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Abstract

Isolating the role(s) of microstructural pathological features in affecting diastolic filling is 

important in developing targeted treatments for heart diseases. We developed a microstructure-

based constitutive model of the myocardium and implemented it in an efficient open-source finite 

element modeling framework to simulate passive inflation of the left ventricle (LV) in a 

representative 3D geometry based on experimentally measured muscle fiber architecture. The 

constitutive model was calibrated using previous tissue-level biaxial mechanical test data derived 

from the canine heart and validated with independent sets of measurements made at both the 

isolated constituent and organ level. Using the validated model, we investigated the load taken up 

by each tissue constituent and their effects on LV passive inflation. The model predicts that the LV 

compliance is sensitive to the collagen ultrastructure, specifically, the collagen fiber azimuthal 

angle with respect to the local muscle fiber direction and its waviness. The model also predicts that 

most of the load in the sub-epicardial and sub-endocardial regions is taken up, respectively, by the 

muscle fibers and collagen fiber network. This result suggests that normalizing LV passive 

stiffness by altering the collagen fiber network and myocyte stiffness is most effective when 

applied to the sub-endocardial and sub-epicardial regions, respectively. This finding may have 

implication for the development of new pharmaceutical treatments targeting individual cardiac 

tissue constituents to normalize LV filling function in heart diseases.
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1. Introduction

Passive filling capacity of the left ventricle (LV) is a major determinant of the heart’s 

pumping performance [1], [2]. Heart failure with preserved ejection fraction (HFpEF) 

(referred previously as diastolic heart failure) is associated with abnormalities in LV filling 

that can be detected from clinical imaging [3], [4]. Because HFpEF accounts for about one-

half of all chronic HF patients [5], understanding how LV filling is affected by the many 

microstructural pathological features associated with this syndrome (e.g., cardiac fibrosis 

[6], myocyte passive stiffening [7], and collagen ultrastructure alterations [8] is very 

important. As such, the development of a 3D LV mechanics model that includes myocardial 

tissue constituents and their microstructure will enable one to isolate and quantify the impact 

of each constituent on LV filling.

Current constitutive models used to describe the mechanical behavior of the myocardium 

can be broadly categorized into two types: i.e., phenomenological and microstructural 

models. In phenomenological constitutive models, the tissue’s mechanical behavior is 

usually described by a mathematical expression of its strain energy function (SEF) with the 

form of a polynomial [9], an exponential [10], [11] or a zero-pole function [12] of either the 

invariants or components of the strain tensor. While able to represent the bulk cardiac tissue 

mechanical behavior, these phenomenological models cannot distinguish between 

contributions of tissue constituents’ intrinsic mechanical behavior and ultrastructure (e.g., 

collagen waviness) to the LV mechanics and function. Moreover, model parameters in the 

phenomenological models can only be obtained by fitting with experimental measurements 

of stress-strain relationships and have no direct physical meaning.

First developed by Lanir, microstructural constitutive models take into account the tissue 

constituents’ morphology and structural arrangement in a stochastic manner as well as their 

intrinsic mechanical behavior [13]. One advantage of microstructural constitutive models is 

that their morphometric parameters, in addition of being physiologically meaningful, can be 

directly measured. With the significant advancement in microscopy imaging (e.g., 

multiphoton microscopy) techniques that enable the tissue constituent’s (e.g., elastin, 

collagen, cells) morphology and structure to be accurately measured, these models can be 

exploited to directly isolate and quantify the effects of microstructural changes on the overall 

tissue mechanical behavior and organ function.

Microstructural constitutive models have been applied to describe the mechanics of various 

tissues, such as skin [14], heart valves [15], arteries [16] as well as the passive myocardium 

[17]. The solution of the mechanical equilibrium boundary value problem using these 

models, however, were obtained semi-analytically and their applications were therefore 

confined to simple idealized geometries such as thick-walled cylinder [18]. Quantification of 

three-dimensional tissue mechanics in a realistic organ geometry requires an efficient finite 

element (FE) implementation of the microstructural constitutive model, which is, to the best 

of our knowledge, currently lacking and limited to tissue mechanics of a thin myocardial 

strip [19], a thick single-element myocardial wall segment[20], as well as a thin membrane 

[21].
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To address this gap, we developed a microstructural FE model of the LV with a 

representative 3D geometry and muscle fiber architecture to describe the passive mechanics 

of myocardial tissue during inflation. The model was implemented using an open-source FE 

library FEniCS [22]. Additionally, we estimated the microstructural constitutive model 

parameters using previous biaxial mechanical test measurements of the canine myocardial 

tissue. These model parameters were also validated using independent sets of measurements 

made on isolated cardiac tissue constituents and the intact LV during passive filling. Based 

on the calibrated parameters, we investigated the load taken up by each constituent during 

passive filling. The FE model shows that the global LV filling function is sensitive to the 

tissue microstructure.

2. Materials and Methods

2.1 Microstructural constitutive model formulation.

The myocardium has two major load-bearing elements: collagen fibers and muscle fibers. 

Arranged in a fibrous network, collagen fibers form a network of “struts” interconnecting 

adjacent myocytes and fibrous weaves surrounding groups of myocytes [23], [24]. Both 

types of fibers are embedded in an interstitial fluid matrix. The fibers carry tensile forces, 

while the fluid matrix sustains only hydrostatic pressure. On the other hand, the myocardium 

also contains a non-fibrous ground matrix consisting of non-load bearing substances such as 

fibroblasts, plasma cells, as well as a gel-like ground substance composing of 

glycosaminoglycans and glycoproteins.

