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Abstract

Alternative splicing (AS) is a major post-transcriptional mechanism to enhance the diversity of 

proteome in response to environmental signals. Among the numerous external signals perceived by 

plants, light is the most crucial one. Plants utilize complex photoreceptor signaling networks to 

sense different light conditions and adjust their growth and development accordingly. Although 

light-mediated gene expression has been widely investigated, little is known regarding the 

mechanism of light affecting AS to modulate mRNA at the post-transcriptional level. In this 

minireview, we summarize current progresses on how light affects AS, and how sensory 

photoreceptors and retrograde signaling pathways may coordinately regulate AS of pre-mRNAs. 

In addition, we also discuss the possibility that AS of the mRNAs encoding photoreceptors may be 

involved in feedback control of AS. We hypothesize that light regulation of the expression and 

activity of splicing factors would be a major mechanism of light-mediated AS. The combination of 

genetic study and high-throughput analyses of AS and splicing complexes in response to light is 

likely to further advance our understanding of the molecular mechanisms underlying light control 

of AS and plant development.

INTRODUCTION

In eukaryotes, introns usually need to be spliced out to form mature mRNAs in the nucleus 

(1). The splicing machinery utilizes different splice sites to produce two or more isoforms at 

the same locus (2,3). The discovery of alternative splicing (AS) is a key milestone for 

understanding the post-transcriptional regulation (4–7). Early studies based on EST and full-

length cDNA demonstrate that AS presents a larger proportion of multi-intron genes in 

plants (8). Recent genomewide studies based on next-generation sequencing confirm that a 

large number of genes are regulated by AS, including more than 60% of the intron-

containing genes in both Arabidopsis and Glycine max (9–11), approximately 33% of the 

annotated genes in Oryza sativa (12), and at least 56% of the genes in Zea mays (12,13).
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Alternative splicing can be classified into four major types: intron retention, exon skipping, 

alternative donor and acceptor sites (9,14). Intron retention, as the most prevalent type of AS 

in plants, often produces splicing isoforms containing premature termination codon (PTC) 

that can be targeted by nonsense-mediated mRNA decay (NMD) to regulate the 

transcriptional level of functional transcription (8–10,15,16). Furthermore, splicing isoforms 

with PTC can also produce truncated proteins to regulate the full-length functional proteins 

(17–20). Other types of AS including exon skipping, alternative donor and acceptor sites 

produce various proteins with distinct subcellular localization, stability and binding 

properties by in-frame deletion or addition of alternative domains (3,14,21,22).

Alternative splicing enhances the adaptability of plants in response to environmental 

alterations (23). Emerging studies have revealed that AS plays an essential role in light 

response by regulating core-clock genes, including RVE8, JMJD5, LHY, TIC and CKB3 
(24–26). Meanwhile, light quality and quantity can regulate AS of numerous plant genes 

(24,27,28). These findings enhance our understanding of how plants adapt themselves to 

track light oscillations via AS-mediated regulation. However, the mechanisms of light 

regulation of AS are still not fully understood. Here, we summarize the latest findings of 

light-mediated AS regulation and propose the possible mechanisms of AS regulation in 

response to light.

Transcriptome-wide regulation of AS in response to light

Due to technical limitations, only a subset of AS regulated by light has been revealed by 

earlier studies (29,30). For example, the first study reports nine genes with differential 

spliced pattern upon light treatment, including carboxypeptidase, tyrosyl tRNA synthetase 

transcripts and two serine/arginine-rich (SR) genes using the AS RT-PCR panel (31). 

Another study shows that splice forms from ten genes displays opposite splicing patterns in 

the light- vs. dark-treated samples using whole-genome oligonucleotide array (32). Resent 

development of high-throughput sequencing technologies allows genomewide survey of 

splicing isoforms (33,34). Three genomewide transcriptome studies using RNA-seq reveal 

that light affects AS of hundreds to thousands of genes (24,27,28). In Arabidopsis, at least 

7% of protein-coding genes exhibit AS pattern mediated by phytochrome A (phyA) and 

phyB, two major molecular species of red/far-red-sensing phytochromes (27). Genomewide 

study by Wu et al. (28) in the moss Physcomitrella patens shows 8.4% and 8.9% of AS 

events in response to red and blue light, respectively. Most recently, a large-scale 

transcriptome profiling in Arabidopsis estimates different AS patterns in 382 genes upon 2-h 

pulse of white light in the middle of the night (24). Alternatively, as the most frequent AS 

events, intron retentions are mainly induced by phytochromes (24,28). These observations 

suggest that mRNA splicing is directly involved in the photomorphogenic response in plants 

(Fig. 1). Taking advantage of current whole-transcriptome sequencing strategies, more light-

mediated splicing isoforms will be discovered in the future.

