throughput phenotyping

strategy without experimenter’s intervention. In addition to the lack of observer bias in
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monitoring animal behaviour [13], one major advantage of automated home-cage monitoring

is continuous and accurate monitoring particularly during dark periods when mice are most

active [14, 15]. Furthermore, remote monitoring of animals also greatly reduces the require-

ment for animal handling which may be stressful and/or confound studies [15–18]. In certain

disease models assessing the signs of ill health, pain and distress is difficult [19] and since mice

are crepuscular and nocturnal animals making observations at the wrong time of day can

result in missing them altogether. Remote home-cage monitoring systems will allow scientists,

veterinarians and animal technicians to monitor animal well-being even during the dark

phases [20].

There are multiple pre-existing methods currently used to evaluate animal activity in the

home-cage with different degrees of invasiveness and precision. Each of these approaches have

their own advantages and pitfalls. In mice, subcutaneously implanted small magnets have been

used to determine animal activity with respect to an array of magnetic field sensors under the

home-cage [21]. Flores et al. developed a non-invasive approach for monitoring animal activ-

ity by using piezoelectric sensors positioned on the cage floor [22]. Another non-invasive sys-

tem to quantify sleep-awake cycles in mice has been developed using passive infrared (PIR)

motion sensors [23]. Similarly, Radiofrequency identification (RFID) tags have been used to

track multiple animals to study their activity in the home-cage. However, this method has the

disadvantage of being expensive (approx. 500 USD per home-cage), having poor spatial and

temporal resolution as well as the invasiveness of the tag implantation which may provide dis-

comfort to the animal [24, 25]. Approaches with minimal invasiveness include running wheels

and video-based methodologies. Though running wheels are widely used because of their low

cost and ease of implementation for measuring the rodent activity and/or changes in circadian

rhythm, it has been shown that long-term access to a running wheel affects animal behaviour

and disease pathology [26, 27].

Electroencephalogram (EEG) and electromyogram (EMG) signals have been used as the

standard approach to classify sleep-wake states, but this involves the implantation of electrodes

for recordings [28]. Not only is this approach time-consuming and invasive but also expensive

to implement, particularly in high throughput experiments for assessing sleep-wake behaviour

under varying pharmacological and environmental manipulations. In the past, several

attempts have been made to develop alternative less invasive methods (other than EEG/EMG)

to classify sleep-awake behaviour in rodents. For instance, video monitoring has been used to

evaluate periods of sustained immobility as a surrogate of EEG/EMG-defined sleep [29, 30].

All these methods have been able to provide 90–95% agreement with tethered EEG/EMG

recordings, however these methods are sometimes difficult to implement because of their tech-

nical complexity or the expense of the required software/hardware which makes them unsuit-

able for high throughput studies of animal behaviour. Here, we present a rodent home-cage

behaviour monitoring system built around a low-cost (35$) credit-card sized micro computer:

Raspberry Pi (RPi) and using open-source software technologies. This low-cost system

(approx. 100 USD per home-cage) is suitable for high-throughput data acquisition with virtu-

ally no experimenter interventions. We show that our system is capable to reliably video-mon-

itor multiple home-cages simultaneously and remotely at variable frame rates (from 10–120

Hz). To demonstrate the capabilities of our system, we present a reliable sleep-wake classifica-

tion based only on video data collected in the home-cage and validate it against a standard

EMG based scoring.

In summary, low-cost automated home-cage monitoring and analysis systems, like the one

proposed here, represent a platform upon which custom systems can be built, allowing

researchers to study rodent behaviour with minimal experimenter interference [31–34].

Low-cost rodent home-cage monitoring
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Material and methods

Animals

All experiments were carried out on adult (20–30 g, age 4 month) wild type C57BL/6 mice,

n = 10 (n = 5 for 24 hr recordings and n = 5 for 3 hr recordings (data not shown)). Mice were

housed under standard conditions, in clear plastic cages under 12 h light, 12 h dark cycles. All

the animals were either grouped or singly housed in Optimice (Animal Care Systems) home-

cages depending on the experimental protocol they were going through. Mice were given ad

libitum access to water and standard laboratory mouse diet. All protocols and procedures were

approved by the Animal Welfare Committee of the University of Lethbridge and were in

accordance with guidelines set forth by the Canadian Council for Animal Care.