Following Horowitz et al. [17], we developed a microstructure-based constitutive model to 

describe the passive mechanical behavior of the myocardium based on the following 

assumptions:

a. The myocardium is treated as an incompressible pseudo-hyperelastic composite 

material [25], namely, there exists a strain energy function from which the 

stresses are derived. The viscoelastic aspect of the tissue is not considered in our 

study due to the relatively short duration of the cardiac cycle (≤ 1s) compared 

with the characteristic relaxation time of the myocardium (> 100 s) [26].

b. The fibers are thin and perfectly flexible. They can only carry tensile loads and 

have no compressive strength and if contracted will buckle under zero load.

c. Each fiber is subjected to a uniaxial strain that is the tensorial transformation of 

the overall strain in the fiber’s direction (affine deformation). This is intuitively 

justified by the numerous interconnections between muscle and collagen fibers 

[17], [27], [28].

Correspondingly, the total strain-energy function Wtotal of the myocardium can be 

represented by the volume-weighted summation of the strain energy function of its 

constituents, i.e.:

W total = ϕgWg + ϕmWm + ϕcWc − p(J − 1), (1)
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where ϕg, ϕm and ϕc are the volume fraction of the ground matrix, muscle fibers and 

collagen fibers, respectively, with ϕg + ϕm + ϕc = 1. On the other hand, Wg, Wm and Wc are 

the corresponding SEF of the ground matrix, muscle fibers and collagen fibers, respectively. 

In Eq. (1), J is the determinant of deformation gradient tensor F, and p is the Lagrange 

multiplier to enforce incompressibility due to the negligible fluid flow within the tissue for 

the pertinent time intervals. Correspondingly, we assume that the last term − p (J − 1) in Eq. 

(1) represents the contribution to Wtotal by the interstitial fluid matrix. The deformation 

gradient tensor is defined by F = I + ∇u, where u is the displacement field and I is the 

identity tensor. In the following, we describe the mechanical behavior of each constituent.

Non-fibrous ground matrix—Following a previous study [29], we modeled the non-

fibrous ground matrix as an isotropic hyperelastic Neo-Hookean material with the SEF 

defined as:

Wg =
C1
2 I1 − 3 , (2)

where I1 = tr(C) is the first invariant of the right Cauchy-Green deformation tensor C = FT 

F, and C1 is a material constant. The resulting second Piola-Kirchhoff (PK2) stress tensor 

associated with the non-fibrous ground matrix is then given by:

Sg = ϕg
∂Wg
∂E = ϕgC1I, (3)

where E = 1
2 (C − I) is the right Cauchy-Green strain tensor.

Muscle fibers.—Because the isolated myocyte exhibits a non-linear stress-strain 

relationship of an exponential form [30], we used an SEF [31] that is given as:

Wm = C2 e
C3(α − 1)2

− 1  if α > 1

0  if α ≤ 1
(4)

to describe the muscle fiber’s passive mechanical behavior. In Eq. (4), α = e f ⋅ C ⋅ e f  is the 

uniaxial stretch of the muscle fiber, ef is a unit vector describing the local muscle fiber 

direction in the undeformed configuration, whereas C2 and C3 are the material constants. 

The corresponding PK2 stress tensor associated with the muscle fibers is given by:

Sm = ϕm
∂Wm
∂E = 2ϕmC2C3(α − 1)e

C3(α − 1)2 ∂α
∂E  if α > 1

0  if α ≤ 1
(5)
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Collagen fiber network—For simplicity, different hierarchies of collagen fibers 

(perimysial, epimysial and endomysial or struts) are lumped into one inclusive system in the 

model. Because straightened individual collagen fiber exhibits a linear stress-strain relation 

[32], uniaxial stress Sc of a single straightened collagen fiber is prescribed to be a linear 

function of its strain taken with respect from its initial straightened configuration with a 

slope or elastic modulus C4. Collagen fibers, however, are observed to be undulated and 

slack in the unstressed state in the myocardium [23]. Because of their crimped structural 

feature, the individual wavy collagen’s true fiber strain ϵt taken with respect from its initial 

straightened configuration is given by:

ϵt =
ϵc − ϵs
1 + 2ϵs

, (6)

where ϵc is the total strain of the collagen fiber taken with respect from its initial wavy 

configuration and ϵs is the strain at which the collagen fiber first straightens; i.e., 

straightening strain. Assuming that the collagen fiber doesn’t show any resistance to stretch 

before becoming straightened (or reaching their straightening strain ϵs), the resulting SEF 

for a single wavy collagen fiber is given by:

wc = ∫
ϵs

ϵc
C4ϵtdϵc =

C4 ϵc − ϵs
2

21 + 2ϵs
. (7)

The extent of collagen fiber undulation can vary, however, across collagen fibers in the 

myocardium [28]. To stochastically account for the gradual recruitment of wavy collagen 

fibers, we assume a truncated normal distribution with the density function:

D(x) = 1
K

1
2πσc

e

−
mc − x 2

2σc
2

, (8)

where K = 1 − Φ
−mc
σc

 is a truncated parameter with Φ denoting the cumulative normal 

distribution function, whereas, mc and σc denote the mean and variance of the collagen fiber 

straightening strain, respectively. Thus, the resulting SEF for a uniaxial ensemble of collagen 

fibers over all possible waviness (weighted by the waviness distribution) is given by:

wC =
C4
2 ∫

0

ϵc
D(x)

ϵc − x 2

1 + 2x dx . (9)
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The mechanical behavior of the overall collagen fiber ensemble is the sum of the 

contributions from all uniaxial ensembles over all collagen fiber orientation s. Following 

Horowitz et al.[17], we assume that the collagen fibers are symmetrically distributed around 

the muscle fiber to which they are attached, with the muscle fiber serving as an axis of 

symmetry (Fig. 1). Following this assumption, the collagen fibers are ascribed a uniform 

distribution R(θ) in the circumferential θ – direction (0 ≤ θ ≤ 2π), and a bimodal normal 

distribution R(ϕ) in the azimuthal ϕ – direction(0 ≤ ϕ ≤ π). Thus, the overall spatial 

distribution function is given by:

