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Abstract

Hepatocellular carcinoma (HCC) causes more than half a million annual deaths world-wide. 

Understanding the mechanisms contributing to HCC development is highly desirable for improved 

surveillance, diagnosis and treatment. Liver tissue metabolomics has the potential to reflect the 

physiological changes behind HCC development. Also, it allows identification of biomarker 

candidates for future evaluation in biofluids and investigation of racial disparities in HCC. Tumor 

and non-tumor tissues from 40 patients were analyzed by both gas chromatography-mass 

spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) platforms to 

increase the metabolome coverage. The levels of the metabolites extracted from solid liver tissue 

of the HCC area and adjacent non-HCC area were compared. Among the analytes detected by GC-

MS and LC-MS with significant alterations, 18 were selected based on biological relevance and 

confirmed metabolite identification. These metabolites belong to TCA cycle, glycolysis, purines, 

and lipid metabolism, and have been previously reported in liver metabolomic studies where high 

correlation with HCC progression is implied. We demonstrated that metabolites related to HCC 

pathogenesis can be identified through liver tissue metabolomic analysis. Additionally, this study 

has enabled us to identify race-specific metabolites associated with HCC.
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Metabolomic Data
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1. Introduction

Hepatocellular carcinoma (HCC) is the third cause of cancer-related death world-wide with 

mortality rates rapidly increasing over recent decades in most countries.1 The incidence and 

mortality associated with HCC in the United States have been persistently rising over the 

past two decades with more than 40,000 new cases of liver cancer estimated to be diagnosed 
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in 2018, 75% of which to be HCC.2 30,200 liver cancer deaths have been estimated to occur 

in 2018.3,4

Progression of liver fibrosis, primarily caused by chronic viral hepatitis, excessive 

consumption of alcohol, and non-alcoholic fatty liver disease (NAFLD), results in life-

limiting liver cirrhosis and HCC.5 Moreover, HCC disproportionately affects 

socioeconomically disadvantaged populations.6,7 In a study conducted on data collected 

from the Surveillance, Epidemiology, and End Results (SEER; https://seer.cancer.gov/) 

project between 1998 and 2012, among white, black, Asian and native American patients, 

when controlling for race, differences were detected across groups with specifically, Asian 

patients less likely to present with cirrhosis and black patients the least likely to present with 

an elevated AFP at diagnosis.2 Understanding the mechanism of the pathogenesis of HCC 

with respect to racial disparities would help improve HCC surveillance, diagnosis, and 

treatment at earlier stages of the disease resulting in lower mortality rates.2,8

The molecular mechanism behind liver carcinogenesis is associated with the regulation of a 

variety of signal transduction pathways and key molecules in the cells.9 Metabolic 

alterations play a role in tumor survival and progression, providing support for the vital 

needs of cancer cells by increasing energy production, macromolecular biosynthesis, and 

maintenance of redox balance.10 Liver is the key metabolic organ of living systems 

mediating the expression levels of a large number of metabolites. In view of this, 

investigation of HCC from a metabolic perspective is highly desired.8

Metabolomics provides insights into the mechanism underlying a pathophysiological 

condition by dealing with diverse biological properties of small molecules, which are the 

end products of metabolic pathways.11 Mass spectrometry (MS)-based analysis of 

metabolites in biospecimens is typically preceded by chromatographic separation to reduce 

the complexity of the acquired mass spectra. The most common separation methods are gas 

chromatography (GC) and liquid chromatography (LC).12 LC-MS is usually utilized with a 

reversed phase column for the analysis of different class of glycerolipids, 

glycerophospholipids, lysoglycerophospholipids, sphingolipids, carnitines, fatty acyls, 

amides, etc. GC-MS can be used for the detection of non-polar volatile compounds and 

medium to polar compounds, such as sugars, carboxylic acids, free fatty acids and other 

small lipids, after sample derivatization. Because a single analytical technique is not able to 

measure and identify all metabolites, data from different platforms are combined to increase 

the metabolomics coverage.12

Metabolomic analysis of tissues allows researchers to study localized responses to stimuli 

and pathogenesis, gaining biochemical information about the disease mechanisms.13 

Compared with biofluids, metabolomic profiling of tissues tend to provide more insight into 

metabolic changes in HCC development, with better specificity.14 Therefore, systematic 

metabolic characterization of liver tissues allows us to explore novel diagnostic markers or 

therapeutic targets for HCC.15 Furthermore, metabolomic analysis conducted by comparing 

paired tissues from diseased and non-diseased liver regions could identify disease-associated 

alterations despite any individual differences.16
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In this paper, we use GC-MS and LC-MS to evaluate changes in metabolite levels in liver 

tissues from African-American (AA), Asian-American (AS), and European-American (EA) 

patients that were recruited at MedStar Georgetown University Hospital in Washington, DC. 

Metabolites extracted from the solid liver tissue corresponding to the HCC area and adjacent 

non-HCC area are analyzed. The resulting data are analyzed by a mixed model ANOVA to 

account for the within-subject variability while simultaneously evaluating the effects of 

tissue status (tumor, normal, or cirrhosis) and racial groups (AA, AS, or EA) on metabolite 

levels.