Surgery

Local field potential (LFP) and electromyography (EMG) electrodes were implanted in

C57BL/6J mice anesthetized with isoflurane (2.5% induction, 1–1.5 maintenance). For hippo-

campal LFP recordings, a monopolar electrode made of Teflon coated stainless-steel wire

(bare diameter 50.8 μm) was inserted in the brain (at coordinates -2.5mm AP, 2mm ML and

1.1mm DV from bregma), targeting the CA1 region. For EMG recordings, a multi-stranded

Teflon-coated stainless-steel wire (bare diameter 127 μm) was inserted into the neck muscula-

ture using a 23-gauge needle. The reference and ground screws were placed on the skull over

the cerebellum. The other end of electrode wires were clamped between two receptacle con-

nectors (Mill-Max Mfg. Corp.) glued to the headpiece which in turn was secured to the skull

using metabond and dental cement.

Electrophysiology

After electrode implantation, the animals were allowed to recover for 7 days before being

habituated to the recording setup consisting of a home-cage without the lid placed in the mid-

dle of a large Plexiglas box used as secondary containment. During 24 hour LFP and EMG

recordings, the electrophysiological tethers were connected to a motorized commutator (Neu-

roTek Inc.). The hippocampal LFP and neck EMG signals were amplified, filtered (0.1–2000

Hz) and digitized at 4 kHz using a Digital Lynx SX System (Neuralynx, Inc.) and Cheetah soft-

ware (Neuralynx, Inc.).

System architecture/hardware

Our system consists of a RaspberryPi (model 3B+), an infrared Picamera module (v2 NoIR), a

wide-angle lens (AUKEY optics) and IR LEDs (DC12V SMD3528-300-IR (850nm)) placed on

the home-cage lid to monitor the mouse behaviour (Fig 1). To make sure that the field of view

covered most of the home-cage, we placed the camera lens on the home-cage lid through a cus-

tom made hole at its centroid and sealed it with hot glue. The Picamera module is connected

to the Mobile Industry Processor Interface (MIPI) Camera Serial Interface (CSI) port on the

RaspberryPi via a 15cm ribbon cable. The RaspberryPi further connects to the computer net-

work either via a LAN cable or a Wi-Fi connection (Fig 1A–1D).

System interface

The remote user can view the live feed of the animal activity in the home-cage via a customized

web interface (Fig 1E). In addition to live home-cage monitoring, it is possible to record video

data to do off-line behavioural analysis. The web interface was created using PHP, JavaScript

and CSS, which runs on an Apache web server on the Raspberry Pi and is based on Silvan

Low-cost rodent home-cage monitoring
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Melchior’s implementation (https://github.com/silvanmelchior/RPi_Cam_Web_Interface).

All the code we used and developed, is open-source and it can be downloaded from https://

github.com/surjeets/Animal_Home_Cage and https://github.com/surjeets/Home-Cage-

Python-and-MATLAB-Code.

The web interface has Home, Settings, Preview and GPIO Control tabs; by default, the

opening page is the Home page (Fig 1E) where users can view the live camera feed, start/stop

video recording, capture an image or stop the camera. Users can change the camera settings

on the Settings page (e.g. video resolution, frame rate, brightness, contrast, sharpness, ISO,

rotation, annotations, video splitting, etc.) (Fig 2). Users can also preview/download/delete

captured images and videos on the Preview page (Fig 3). The storage space available on the SD

card (or selected storage device) is indicated on this page. Further, users can also manually

control external peripherals attached to the system (e.g. LEDs, buzzers, motors, etc.) via the

GPIO Control interface (Fig 4).

The real-time video streaming is based on the program RaspiMJPEG which is an Open-

MAX-application developed by Silvan Melchior and is based on the Multimedia Abstraction

Layer (MMAL) library [35]. In the web interface of our system, the RaspiMJPEG makes a con-

nection to the camera (MMAL) and generates a continuous stream of single frames which are

saved in the /dev/shm/mjpeg directory of the RPi (e.g. cam.jpg). This folder is a virtual memory

shared location that speeds up the execution by avoiding having to do many read/write to disk

operations. These frames are accessed via URLs on the Apache Web server. The script cam_pic.