R(θ, ϕ) = R(θ) * R(ϕ) = 1
2π

1
2 2πσϕ

exp −
mϕ − ϕ 2

2σϕ
2 + 1

2 2πσϕ
exp −

π − mϕ − ϕ 2

2σϕ
2 ,

(10)

where (mϕ, π − mϕ) are the means and (σϕ, σϕ) are the standard deviations of the bimodal 

distribution of the azimuthal angle ϕ. Since the arrangement of the collagen fibers is referred 

to the muscle fibers to which they are attached, the uniaxial strain of a local collagen fiber 

oriented with respect to the local muscle fiber that it is attached to can be related to the local 

muscle fiber strains by a tensorial transformation as:

ϵc(θ, ϕ) = Nc ⋅ Em ⋅ Nc, (11)

where Nc = {cosϕ, cosθsinϕ, sinθsinϕ] and Em is the Green-Lagrange strain tensor in the 

local material coordinate system. The components of Em are related to the Green-Lagrange 

strain tensor E in the global coordinate system by:

Emi j
= ei ⋅ E ⋅ e j, (12)

with the subscript (i,j) ∈ (f,s,n) denoting the muscle fiber ef, cross muscle fiber es, tissue 

sheet normal en directions.

If the waviness density distribution function D (x) is assumed to be homogeneous over all 

spatial orientations, the total collagen fiber SEF is given by:

WC =
C4
2 ∫

0

2π∫
0

π
[∫

0

ϵc(θ, ϕ)
D(x)

ϵc(θ, ϕ) − x 2

1 + 2x dx]R(θ, ϕ)dϕdθ if ϵc > 0

0 if ϵc ≤ 0
  (13)

Correspondingly, the PK2 stress tensor associated with the collagen network is given by:
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Sc = ϕc
∂Wc
∂E = ϕcC4∫0

2π∫
0

π
[∫

0

ϵc(θ, ϕ)
D(x)

ϵc(θ, ϕ) − x
1 + 2x dx]R(θ, ϕ)

∂ϵc
∂E dϕdθ if ϵc > 0

0 if ϵc ≤ 0

(14)

We note that the approach here to describe the collagen network stress tensor in Eq. (14) 

differs from the generalized structure tensor (GST) approach [33], which assumes that the 

dispersion of fiber orientation (as described by a structure tensor) is separable from the 

dispersion of tortuosity. No such assumption is made in this approach, which is also referred 

as the “angular integration” (AI) approach [33]. For a detail comparison of the GST and AI 

approaches, refer to Holzapfel and Odgen [34]. From Eq. (1), the total PK2 stress tensor of 

the myocardium is given as:

Stotal =
∂W total

∂E = Sg + Sm + Sc − pC−1, (15)

with the components defined in Eqs. (3), (5) and (14).

2.2 Parameter estimation

We used the biaxial mechanical test data obtained from 6 canine mid-wall myocardium in a 

previous experimental study [35] to estimate the model’s parameters. In that study, equi-

biaxial stretching and constant α tests, where cross-fiber stretch was varied at a constant 

muscle fiber stretch of α, were performed on thin slab of tissues taken from the mid 

ventricular wall. We fixed the volume fraction of the tissue constituents to be ϕm = 0.7, ϕc = 

0.026, ϕa = 0.274 based on previous experimental measurements [36], [37]. The collagen 

spatial distribution variance σϕ was also fixed at 0.1 rad (or equivalently 6°) based on a 

quantitative analysis of the collagen orientation in the canine LV [8]. This leaves the 

remaining 7 unknown model parameters to be estimated, namely, material constants of the 

constituents C1, C2, C3, C4, mean value of the collagen spatial distribution function mϕ, and 

the mean mc and variance σc of the collagen waviness distribution. These model parameters 

were fitted to the experimental data with an objective function defined as the sum of squared 

residuals (SSEs) between the model predictions and experimental measurements, i.e.,

SSE = ∑k = 1
N σk

11 − σk
11

2 + σk
22 − σk

22
2 . (16)

In Eq. (16), N is the total number of data points and σk
ii are the measured values of the 

Cauchy stresses. We also imposed constraints to our model parameters, especially those 

related to the microstructural features, to vary within physiological ranges based on previous 
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studies (Table 1). A nonlinear programming solver “fmincon” in MATLAB (The 

Mathworks, Inc., Natick, MA, USA) was used to find parameters that lie between the 

imposed physiological lower and upper bounds, and minimize the objective function. An 

optimal solution was obtained when the change in parameters or the objective function was 

less than 10−9 Different sets of initial guesses were randomly generated between the lower 

bounds and upper bounds in order to eliminate parameter dependence on the initial guess 

values. Details of the plane stress formulation for fitting the biaxial test data is given in 

Appendix A.

To investigate the identifiability and correlation of the fitted model’s parameters, we 

estimated the asymptotic correlation matrix R associated with these parameters using the 

scaled inverse of the hessian matrix H evaluated at the optimal solution [38]. Specifically, 

components of the estimated correlation matrix R was defined as:

Ri j =
H−1

i j

H−1
i j H−1

ii

(i, j not summed ) . (17)

The closer the absolute value of the off-diagonal terms Rij to 1, the stronger the correlation 

between the íth and jth parameters.

2.3 Finite element simulation of left ventricular passive filling

Unloaded geometry and microstructure—The unloaded LV geometry was modeled 

as a half prolate ellipsoid with geometric dimensions that are based on measurements of 

isolated arrested canine hearts (Fig. 1) [39]. Specifically, the unloaded LV cavity volume is 

about 20 ml. The geometry is meshed with 17600 quadratic tetrahedral elements and 83799 

nodes. The local muscle fiber orientation in the LV is prescribed based on the mean values 

reported in an experiment [39], which shows that the helical angle varied linearly in the 

transmural direction from about 70° at the endocardium to − 40° at the epicardium.