AS mediated by sensory photoreceptors and retrograde signaling pathway

A couple of photosensory receptors, including five phytochromes (phyA–phyE), UV-A/blue 

light-absorbing receptors such as two phototropins (phot1, phot2), two cryptochromes (cry1, 

cry2) and three Zeitlupe proteins (ZTL, FKF1 and LKP2), and the UV-B photoreceptors 
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(UVR8) have been reported (35,36). Phytochrome-dependent change in AS was firstly 

reported in Arabidopsis and demonstrated that 15% of splicing-related genes possess 

phytochrome-mediated AS after exposing to red light for 1 h (27). Furthermore, 

phytochrome-deficient mutants in Physco-mitrella patens cannot response to AS regulation 

upon light treatment, supporting the involvement of phytochromes in splicing regulation 

(28). Collectively, these studies suggest that the signaling from sensory photoreceptors, at 

least phytochromes, is the primary pathway in the light-regulated AS, although the 

involvement of other photoreceptor in the AS regulation has not been experimentally proved. 

In contrast, another study reports that light-triggered AS in AtRS31 is independent of 

phytochrome and cryptochrome pathways (37). Further study demonstrates that white light-

induced splicing alteration in SR30 is not affected in phyAB, phyABCDE and cry1cry2 
mutants, suggesting white light may regulate the activity of splicing factors via 

photosynthetic process (24). In addition, retrograde signals from the chloroplast are also 

involved in the regulation of AS events (37). These observations support the view that light 

regulation of AS is not only dependent on photosensory photoreceptors, but also mediated 

by the photosynthetic process or retrograde signals from the chloroplast (Fig. 1).

Circadian clock genes regulated by AS in response to light

In the central loop of circadian clock, TIMING OF CAB EXPRESSION 1 (TOC1) and 

CIRCADIAN CLOCK-ASSOCIATED1 (CCA1)/LATE ELONGATED HYPOCOTYL 
(LHY) show reciprocal suppression (38,39). ZTL, together with CCA1 and LHY, can 

suppress the expression of TOC1 (40,41). AS is an important mechanism for the regulation 

of circadian clock-related genes, including ZTL, CCA1, LHY and TOC1 in Arabidopsis 
(17,42). AS of core-clock genes, such as LHY, RVE8, JMJD5, TIC and CKB3, is reported to 

be affected by light (24). It is noteworthy that AS and circadian clock-related genes can be 

mutually regulated (17,43,44). Clock-related genes, for example, AtGRP7 and its paralog 

AtGRP8 can reciprocally control AS of their transcripts (15,44,45), while splicing factors, 

such as SKIP and STIPL1, can regulate the circadian clock in Arabidopsis (46,47). 

Furthermore, more recent studies also pointed out that protein arginine methyltransferase 5 

(PRMT5) can regulate the AS of core-clock gene PSEUDO-RESPONSE REGULATOR9 
(PRR9) in Arabidopsis (48–50), and the expression of PRMT5 is clock-regulated (51). 

These studies strongly indicate that the circadian clock is tightly associated with the 

regulation of AS.

Mechanism of light regulation of AS

Alternative splicing patterns are determined by both cis-splicing regulatory elements and 

trans-acting splicing factor (52). Serine/arginine-rich (SR) proteins and heterogeneous 

nuclear ribonucle-oproteins (hnRNPs) are two well-known trans-splicing factors that either 

facilitate or restrain spliceosome assembly in response to environmental cues (53–56), and 

their expression or activity is regulated by light (28,57,58). Five splicing factors (RS31, 
SR30, SR34a, SR34b and U2AF65a) have been reported to participate in the phytochrome-

mediated AS regulation (27,37). AS regulation of AtRS31 is particularly essential for the 

response to changing level of light conditions in Arabidopsis (37). Additionally, AtSR45a, 

another SR-coding gene, suppresses the splicing efficiency by facilitating to form a bridge 

between 5′ and 3′ splice sites in response to high light stress (59). Given the widespread 
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AS events affected by light are enriched in encoding mRNA processing (24) and splicing 

factors are significantly enriched among phytochrome-regulated genes in Arabidopsis (27), 

we posit that light-mediated AS is mostly regulated through the modulation of AS of RNA-

processing genes them-selves (Fig. 1). Most photoreceptors, including phytochromes, 

cryptochromes, ZTL/LKP2/FKF1 and UVR8, are located in the nucleus (60–63), which may 

directly interact with the spliceo-somes. It will be intriguing to investigate whether the 

components of photoreceptors can interact with the above splicing factors directly.