php returns the latest one and cam_pic_new.php merges the frames into an mjpeg stream. The

stream of the frames (preview images) is maintained throughout even during capturing/record-

ing video/image. The captured video/image data is stored in the media folder (/media) of the

RPi, the images are stored in JPEG format while the video is stored in h264 format but can be

automatically packaged into an mp4 file when the recording ends. Alternatively, the video

stream can also be assessed using the iSpy Connect software (www.ispyconnect.com) running

on a windows machine by adding the following url: http://<your_pi_ip>:<port>/html/cam.

jpg or http://<your_pi_ip>:<port>/html/cam_pic_new.php? in the JPEG URL or MJPEG

Fig 1. Animal home-cage monitoring system architecture and web interface. (A) Basic rack with multiple home-cages. (B) Top view and, (C) side view of a mouse

home-cage with a wide-angle lens and camera mounted on top and connected to a Raspberry Pi (RPi). This RPi is responsible for data acquisition and for controlling

external peripherals. The RPi further connects to a computer network either via Ethernet or Wi-Fi connection, (D) allowing the remote user to view the animal activity in

the home-cage, via web browser either on a mobile phone, tablet or a desktop computer. (E) The home page of the web interface allows the user to view the animal activity

in its home-cage in real-time and to start/stop recording videos and to capture images.

https://doi.org/10.1371/journal.pone.0220751.g001
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URL tab within video source. This allows the user to simultaneously capture a video stream on

a desktop computer and on the RPi. This implementation allows to schedule video recordings

across multiple cages.

Offline behaviour analysis

To process the recorded videos, we implemented two offline algorithms for behavioural data

analysis using OpenCV and Python (https://github.com/surjeets/Home-Cage-Python-and-

MATLAB-Code), one for motion detection and another for animal tracking in the home-cage.

Using these simple algorithms, we were able to demonstrate our approach by performing

sleep/wake analysis with accuracy comparable to EMG recordings-based methods.

Motion detection, tracking and sleep/wake scoring

We use a simple and well-known computer vision method to detect motion and to track ani-

mals in the home-cage. To estimate the amount of motion in a video we extract the back-

ground [36–39] and take the difference between consecutive frames (frame differencing) [40].

For motion detection we implemented the algorithm shown in Fig 5 (Algorithm 1). First,

the background is estimated by calculating the weighted mean of previous frames along with

the current frame. In this way our system can dynamically adjust to the background even with

the small changes in the lighting conditions. After this, frame differencing is performed by

subtracting the weighted mean from the current frame to get a delta frame:

delta frame ¼ jbackground estimation � current framej

The delta frame is then thresholded (assigning a constant value to all the pixels above the

threshold and zero to the rest) to find regions in the image that contain substantial difference

from the background. These regions correspond to “motion regions” in each video frame.

Fig 2. Web interface for camera settings. This interface allows a user to change camera settings such as: video resolution, frame rate, brightness, contrast,

sharpness, ISO, rotation, annotations, video splitting etc.

https://doi.org/10.1371/journal.pone.0220751.g002
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Next, we calculated the area of each motion region in the thresholded delta frame. If these

motion regions have an area larger than a threshold (the area that a mouse occupies in the

visual field is assumed to be larger than a certain number of pixels), the motion is considered

to be caused by the mouse (the motion region is shown with a rectangle around it Fig 6A).

This threshold was set to avoid other objects (e.g. cables or bedding) or pixel fluctuations due

to breathing being incorrectly detected as mouse motion. This tracking algorithm has been

previously used for a Morris Water Task [11].

For animal tracking we implemented the algorithm shown in Fig 5 (Algorithm 2). This

algorithm assumes that there is a high contrast between the mouse and the home-cage back-

ground. First, a Gaussian filter (size = 21, sigma = 3.5) is used to reduce noise in each video

frame, then intensity-based thresholding is applied to segment the filtered image. Subse-

quently, to find the animal location, the contour with the largest area is detected, which, in the

home-cage, is usually the animal. Finally, to calculate the trajectory of an animal, the centroids

of the detected largest contour in each frame are connected (Fig 6B top panel). To validate

these results, we compared our tracking Algorithm 2 with an open-source single mouse tracker

in Icy software [41]. We show that the performance of the Algorithm 2 is equivalent to Icy (Fig

6B bottom panel). These trajectories can be used to calculate the distance travelled by the ani-

mal or to visualize its spatial occupancy.