Finite element formulation—Passive filling of the LV was simulated by incrementally 

increasing the pressure at endocardium as a Neumann boundary condition. The weak form 

of the mechanical equilibrium equation is given by:

ℒ((u; v), (p; q)) = ∫
Ω0

P(u, p): ∇vdV + ∫
∂Ωendo

Pendo ⋅ JF−TN ⋅ vdA − ∫
Ω0

q(J − 1)dV ,

(18)

where P = FStotal = F(Sg + Sm + Sc) − pJF−T is the first Piola-Kirchhoff stress tensor, Pendo 

is the prescribed LV cavity pressure at the endocardial surface ∂Ωendo with unit outward 

normal of N, whereas v and q are the variation of the displacement field u and the Lagrange 

multiplier p, respectively, Thus, the Euler-Lagrange problem becomes one of finding u ∈ 
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H1(Ω0), p ∈ L2(Ω0) that satisfies ℒ((u; v), (p; q)) = 0 ∀v ∈ H1 Ω0 , q ∈ L2 Ω0 . The basal 

deformation is constrained to be in-plane (i.e., u·n|base = 0) and the endocardial basal nodes 

are fixed in all directions to account for the relative stiff valve annuli [40]. The nonlinear FE 

problem was solved using Newton-Raphson method and implemented based on the parallel 

open-source FE library FEniCS. The code is freely available at https://cexi@bitbucket.org/

cexi/microstructure_lv.git. Convergence of the numerical solution for the nonlinear FE 

problem was accepted when the normalized two-norm of the residual vector is smaller than 

10− 9 Analyses of the mesh sensitivity and computational efficiency were also performed.

Post-processing of myocardial strains and stresses—To compare with strain 

measurements and estimate myocardial stress, we computed strains and stress components 

in the circumferential ec, longitudinal el and radial er directions, as well as fiber ef and cross-

fiber es directions (Fig. 2). We also divided the LV FE mesh into 7 layers with equal 

thickness. The strain and stress components were averaged over the volume of each layer to 

determine their transmural variations (Fig. 2).

Post-processing of collagen fiber tortuosity.—Volume-averaged 2D tortuosity λc 

(fiber arc length/midline length) of the collagen fiber network was computed at a given 

ventricular pressure P as:

λc(P) =

1
Ω0

∫
Ω0

∫
0

2π∫
0

π∫
0

∞ 2x + 1
2εc(θ, ϕ, P) + 1D(x)dxR(θ, ϕ)d ϕdθdV i f 0 < εc < x

1
Ω0

∫
Ω0

∫
0

2π∫
0

π∫
0

∞
D(x)dxR(θ, ϕ)dϕdθdV i f εc ≥ x

1
Ω0

∫
Ω0

∫
0

2π∫
0

π∫
0

∞
2x + 1D(x)dxR(θ, ϕ)d ϕdθdV i f εc < 0

(19)

where 2x + 1 is the initial tortuosity for a collagen fiber with an initial straightening strain 

x, 2εc(θ, ϕ, P) + 1 is the tortuosity of deformed local collagen fiber with spatial orientation 

(θ, ϕ) at ventricular pressure P and Ω0 is the whole material volume at the reference 

configuration.

2.4 Statistical Analysis

Categorical variables are expressed as number and percentage, and continuous variables as 

mean ± standard deviation (SD). Nonlinear regression analysis was performed to correlate 

model-predicted biaxial stresses with corresponding stress-strain measurements in canine LV 

midwall myocardium (n = 6).
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3. Results

3.1 Biaxial tests

Table 2 lists the best fitted model parameters for 6 specimens with corresponding root mean 

square errors. About eighty iterations were required to obtain the optimized model 

parameters for each specimen. In general, our microstructural model shows very good fit to 

the measurements. Except for C1, the spreads of all other parameter values are relatively 

small across the specimens. The large SD of C1 may be related to the fact that the stiffness 

modulus and volume fraction for the ground matrix are much smaller than other the 

myocardial constituents [41]. The average correlation coefficient of the fit between the 

measurements and model-predicted stresses in the muscle fiber and cross-fiber directions are 

0.980 and 0.999, respectively. The maximum root mean square errors is 0.152 kPa, which is 

less than 2% of the range of stress reached in the biaxial tests. We also note that increasing 

the lower and upper bounds of the mean collagen waviness to 0.22 ≤mc≤ 0.78, which 

corresponds to the collagen tortuosity range of 1.2 – 1.6 as found in the skin [14], led to a 

larger mean square error and increased both the mean value of mc and C4 by about 2 times. 

A comparison between the measurements and model predictions of the equi-biaxial and 

constant α test using the best-fit material parameters for a representative specimen is shown 

in Fig. 3a. Corresponding stresses in the muscle fiber and cross-fiber directions associated 

with each constituent in the equi-biaxial test of the representative specimen is shown in Fig. 

3b. Taking all the specimens into account, we found that the collagen fiber network 

accounts, on average, for 57% and 99.4% of the total stress in the muscle fiber and cross-

fiber directions, respectively, at a stretch of 1.32. The muscle fiber, on the other hand, 

accounts on average for about 43% of the total stress in the fiber direction at that stretch 

value. At stretch lower than 1.1, however, the collagen fiber network contributes very little to 

the total stress. For the results of all other specimens, refer to Appendix B.

Table 3 compares the microstructural model parameters that are directly related to the 

constituents’ structure and mechanical behaviors with measurements from experiments 

conducted on the isolated constituents. Specifically the average fitted values of the collagen 

fiber elastic modulus C4, mean collagen fiber straightening strain mc, and the stiffness and 

uniaxial stress computed from the material constants of the muscle fiber C2, C3 are within 

the range of reported values [30], [42]-[44]. We computed the uniaxial stress and the 

resulting stiffness modulus (see Appendix C for details) at an engineering strain ϵ ≈ 0.158, 

which is associated with the stretch imposed on the muscle fibers in the experiments. 