RRC1 (reduced red-light responses in cry1cry2 background 1) encodes a potential splicing 

factor that regulates the AS of several SR genes in response to red light, such as RS31 and 

SR34b (64). Splicing-defective mutant of rrc1 is insensitive to red light in the phyB-

mediated responses (64). However, another splicing factor mutant SKIP is hypersensitive to 

both red and blue light (46). Therefore, these inverse effects of splicing factors will prompt 

us to systematically determine the quantitative regulation of AS in response to light.

Aberrant photomorphogenic phenotypes are observed in defects of transcription factors 

(TFs), including B-box zinc finger (e.g. BBX22), basic helix–loop–helix (e.g. PIF3) and 

basic region/leucine zipper motif (e.g. HYH, HY5) TFs (65). In addition to splicing factors, 

TFs also affect AS by influencing the transcription elongation rate of RNA polymerase II 

(52,66,67). ChIP-seq peaks of CCA1 include binding peaks near the promoter of several 

splicing-related genes, which suggests that CCA1 might regulate AS indirectly by regulating 

splicing-related genes, such as U11/U12–65K, GRP7 and GRP8 (68). SIC regulates pre-

mRNA metabolism and regulates the AS of circadian clock transcripts, including LHY, 
CCA1, ELE3 and PRR7 (69). The sic-associated clock impairment phenotypes required the 

presence of CCA1 and LHY (69). However, the linkage among light-responsive TFs and the 

subsequent AS pattern is still not fully understood (Fig. 1). It is possible that light-regulated 

splicing factors, as well as transcription factors, act in coordination to regulate AS patterns 

in response to light (Fig. 1).

Regulation of AS is achieved by dynamic reciprocity between trans-splicing factor and cis-

regulatory elements to define exon/intron boundaries and produce accurate splicing variants 

(70). There is no enriched motif around splicing sites from light-mediated AS events based 

on RNA-seq data (24), which might distinguish both positive and negative influences from 

different light-regulated splicing factors. Thus, it would be informative to analyze the cis-

acting regulatory elements individually to identify both positive and negative regulatory 

elements. Cross-linking and immunoprecipitation, followed by high-throughput sequencing 

(CLIP-seq), are the most appropriate techniques to capture really binding motif of a single 

RNA-binding protein in plant (71). New breakthroughs are anticipated by combination of 

CLIP-seq with genetic overexpression or knockouts of splicing factors to clarify the 

molecular mechanism of specific splicing factors that are highly regulated by light.

AS of photoreceptors and clock-related genes

As shown in Table 1, AS plays a key role in regulating photo-morphogenesis and clock-

related genes. For example, PHYA in Arabidopsis was annotated to include intron retention 

and produce an N-terminal truncated protein according to the TAIR10 annotations (72). In 

tomato, the PHYA gene is also regulated by AS which lend credence to the idea that it is a 
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conserved mechanism (73). In addition to phytochromes, CRY2 has one alternative accept 

site in exon 2 and produces different 5′ UTR according to the annotation in TAIR10 (72) 

and ASIP database (8). AS variants on 5′ UTR of CRY2 may affect their mRNA stability or 

translatability. As mentioned above, the light regulation of genomewide AS switch is 

dependent, at least in part, on photosensory photoreceptors (27). On the other hand, these 

photosensory photoreceptor genes undergo the AS regulation; thus, it can form a feedback 

loop in response to light (Fig. 1). In addition to phytochromes and cryptochromes 

photoreceptors, other regulators of photomorphogenesis and circadian clocks such as COP1, 
HYH, HY5, LHY and CCA1 also undergo AS. It has been reported that COP1 produces 

different AS isoforms (74). Overexpression of short isoform of COP1 with truncated WD-40 

repeat shows short hypocotyl and developed cotyledons in the dark (74), implying that AS of 

COP1 may be relevant to the regulation of its physiological activities. Phytochromes and 

cryptochromes regulate light responses primarily through the transcriptional regulation of a 

great number of genes. Photoactivated phytochromes and cryptochromes inactivate 

COP1/SPA E3 ligase complex to regulate the abundance of two bZIP transcription factors, 

HY5 and HYH, which are the positive regulators in photomorphogenesis (75,76). 

Comparing with full-length HYH, the truncated HYH generated from the product of AS 

regulation, which lacks the COP1-interaction domain, is less susceptible to COP1-mediated 

degradation (77). HY5 also includes intron retention and alternative donor in the coding 

region according to AtRTD2 annotation (34). The splicing isoforms of LHY can be 

recognized by NMD pathway (78). For another example, CCA1β encoding truncated 

proteins interfere with the activity of functional protein CCA1α by competitively forming 

functional heterodimers (19).