Fig 3. Preview of recorded videos/captured images. This interface allows the user to preview/download/delete captured images and videos. Further, storage

space available on the SD card for recording more videos/capturing images is also indicated.

https://doi.org/10.1371/journal.pone.0220751.g003

Low-cost rodent home-cage monitoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0220751 August 2, 2019 6 / 18

https://doi.org/10.1371/journal.pone.0220751.g003
https://doi.org/10.1371/journal.pone.0220751


We use the centroid of the motion-detected region to track the animal position in the

home-cage (Fig 6B). These trajectories can be used to calculate the distance travelled by the

animal or to visualize its spatial occupancy. Finally, we use our motion measure (motion sig-

nal) to predict when the animal is sleeping or awake. For sleep/wake scoring, we filtered the

video-based motion signal below 0.1 Hz using a zero-lag Chebyshev filter and detrended using

10 sec windows with 5 sec overlap (using the locdetrend function from the Chronux Toolbox)

to remove the variations in the baseline across light and dark cycle. The result was then recti-

fied and integrated using 20-sec moving windows. Next, this signal was thresholded using its

50–60 percentile to classify waking and sleep periods. If the signal was below the threshold for

at least 40 sec, the animal was assumed to be asleep, or awake otherwise. This threshold was

chosen based on the optimal length based on the accuracy of sleep detection (Fig 9A). A simi-

lar criterion was reported in [29, 30, 42]. For LFP/EMG based sleep/wake scoring, hippocam-

pal LFP was filtered between 0.2 and 100 Hz and down sampled to 200 Hz. Delta power (0.5–4

Hz) and theta power ratio (6–10 Hz) were calculated for the LFP. State was scored as sleep

when EMG RMS signal was smaller than its 50–60 percentile and Delta power value above its

20–30 percentile or theta power ratio was above 0.3–0.4.

Sleep/wake scoring based on only EMG signals was also done by filtering the raw EMG

activity between 90 Hz and 1000 Hz and then rectifying and integrating it using 20-sec moving

windows. A state was scored as sleep when the EMG signal was smaller than its 50–60 percen-

tile, otherwise it was classified as awake [29]. This EMG based state scoring was compared to

the LFP/EMG-based state scoring and the overlap of two scoring signals was calculated, which

turns out to be 99.01 ± 0.27%. Thus, for the remaining of this paper, we use only EMG based

sleep/awake scoring. The accuracy of video-based classification was calculated by counting the

amount of time the video-based scoring was the same as the EMG-based scoring divided by

Fig 4. Remote control of external peripherals. This interface allows the user to manually control external peripherals attached to the system via the RPi GPIO

pins (e.g. LEDs, Buzzers, motors, etc.).

https://doi.org/10.1371/journal.pone.0220751.g004
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the total recording time:

accuracy ¼
P

absðsleepwake classificationEMG � sleepwake classificationvideoÞ

total recording time

Camera settings and temporal precision evaluation

In some behavioural tasks (e.g. reach and grasp, grooming behaviour) it is very important to

acquire the data at high frame rates. With the Picamera camera board V2.1 (8MP Sony

Fig 5. Off-line video analysis algorithms. Algorithm 1 (top) quantifies animal activity and Algorithm 2 (bottom)

calculates and draws the trajectory of the animal detected. Both algorithms are presented in pseudo-code (in our

repository, they are implemented in Python using openCV).

https://doi.org/10.1371/journal.pone.0220751.g005
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IMX219 sensor), it is possible to record video @ 30 fps in full resolution (no shutter lag and

simultaneous recording), and also @120 fps if using the 2 × 2 analogue binning mode (which

is a clocking scheme to collect the charge of a 2x2 CCD pixel area). We evaluated the temporal

precision of the frame acquisition of the RPi Camera by comparing the average number of

dropped frames and variation in interframe intervals (IFIV) in a video at different framerates

(30, 60, 90 and 120 fps) and recording formats: h264, which is the compression standard

MPEG-4 AVC and raw YUV, which is an uncompressed bitmap data format. In order to

quantify the temporal precision of the frame acquisition of the Picamera, we recorded the time

stamps of each frame acquisition into a csv file using the picamera python library [43].