Measurements of the mean inclination angle of the collagen fibers with respect to the muscle 

fibers mϕ are not available, however, for comparison with the fitted value of 53.1°.

Table 4 shows the estimated average correlation matrix R of the model parameters from all 

the specimens. Parameters C2 and C3 describing the muscle fiber mechanical behavior has 

the greatest interaction and are inversely related with correlation coefficient ≈ −0.93. Large 

positive correlation between the collagen elastic modulus C4 and mean straightening strain 

mc is also found (correlation coefficient ≈ 0.75). Interactions between the parameter pairs 

(C1,C2), (C4, σc) and(mc,σc) are moderate; their largest correlation coefficient is 0.55.
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3.2 Finite element simulation of passive filling

Differences of the transmural fiber stress distribution and pressure-volume relationship are 

found to be < 2% between FE meshes containing 17,600 and 38,985 elements in the mesh 

sensitivity analysis. (Appendix E). With 16 processors (Intel® Xeon (R) CPU E5–1660 v3@ 

3.00GHz × 16), the computing time for simulating the inflation of an LV model with 17,600 

elements is about 13 hours. The FE implementation (that utilizes the domain decomposition 

method in FEniCS) also exhibits an approximately linear scalability (Appendix E), which 

indicates that the computing time can be reduced substantially with more processors. An 

estimation of the simulation time for solving active mechanics over a cardiac cycle is also 

provided in Appendix E.

Inflation pressure-volume relations.—Figure 4 shows the relationships between the 

change in LV cavity volume AV with respect to the LV pressure using the fitted parameters 

in Table 2 for all the 6 specimens. Compared to the measurements from the experiments on 

isolated canine hearts [39], [45], the pressure-volume curves derived from all 6 sets of 

parameter values fell largely within1 SD of the mean measurements.

Local ventricular wall strains—Figure 5 shows the comparison of transmural 

distribution of normal strains at a LV pressure of 8 mmHg with measurements [39]. 

Consistent with the experiments, the model predicted both circumferential strain Ecc and 

longitudinal strain Ell to increase from the epicardium to endocardium, and the radial strain 

Err to be negative and decrease from epicardium to endocardium (Fig. 5a). Model prediction 

of the Ell transmural distribution is closest to the experiments, whereas the predicted 

transmural distribution of Err has an offset of ~ 0.08 with respect to the measured mean 

values. Both muscle fiber strain Eff and cross fiber strain Ess are predicted to increase from 

the epicardium to the endocardium, and both are largely within 1 SD of the measurements 

(Fig. 5b). In-plane shear Ecl is negative and its magnitude increases from the epicardium to 

the endocardium. Compared to the normal strains, the magnitude and transmural gradient of 

shear strains are small (Fig. 5c). We also compared model predictions of the normal and 

shear strains as a function of the change in LV cavity volume ΔV with measurements at the 

subepicardial, midwall, and sub-endocardial [39] (Appendix D). Overall, model predictions 

of the relationship between strains and AV are comparable to the measurements. Of all the 

normal strains, the relationship between Ell and ΔV is closest to the measurements at all 3 

transmural locations, whereas Ecc at ΔV = 20 ml in the sub-endocardial region has the 

largest discrepancy with the measurements (measured: 0.126; model: 0.257). The predicted 

relationship between the shear strains and AV are largely within the 1 SD of the 

measurements.

Local ventricular wall stresses—Figure 6 shows the transmural distribution of stresses 

corresponding to a LV pressure of 8 mmHg. The results show that both circumferential 

stress σcc and longitudinal stress σll increase from the epicardium to the endocardium (Fig. 

6a). The magnitude of σcc is larger than σll at all transmural depth. Radial stress is negative 

and increases in magnitude towards the endocardium. Both fiber stress σff and cross-fiber 

stress σss increase from the epicardium to the endocardium (Fig. 6b). Magnitude of the shear 

stress components are small compared to the normal stresses. In-plane shear stress σcl has a 
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larger transmural gradient than the other transverse shear stresses, increasing from −0.2 kPa 

at the epicardium to 0.6 kPa at the endocardium (Fig. 6c).

Contribution of the tissue constituents to the wall stress—Figure 7 shows the 

transmural variation of the contribution of each tissue constituent to the total normal stress in 

the mean muscle fiber direction σff at an LV pressure of 8 mmHg as predicted by the model 

using the mean value of the fitted parameters in Table2. The contribution of the interstitial 

fluid matrix to σff is simply −p based on Eq. (15). The results show that the contribution of 

muscle fiber is substantial at all transmural locations, accounting between 40 – 70% of the 

total stress. The contribution of collagen fibers to the total stress increases from 22% at the 

epicardium to 96% at the endocardium. Interestingly, the results also show that at 60% 

transmural depth, where Eff ≈ 0.13 or fiber stretch ≈ 1.12, the contribution of collagen fibers 

starts to exceed that of the muscle fibers; i.e., the collagen fibers become the dominant load-

bearing constituent at a transmural depth > 60%. We also note that the contribution to σff by 

each constituent remains largely unchanged using model parameters fitted from the biaxial 

test data with larger lower and upper bounds of the mean collagen waviness at 0.22 ≤mc≤ 

0.78.

Collagen fiber tortuosity—Figure 8 shows the comparison of the model predictions of 

the relationship between collagen fiber tortuosity and LV pressure with the measurements 

[46], [47]. Our model predicts that the collagen fiber tortuosity decreases from 1.123 

± 0.009 to 1.066 ± 0.01 when LV pressure is increased from 0 to 25 mmHg. The model 

predictions are mostly within the measured ranges when the LV pressure is less than 10 

mmHg. Discrepancy between model prediction and measurement is generally larger at 

higher pressure.