The function of AS alteration in response to light

The correlation between light and AS has been explored in a genomewide scale by RNA-

seq. However, investigation of biological function or specific splicing variants is time-

consuming because there is no high-throughput experimental method to identify whether 

isoforms possess specific function in vivo. Even so, distinct functions of splicing isoforms 

induced by light have been identified in some cases (Fig. 1). For example, phytochromes 

induce splicing alteration of SPA3 and produce a truncated protein lacking in WD40 repeats 

(27), which is still able to interact with COP1 and form COP1/SPA complex but fails to bind 

to DAMAGE DNA-BINDING PROTEIN 1 (DDB1) to make up a multimeric E3 ubiquitin 

ligase (27). Another example is CCA1, which produces CCA1β lacking the MYB domain. It 

works as a regulator by competitively inhibiting the DNA binding of functional CCA1α by 

forming CCA1α-CCA1β heterodimers (19,79). It was also reported that splicing isoforms 

(mRNA3) of AtRS31, which possess PTC, showed increased expression in dark (37). 

However, the full-length splicing isoforms (mRNA1) encoding functional protein present 

decreased expression (37). Finally, light-mediated AS produces proteins with different 

subcellular localization. For example, light signaling induces the expression of HPR2 

located in the cytosol rather than HPR1 located in leaf peroxisomes (80). Given that AS is 

the major contributor to protein diversity, it is necessary to explore the function of splicing 

isoforms in a large scale. It will be interesting to investigate the photomorphogenic changes 

by overexpressing the light-induced isoforms to interrogate the functional information.
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CONCLUSIONS AND PERSPECTIVES

As shown above, light regulates AS mainly via photoreceptors or retrograde signals from 

chloroplast, while photoreceptors themselves are also under the regulation of AS to form a 

feedback loop. The regulation of light-mediated AS is mostly through the regulation of AS 

of splicing factors themselves. Light-mediated AS mainly confers its functional effects on 

dominant negative regulation, different subcellular localization or taking part in NMD 

pathway.

Recent observation reveals that mRNAs and protein abundances present a negative 

correlation upon illumination, suggesting diverse post-transcriptional regulation takes place 

in light response (81). In addition to AS, alternative polyadenylation (APA) and small 

RNAs, including miRNAs and siRNAs, are another post-transcriptional regulators in plants 

(82,83). MiRNAs are involved in photomorphogenesis according to studies on HY5 (84), 

HEN1 (85) and AGO1 (86). The ago 1 mutant displays light hypersensitive phenotype, 

suggesting that miRNAs act as negative regulators of photomorphogenesis (86). The 

mutation in HY5 causes aberrant light-mediated phenotypes, which might result from the 

direct binding on the upstream of eight miRNA genes and subsequently affect the expression 

of miRNA target genes (84). Several animal studies confirm that miRNA regulates AS by 

targeting splicing regulator, such as miR-124 targeting PTBP1 (87), miR-133 targeting 

nPTB (88) and miR-222 targeting Rmb24 (89). In Arabidopsis, SERRATE plays roles in 

both pri-miRNA processing and mRNA splicing (90) and miRNAs can target AS region 

(91); thus, further evidences in future will extend our understanding of the interplay between 

miRNA and AS (Fig. 1).

Like AS, APA is also a widespread post-transcriptional regulator to generate transcript 

diversity in plants by changing the coding region or the length of the 3′-UTR (71,92). 

Recent study shows that CCA1 has direct binding peak on the promoter region of poly(A) 
binding protein 6 (68). However, the role of APA in response to light has never been 

reported. Does APA take part in light-regulated development, and if so, does it have dynamic 

interplay with either miRNA or AS? It may be expected that, taking full account of the 

coordinated influences above, most common post-transcriptional regulation will fully dissect 

the molecular mechanisms underlying photomorphogenic responses in plants.
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Figure 1. 
Model of the regulation of light-mediated AS. Light regulates AS widely via three primary 

types of sensory photoreceptor pathways (phytochromes, cryptochromes and ZTL/LKP2/

FKF1) or retrograde signals from chloroplast. Splicing factors, such as RS31, SR30, SR34a, 

RRC1 and SKIP, are involved in light-mediated AS regulation, whereas these splicing 

factors are also under the regulation of AS. Intriguingly, AS of PHYA, CRY2, ZTL and other 

genes involved in light signaling pathways, such as COP1, HYH, CCA1 and TOC1, might 

form a feedback loop in response to light. Solid arrow illustrates genes involved in light 

signaling pathway to regulate AS. Thick broken arrow represents weak indirect evidence 

that genes involved in light signaling pathway to regulate AS. Dash arrow indicates genes 

that are under the regulation of AS. Light-mediated AS has function on dominant negative 

regulation, different subcellular localization or taking part in NMD pathway.
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