To evaluate the time difference in simultaneous frame acquisition, multiple RPis were

simultaneously triggered with an external square TTL pulse. On another RPi (besides the ones

being triggered), we monitored the transition (high or low) of selected GPIO pins in real-time

that corresponded to external trigger pulses that represent the start and stop times of video

recording (Fig 7) using piscope [44]. The timestamps of acquired frames on different RPis were

later aligned offline to quantify any temporal differences in the acquisition. Table 1 shows that

the jitter in the frame acquisition on different RPis is in the order of few microseconds.

Fig 6. Animal motion detection and tracking. (A) Results of activity detection algorithm showing day (left column) and night (right column) time

activity of the animal in the home-cage. (B) Results for animal tracking algorithm with the centroid marked with a white dot (Top-left) and the

tracking plot generated by connecting the detected centroids in each frame (Top-right). The bottom panel presents results of animal tracking using

Icy software.

https://doi.org/10.1371/journal.pone.0220751.g006

Fig 7. Simultaneous video acquisition on multiple Raspberry Pis. Example of two Raspberry Pis (RPi) triggered by an external TTL pulse (Trigger) to

simultaneously start/stop video recording RPis (RPi 1 and RPi2).

https://doi.org/10.1371/journal.pone.0220751.g007
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Off-line alignment of the video with additional signals

To align the video recordings to LFP or EMG signals, we keep track of the times when the

video acquisition begins and ends in the same acquisition system that records the electrophysi-

ological signals. We do this by setting a TTL signal (Transistor-Transistor Logic 5V) to HIGH

in one of the GPIO pins of the RPi when the video acquisition starts and set to LOW when the

acquisition terminates. Additionally, we also record the times when each video frame is

acquired (see https://picamera.readthedocs.io/en/release-1.13/api_camera.html).

Results

High frame rate acquisition

The temporal precision and resolution required for the video recordings depends largely on

the behaviour we are interested in. For example, if one is interested in skilled reaching or play

behaviour this might require to record video at higher resolution and frame rates than if we

are interested in monitoring the general activity in the home-cage. Since the temporal preci-

sion of the video varies depending on the settings we used, we compared some of the file for-

mats and recording settings in this system. We observed that there are dropped frames when

we save the video in raw YUV format above 30 fps at full resolution. This situation gets worse

when the frame rate augments. For example, at 90 fps we can only achieve a frame rate of

77.61 ± 4.59 fps with a lag of 54.45 ± 31.78 ms between consecutive frames (Table 1). In con-

trast, using the H264 encoding we were able to record at 120 fps with no missed frames

(120.54 ± 0.00 fps) and almost no lag between frames (2.44 ± 0.46 μs).

Multiple camera synchronization

The system presented here assumes that a single camera is placed on the home-cage providing

a top-down view. However, it is possible to use more than one camera if they can be synchro-

nized [45]. To test this, we evaluated the temporal alignment of two cameras recording video

synchronously (see Methods). We found that the temporal difference between the two cameras

is in the order of less than ten microseconds when using H264 encoding at 320 x 240 pixel res-

olution and frame rates from 30–120 (last column of Table 1 and Fig 7).

Sleep-wake state classification

To classify the behaviour of the mouse into sleep and wake states, we applied the following cri-

teria: if the mouse was not moving (according to our motion detection algorithm) for more

than 40 sec, we assumed that it was asleep, otherwise we assumed it was awake (see Methods

and Fig 5). To validate this classification, we simultaneously recorded hippocampal LFP and

EMG signals and compared them to our video-only based classification (Fig 8A and 8B). Our

Table 1. Comparison of frames per second (fps) and variance in Inter frame interval (IFIV) of the video data acquired over multiple trials: 15-minute video (320 X

240) was recorded in a raw (YUV) format and h264 encoding for 10 trials at a fixed frame rate (fps) on multiple RPis (n = 5).