Parameter sensitivity analysis—Sensitivity analysis of the model’s parameters 

revealed that the passive filling pressure-volume curve is very sensitive to the collagen 

volume fraction ϕc, collagen waviness mc, collagen stiffness modulus C4, collagen azimuthal 

angle mϕ and muscle fiber stiffness C2 (Fig. 9). The LV becomes less compliant as ϕc, C4, 

C2 are increased or as the collagen fiber waviness mc is decreased. On the other hand, the 

relationship between the LV chamber stiffness and mean collagen azimuthal angle mϕ is 

non-monotonic for the range 0° ≤ mϕ≤ 90°. The effects on the pressure-volume curve are 

less for the other parameters.

Table 5 shows the percentage of absolute change in ΔV at LV pressures of 20 and 30 mmHg 

when each model parameter is changed 100% with respect to the corresponding mean value 

(baseline). Our results show that the collagen ultrastructure (i.e., waviness and azimuthal 

angle) has a substantial impact on the ΔV. Collagen volume fraction and the stiffness of 

individual collagen fiber roughly have the same effects on ΔV. On the other hand, the 

muscle fiber stiffness and orientation have lesser influence on ΔV compared to the collagen 

network. The sensitivities of ΔV to the model parameters are relatively the same at both 

pressures.
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4. Discussion

We have developed and validated a microstructure-based constitutive model of the passive 

myocardium in a three-dimensional FE modeling framework, and have shown that the LV 

filling function is sensitive to the collagen ultrastructure and the load taken up by the tissue 

constituents varies depending on the LV transmural location. To the best of our knowledge, 

this is the first FE implementation of a microstructural constitutive model to simulate 

passive filling of a LV in a representative 3D geometry with experimentally measured 

transmural muscle fiber orientation. Calibrated against the tissue-level biaxial test data 

derived from the mid-wall of the canine myocardium [35], we show that the fitted parameter 

values are consistent with microscale measurements made on individual cardiac tissue 

constituents and the FE model predictions using these values are largely in agreement with 

independent measurements from experiments on the intact canine LV. This study, therefore, 

provides a rigorous comparison of the microstructural constitutive model predictions with 

measurements made across multiple scales; i.e., at the constituent, tissue and organ levels.

At the constituent’s level, the calibrated myocyte stiffness modulus and tension at a 

sarcomere length of 2.2 μm are comparable to the reported values of other species such 

guinea pig [42] and hamster [30] since we are not able to find any passive mechanical tests 

conducted on canine myocytes. For the collagen fiber network, the calibrated mean elastic 

modulus of a straightened collagen fiber C4 is ~ 5 MPa, which is within the reported values 

of 0 – 50 MPa for collagen fibers in the skin tissue [43] and comparable to the mean fitted 

value of 3.76 MPa in the rat right ventricle [38]. Direct measurements of the collagen fiber 

elastic modulus are, to the best of our knowledge, not available. In terms of the collagen 

fiber network microstructural features, the model’s calibrated mean collagen fiber tortuosity 

of 1.116 is well within the histological measurements of 1.01 – 1.2 [44]. While the 

calibrated mean inclination angle of 0.927 rad or 53.1 ° cannot be quantitatively compared 

with measurements, histological studies have reported qualitatively that the collagen fibers 

are inclined relative to the muscle fibers [24].

At the tissue level, the constitutive model is able to fit the measurements derived from all the 

biaxial testing protocols very well for each canine specimen (fiber direction: R=0.98; cross-

fiber direction: R=0.999). An assessment of the relative contribution by each constituent to 

the total stress reveals that the collagen fiber network bears most of the load in the cardiac 

tissue, accounting for about 57% of the total load when cardiac tissue is stretched beyond 

1.3. The cardiac muscle fibers, on the other hand, still accounts for a significant portion (~ 

43%) of the total load. This finding is consistent with a recent study which shows that the 

mechanical contribution of muscle fibers is significant at all physiological ranges of stretch 

[38].

At the organ level, the FE implementation of the microstructural constitutive model in a 

representative 3D LV geometry enables comparison with measurements of the pressure-

volume curves, strains and collagen tortuosity during inflation. The pressure vs. volume 

change curves predicted using the fitted model’s parameters all fell within 1 SD of the 

measurements in canine hearts [39], [45]. Prediction of the relationship between collagen 

fiber tortuosity and LV pressure is also comparable with the measurements [46], [47], 
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showing that the collagen fibers are not all fully stretched over the range of diastolic filling 

pressures (0 – 25 mmHg). Moreover, model predictions of the strains as a function of LV 

cavity volume change and their transmural distribution across the LV wall are also largely in 

agreement with the measurements [39].

The generally good agreement between model predictions of tissue-level strain, collagen 

fiber tortuosity and pressure-volume relationship of the LV with measurements using the 

fitted parameters from biaxial mechanical data provide confidence of the model’s ability to 

predict multiscale features associated with LV filling. More significantly, the consistency of 

the fitted parameters with microscale mechanical and structural measurements of isolated 

tissue constituents substantiate, to some level, the validity of the model prediction of the 

contribution of each constituent to the total stress during LV inflation. Specifically, the 

model predicts that the contribution of muscle fibers to the total stress is significant at low 

strain, but its contribution diminishes at higher strain. Conversely, the contribution of 

collagen fiber network to the total stress is small at low strain but its contribution increases 

due to the gradual recruitment of wavy collagen fibers at higher strain. As a result, the 

collagen fiber becomes the dominant load-bearing constituent at high strain, accounting for 

more than half of the normal stress in the local muscle fiber direction at a stretch of 1.32. 

This result supports the suggestion made in a previous study [48] that myocytes, where titin 

is the primary contributor to its passive stress response, may be the major component of the 

myocardial stiffness at low LV pressure.

Interestingly, this result is also reflected in the transmural variation of the constituent’s 

contribution to the total fiber stress (Fig. 7). At a LV pressure of 8 mmHg, the simulations 

show that the cardiac muscle fiber accounts for most of the load in the local muscle fiber 

direction between the transmural depth of 0% (epicardium) - 60% of the ventricular wall. 

The collagen fiber, on the other hand, is the dominant load-bearing constituent between the 

transmural depth of 60%−100% (endocardium) (i.e., the subendocardial region). This 

finding has implications on pharmaceutical therapies under investigation for treating HFpEF 

that targets specific tissue individual constituent; e.g., attenuating myocardial fibrosis [49] 

and reducing myocyte titin stiffness [50]. In particular, our finding suggests that reducing LV 

passive stiffness by altering the collagen fiber network may be most effective when applied 

to the sub-endocardial region. Conversely, altering the myocyte stiffness to reduce LV 

passive stiffness may be most effective when applied to the sub-epicardial region. Although 

we have demonstrated that the microstructural model can be applied to predict load sharing 

of the constituents that cannot be experimentally measured, caution must be exercised in 

directly applying these results for optimizing treatments as they were obtained based on 1) 

normal LV geometry, 2) assumptions that the LV has homogeneous material properties and 

collagen fiber waviness and 3) omission of residual stresses. The model needs to be 

calibrated using more data, especially those from humans that consider sex-differences in 

the LV passive behavior [51], before predictions can be reliably applied in the clinics.

Through a parameter sensitivity study, we show that the LV passive stiffness is not only 

sensitive to the stiffness of the individual tissue constituents (particularly, muscle and 

collagen fiber), but it is also sensitive to the collagen fiber network ultrastructure; i.e., the 

mean waviness mc, the mean azimuthal angle mϕ with respect to the muscle fibers. These 
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findings underscore the importance of quantifying changes in the collagen fiber network 

ultrastructure during remodeling, particularly in diseases where fibrosis is a key feature such 

as HFpEF [52].

The microstructural FE LV model is not without limitations. First, we adopt a linear 

transmural variation of the muscle fiber helix angle without any planar splay. This 

framework can be extended to include physiological distributions of muscle fiber splay in 

future. Second, the assumptions of homogeneous 1) axisymmetrical distribution of collagen 

fibers around local muscle fiber direction, 2) bimodal normal distribution to describe the 

collagen fiber spatial orientation and 3) truncated normal distribution to describe the 

collagen fiber waviness need to be validated against microscopy measurements of the 

myocardium, which to the best of our knowledge, is not available. Third, due to the lack of 

histological or microscopy measurements of the myocardial tissue ultrastructure, we had to 

fit most of the model’s parameters using the biaxial test data, including morphometric 

parameters that should, in principle, be prescribed using values directly measured in 

experiments. This is not ideal as some of the parameters are highly correlated to each other 

(Table 4). Nevertheless, we have attempted to minimize this issue by imposing physiological 

bounds on the model’s parameters in the fitting process and validating our fitted model 

parameters against independent measurements of the constituents and organ-scale LV 

inflation experiments. Fourth, we have, for simplicity, ignored the presence of residual 

strains and stresses in simulating passive filling of the intact LV that may produce a more 

uniform transmural distribution of stress [10]. The presence of residual stresses and residual 

strains in the LV may also be responsible for the transmural differences of collagen waviness 

as observed in some histological studies [46]. Finally, the microstructural model formulation 

ignores any direct mechanical or physical interactions between the myocytes and collagen 

fibers, which a recent study suggests to be present in the LV [53].

In conclusion, we have developed a microstructural constitutive model in an efficient FE 

framework, and used it to investigate the contribution of individual tissue constituent to LV 

mechanics during passive inflation. This framework can be readily extended to increase the 

model’s realism, such as by incorporating a more realistic biventricular geometry and an 

active contraction constitutive model of the myocyte to simulate active mechanics in the LV 

as well as by calibrating the model using human data.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(a) Unloaded canine LV FE geometry (all dimensions are in cm). (b) Muscle fiber 

orientation with a linear transmural variation from 70° at the endocardium to − 40° at the 

epicardium. (c) Schematic representation of the local arrangement of muscle fiber and 

collagen fiber network. The muscle fiber defines an axis of symmetry for the spatial 

arrangement of collagen fiber that attached to it. Collagen fiber dispersion is prescribed by a 

continuous function with the angle θ and ϕ. An azimuthal angle ϕ = 0 corresponds to the 

axial fiber family whereas a circumferential angle ϕ ≠ 0 corresponds to the radial fiber 

family.
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Fig. 2. 
(a) Transmural division of mesh into 7 layers with the same wall thickness. (b) 

Circumferential direction. (c) Radial direction. (d) Longitudinal direction.
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Fig. 3. 
(a) Comparison of the fitted and experimental Cauchy stress-stretch data for equibiaxial and 

constant α = 1.1, 1.15 and 1.2 tests of specimen 0118. (b) Contribution of the collagen fiber 

network, muscle fibers, non-fibrous ground matrix and interstitial fluid matrix to the total 

stress in the fiber direction (top) and the cross-fiber (bottom) directions in the equi-biaxial 

test of specimen 0118.
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Fig. 4. 
Comparison of the inflation pressure-volume curves derived from the 6 sets of fitted model 

parameter values (Table 2) and their mean values with measurements (plotted as mean ± 

SD).
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Fig. 5. 
Transmural distributions of the strain components at a LV pressure of 8 mmHg. Colored 

solid lines: model predictions using best-fit and mean parameters in Table 2. Measurements 

of strains at LV pressure of 8 ± 4 mmHg [39] are plotted as means ± SD. Note: shear strain 

results from experimental data are not shown as the measured values are small and difficult 

to digitize.
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Fig. 6. 
Transmural distributions of the stresses at a ventricular pressure of 8 mmHg. Colored solid 

lines: model predictions using best-fit and mean parameters in Table 2.
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Fig. 7. 
Transmural variation of the contribution of the collagen fiber network, muscle fibers, non-

fibrous ground matrix and interstitial fluid matrix to the total normal stress in the local 

muscle fiber direction at an LV pressure of 8 mmHg using the mean fitted parameter values 

from Table 2.