Expected frame

rate

Frame rate achieved (raw

YUV format)�
Variance in interframe interval (IFIV)

for raw YUV format�
Frame rate achieved (h264

encoded)�
Variance in interframe interval (IFIV)

for h264 encoded�

30 fps 28.98 ± 1.70 fps 39.70 ± 66.83 ms 30.00 ± 0.00 fps 2.00 ± 0.18 μs

60 fps 52.84 ± 3.34 fps 81.34 ± 27.66 ms 60.20 ± 0.00 fps 0.63 ± 0.31 μs

90 fps 77.61 ± 4.59 fps 54.45 ± 31.78 ms 90.24 ± 0.00 fps 2.23 ± 0.35 μs

120 fps N.A. N.A. 120.54 ± 0.00 fps 2.44 ± 0.46 μs

�results expressed as mean ± S.E.M.

https://doi.org/10.1371/journal.pone.0220751.t001
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sleep-wake classification was highly correlated to the 24 hr EMG recordings (90.52% ± 0.4

accuracy). Similar results were obtained for shorter recordings (data not shown). The high-

throughput methodology for sleep-wake monitoring presented here can be easily incorporated

into any existing phenotyping test battery, e.g. circadian studies (Fig 8B). For example, our 24

hour sleep/wake classification algorithm shows that animals were more active during the dark

cycle than during the light cycle (Fig 8C and 8D, n = 5, one-way anova, Bonferroni correction,

F(1,9) = 12.03, p = 0.0085), a trend that is observed in commercial solutions that use running

wheels for phenotyping circadian rhythms in mice[42].

We chose a 40 sec threshold to determine the behavioural state of the animal based on the

optimal accuracy of our method compared to the EMG based classification (Fig 9A). A very

similar finding is reported in [30]. The performance of our method decreased when using

shorter windows thresholds because the mouse could be immobile for very short periods of

Fig 8. Sleep-wake state classification. (A) Example of hippocampal (HPC) LFP and its spectrogram and rectified EMG activity recorded from a naturally

sleeping animal during 24h (B) Comparison of hypnogram scoring the sleep and waking states calculated based on the EMG and video monitoring. (C) Example

actogram generated using Algorithm 1, for a day-night sleep-wake state classification for one mouse. (D) Mean estimated awake duration expressed in terms of

percentage activity for day and night cycles (12 hr each) for n = 5 animals (mean ± S.E.M., � denotes p< 0.01; one-way ANOVA using Bonferroni post hoc).

https://doi.org/10.1371/journal.pone.0220751.g008
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Fig 9. Performance of video-based sleep/wake classification. (A) Relationship between the time length of continuous inactivity threshold and accuracy of sleep/wake

video-based classification. Y-axis shows the difference in minutes between the average amounts of sleep detected using the video-based and EMG classification in 2 hr

interval (n = 5 animals). (B) Density estimations of sleep events durations for EMG-based (gray) and video-based (red) classification (top). The density was estimated

using the RASH method described in [46]. Box and raster plots (bottom) of the sleep detected events of the different durations in seconds (X-axis). (C) Correlation

between the video-based and EMG-based sleep/wake classifications for different smoothing windows durations. Error bars represent the S.E.M for n = 5 animals.

https://doi.org/10.1371/journal.pone.0220751.g009

Low-cost rodent home-cage monitoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0220751 August 2, 2019 12 / 18

https://doi.org/10.1371/journal.pone.0220751.g009
https://doi.org/10.1371/journal.pone.0220751


time but not asleep. Analogously, when using long windows, the accuracy drops because mice

can sleep during short periods (see Discussion). We found that the estimated distributions of

the duration of the detected sleep events using the video-based and EMG based methods is

generally similar. However, they differ when the durations of the events are small, close to 1–2

sec or between 10–30 seconds (Fig 9B). In addition, the accuracy of the video-based method

changes with respect to the noise in the motion detection signal, which in turn is modulated

(in part) by the smoothening of this signal (see Methods). When the video-based motion

detection signal was smoothened using very short windows, small motion fluctuations could

be incorrectly detected as wakening. The smoothening over longer windows improves the cor-

relation of EMG and video signals up until an asymptotic value (Fig 9C).