Xi et al. Page 25

Acta Biomater. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Collagen fiber tortuosity as a function of LV pressure. Colored solid lines: model predictions 

using the best-fit and mean parameters in Table 2. Black scattered dots: measurements of the 

perimysial collagen fiber tortuosity in rat hearts [46]. Black square marker with error bars 

(mean ± SD): measurements of collagen tortuosity in normal rat LV [47].
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Fig. 9. 
Sensitivity of (a) collagen volume fraction ϕc, (b) collagen waviness mc, (c) collagen 

waviness deviation σc, (d) collagen stiffness modulus C4, (e) collagen azimuthal angle mϕ, 

(f) collagen azimuthal angle deviation σϕ, (g) muscle stiffness C2 and (h) muscle fiber helix 

angle to the pressure-volume curve.
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Table 1:

List of model parameters with the corresponding lower/upper bounds according to literature references

Type Parameter Lower Bound Upper Bound References

Ground matrix C1 (kPa) 0.01 10 [38], [41]

Muscle fibers
C2 (kPa) 0.1 1.0

[54]
C3 1 50

Collagen fibers

C4(MPa) 0.1 100 [14]

mc >0 0.3 [17], [18]

σc >0 0.1

mϕ(rad) > 0
π
2
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Table 2:

Best-fit model parameters and root mean square error (RMSE) for biaxial tests of six canine mid-wall LV 

myocardium

Specimen C1 (kPa) C2 (kPa) C3 C4 (MPa) mc σc mϕ(rad) RMSE (kPa)

0118 1.255 0.204 10.874 6.624 0.117 0.094 0.930 0.122

0119 0.1 0.261 10.911 3.818 0.117 0.052 0.901 0.152

0124 0.1 0.151 12.870 4.587 0.124 0.057 0.919 0.152

0217 0.438 0.596 6.579 4.287 0.116 0.084 0.915 0.084

0303 1.786 0.717 5.196 3.426 0.140 0.100 0.938 0.055

0330 0.1 0.392 8.451 7.816 0.123 0.075 0.959 0.134

Mean 0.630 0.387 9.147 5.093 0.123 0.077 0.927 0.122

SD 0.722 0.227 2.921 1.736 0.009 0.019 0.020 0.089
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Table 3:

Comparison of fitted parameters with measurements of isolated myocytes and collagen fibers.

Description Fitted model parameters Reported Values

Cardiac muscle stiffness modulus 13.49 ± 1.92kPa* Guinea pig:16.4 ± 11.0 kpa [42];
Hamster: 7.48 ± 1.73 kpa [30];

Cardiac muscle uniaxial stress 1.36 ± 0.28 kPa* Guinea pig: 2.1 ± 1.4 kpa [42];
Hamster: 0.88 ± 0.48 kpa [30];

Collagen fiber stiffness C4 5.1 ± 1.7MPa Skin: 0 ~ 50 MPa [43]

Collagen fiber mean tortuosity 1.116** Canine: 1.01~1.2 [44]

*
Cardiac muscle stiffness and uniaxial stress were computed at 2.2 μm sarcomere length. Based on a resting sarcomere length of 1.9 μm, this 

translates at an engineering strain ϵ ≈ 0.158

**
The collagen fiber mean tortuosity was computed from the collagen fiber straightening strain mc by 2mc + 1 where mc = 0.12
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Table 4:

Average correlation matrix of fitted model parameters

C1 C2 C3 C4 mc σc mϕ

C1 1 −0.52 0.33 0.04 0.49 −0.09 −0.35

C2 1 −0.93 0.27 −0.04 0.09 0.07

C3 1 −0.37 −0.03 −0.07 0.23

C4 1 0.75 0.54 −0.22

mc 1 0.55 −0.04

σc 1 0.07

mϕ 1
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Table 5:

Percentage of absolute change in ΔV at a LV pressure of 20 and 30 mmHg with 100% change in each model 

parameter about its mean fitted value.

Model parameters Percentage of absolute change in ΔV at 20 mmHg Percentage of absolute change in ΔV at 30 mmHg

Collagen Azimuthal Angle 48.3 44.7

Collagen Waviness 46.7 39.9

Collagen Volume Fraction 29.5 31.5

Collagen Stiffness 29.6 31.6

Collagen Waviness Deviation 11.1 11.6

Muscle Stiffness 9.83 6.5

Muscle Helix Angle 4.4 7.5

Collagen Angle Deviation 0.84 1.1

*
Sensitivity analysis of the muscle fiber helix angle was evaluated for a change between a symmetric transmural variation of helix angle of (30°/

−30°) (baseline) to (60°/−60°).

Current constitutive models describing the tissue mechanical behavior of the myocardium are largely phenomenological. While able to represent 
the bulk tissue mechanical behavior, these models cannot distinguish the contribution of the tissue constituents and their ultrastructure to heart 
function. Although microstructure-based constitutive models can be used to isolate the role of tissue ultrastructure, they have not been implemented 
in a computational framework that can accommodate realistic 3D organ geometry. The present study addresses these issues by developing and 
validating a microstructure-based computational modeling framework, which is used to investigate the role of tissue constituents and their 
ultrastructure in affecting heart function.
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