Discussion

When studying complex behaviour, experimental designs that require the experimenter to

move the animal from its home-cage environment to an unfamiliar apparatus (novel environ-

ment) are relatively disruptive, time- and labour-consuming and require additional laboratory

space. This disruption may influence behaviour, general well-being, and metabolism of the

animal, affecting the phenotypic outcome, even if the data collection method is automated,

therein possibly creating spurious findings. Therefore, monitoring the animals in their home-

cage has several advantages. Though there are already open-source and commercial solutions

available to monitor animal behaviour [25, 47–53], they are usually difficult to construct,

require a new infrastructure/space, and are expensive. Conversely, we propose a video-based

system that is composed of off-the-shelf components and designed to be simple and easily inte-

grated in existing home-cage setups with minimal modifications for remote behaviour moni-

toring. Such a system can be used for short-term welfare assessment (e.g. post-surgery

monitoring) by enabling 24 hr monitoring, even in the dark phase where welfare assessment

without disturbance to the cage is difficult and subjective. Further, video data collected with

this system can be used to classify sleep-wake states of an animal in the home-cage using

video-based tracking. The simple video-based tracking algorithm that we use has an accuracy

above 90% when compared with tethered EMG recordings for sleep-wake state classification.

This algorithm is based on the quantification of motion during a period to determine if the

animal is awake or asleep. We found that the highest accuracy of the sleep/wake classification

is reached when the time window threshold for no motion period to be considered as sleep is

close to 40 secs compared to the gold standard EMG based classification. The performance of

our classification method mainly depends on two factors: the amount of time we use as a

threshold to assume the animal is asleep and the amount of noise (or smoothness) in the

motion detection signal. When considering shorter time windows as a threshold, this method

incorrectly classifies periods of quiet wakefulness as sleep. Analogously, when the window is

too large, this method incorrectly classifies long periods of sleep that contain small movement

as wake periods (e.g. twitches) (Fig 9A). The smoothness of the motion detection signal is

determined (in part) by the length of the smoothening window. If the window is small, the

motion detection signal contains small changes in the home-cage (illumination, cables, bed-

ding, etc), that can cause the algorithm to incorrectly detect these changes as the mouse being

awake. We can alleviate this problem by extending the smoothening signal to reach an asymp-

totic performance compared to the EMG-based classification (Fig 9C). This has been previ-

ously reported in similar video-based sleep/wake classification approaches [29, 30]. Although

these results show that our video-based algorithm reliably determines whether the animal is

awake or asleep (compared to an EMG based algorithm), for a more in depth classification of

sleep into Rapid-Eye Movement (REM) and non-Rapid Eye Movement (NREM) sleep states,
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our video analysis should be complemented with more advance computer vision techniques

[54] or additional brain signals.

The proposed video-based monitoring/tracking methods has several advantages and limita-

tions, one advantage is in accurate animal tracking due to the system’s high spatial (in the

order of millimeters) and temporal resolution (in the order of milliseconds). In contrast, a

home-cage RFID system with an array of 18 RFID sensors (ID20LA) has a spatial resolution of

5 cm and a temporal resolution of 1Hz [24]. One disadvantage of our system is that it can only

track one animal at a time due to the potential high similarity between multiple mice (e.g.

same fur colour and shape) [49], compared to the multiple animal tracking capability of an

RFID based system. However, RFID (and video-hybrid) systems are highly specialized, diffi-

cult to setup and expensive [25, 53, 55, 56]. A potential approach to improve video-based

tracking methods is to extract high level features from each animal to identify every individual

using machine learning [57, 58]. But, such algorithms need to be highly calibrated and tested

to provide reliable results. Another possible limitation of our system is the processing power of

the RPi if extensive online video processing is required. For example, streaming live video over

a network and simultaneously performing object recognition on the RPi in real time might

result in frame dropping. Despite these limitations, the system has several advantages for large

scale monitoring of rodents, added to the fact that it can be easily integrated with any available

rodent cage-rack system. Further, a user can remotely monitor day/night activity of animals in

multiple cages, from virtually anywhere via the web interface which can be applied not only

for research but animal care and husbandry.

Although this manuscript presents motion-based classification for sleep/awake behaviour

of a single mouse, a user can still collect data for multiple animals in the home-cage and ana-

lyze it using more complex algorithms than the ones presented here.

Conclusions

In this paper, we present a low-cost home-cage reliable behavioural monitoring system that

can be easily adapted and extended to a large variety of conditions and pre-existing experimen-

tal setups. We demonstrated that our system can be used to study natural sleep patterns of

mice in their home-cage using only video. Due to its suitability for remote behaviour monitor-

ing and minimization of experimenter bias at low-cost, systems like the one presented here,

can become a useful tool for high-throughput data collection and behavioural analysis of

rodents in their home-cage.
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