2. Study cohort and experimental design

Adult patients recruited to participate in this study signed informed consent to a protocol 

approved by the Georgetown University Institutional Review Board (IRB). Following the 

participant’s informed consent signature and enrollment, liver tissues were collected at the 

time of the surgical procedure and stored in liquid nitrogen until the day of metabolite 

extraction. HCC cases were diagnosed based on diagnostic imaging criteria and/or histology 

with clinical stages determined on the basis of TNM system. In this study, liver tissues 

collected from 40 patients with HCC were analyzed by GC-MS and LC-MS. Table 1 

presents the characteristics of these patients. From the 40 HCC cases, both tumor and 

adjacent non-tumor tissues were analyzed comprising 30 HCC tissues (HCC-N) with 

adjacent normal tissues (ADJ-N), and 10 HCC tissues (HCC-C) with adjacent cirrhotic 

tissues (ADJ-C). Thus, 80 frozen dissected tissues were homogenized prior to extraction of 

polar metabolites and secondary lipid enrichment. The polar fraction of the samples, divided 

into five batches, was analyzed by GC-MS, both fractions were combined for analysis by 

LC-MS in both positive and negative modes. The experimental design for both GC-MS and 

LC-MS analyses is illustrated in Supplementary Figures 1 and 2, respectively.

3. Material and Methods

Chemicals and Reagents

The chemicals and reagents used in this study are presented in Table 2.

Sample preparation

Figure 1 depicts the sample preparation steps. Briefly, homogenization of 10 mg of liver 

tissue was performed on ice with 1 mL of pre-chilled methanol:water (1:1) containing five 

internal standards: 0.001 ppm debrisoquine, 0.004 ppm 4-nitrobenzoic acid, 0.0004 ppb 

stearoyl (d35)-2-hydroxy-glycerophosphocholine, 0.2 ppb D-erythro-sphingosine (d7)-1-

phosphate, and 2 ppm myristic-d27 acid. We centrifuged the homogenized samples at 

14,500 g, at 4°C for 15 minutes. The collected supernatant (S1) was split in two aliquots, 

while the remaining pellet (P1) was kept at −80°C until further extraction. For the extraction 

of medium to polar compounds, 1:1 volume of pre-chilled acetonitrile was added to the two 

aliquots, vortex-mixed, kept on ice for 20 minutes and centrifuged again at 14,500 g, at 4°C 

for 15 minutes. The collected supernatant (S2) was dried-up in a speedvac system operated 

at room temperature. Pellets (P2 and P3) and supernatants were stored at −80°C. For the 

extraction of low-polar compounds, P1 was resuspended with 500μ1 of pre-chilled 
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dichloromethane:methanol (3:1) while P2, and P3 with 125 μL of the same mix. Pellets were 

sonicated on ice for 90sec, combined, and centrifuged at 14,500 g, at 4°C for 20 minutes. 

Supernatant (S3) was split in two aliquots and a 1:1 volume of pre-chilled acetonitrile was 

added to both aliquots (GC&LC), vortexed and kept on ice for 20 minutes. Samples were 

centrifuged at 14,500 g for 15 min at 4°C while pellets were stored at −80 °C for protein 

quantitation. Finally, supernatants (S4) were concentrated to dryness by speedvac and kept at 

−80°C until the day of analysis. Blank samples were prepared together with the human 

samples. They consisted of all reagents and were prepared in the same way as the patients’ 

samples.

Dried supernatant (S2) collected for GC-MS analysis underwent derivatization step. Samples 

were derivatized prior to injection following oximation and trimethylsilylation (-Si(CH3)3). 

Briefly, 20 μL of a solution of 20 mg/mL methoxyamine hydrochloride in pyridine, were 

added to the dried extracts, vortex-mixed and incubated at 30°C for 90 minutes. At room 

temperature, 80 μL of MSTFA was added, vortex-mixed and incubated at 30°C for 30 

minutes. Then, samples were centrifuged at 14,500 g for 15 minutes. Following this, 60 μL 

of the supernatant was transferred into 250 μL clear glass autosampler vials. Finally, 20 μL 

of 0.006 μg/μL C18 methyl stearate in hexane were added to the vial prior to injection. For 

quality assessment, myristic-d27 acid was spiked into the working solution to verify tissue 

metabolite extraction and derivatization steps. C18 Methyl Stearate was added to monitor 

each sample injection. QC samples (QCs) were generated by pooling together the 

supernatant obtained after derivatization of samples of each biological group in each batch 

separately. A retention index (RI) standard sample was prepared by mixing FAMEs with 

alkanes. Specifically, all FAMEs were individually suspended in chloroform at 

concentrations of 0.8 and 0.4 mg/mL for (C8 – C16) and (C18 – C30), respectively, to 

generate FAME-1 stock solutions. We mixed together 100 μL of each stock and 1.2 mL of 

chloroform for a final volume of 2.5 mL generating FAME-2 solution. Alkanes, containing 

all even CnH2n+2 from C10 to C40, were purchased as a mixture at a concentration of 50 

mg/L in n-heptane. Alkane mixture were mixed with FAME-2 markers and hexane at a ratio 

of 1:2:17 and vortex-mixed prior to injection into the GC-MS.

Dried supernatants (S2 & S4) collected from the first and second extraction for LC-MS 

analysis were reconstituted with 125 μL of methanol:acetonitrile:water (50:25:25) each, and 

combined for a total volume of 250 μL. d35-lysophosphocholine and d7-sphingosine-1-

phosphate were added to evaluate the quality of the metabolite extraction. We used 

debrisoquine and 4-nitrobenzoic acid for evaluation of the equipment performance. QCs 

were generated by pooling together the supernatant obtained after resuspension in 

appropriate solvent of each biological group.

GC-TOF-MS data acquisition

One μL of derivatized metabolites from tissue samples was analyzed by using the Agilent 

7890A GC on-line coupled to LECO Pegasus HT GC-TOF-MS system (LECO 

Corporation). An HP-5 column (Agilent), 30m long, with 0.32mm i.d. and 0.25μm 95% 

dimethyl 5% diphenyl polysiloxane film was used. GC and MS parameters were set as 

following: 99.9% Helium with a flow rate of 1.5 mL/min; oven temperature set at 70°C for 4 
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minutes, then ramped at 10°C/min to 300°C, and remained constant for 4 minutes; transfer 

line temperature at 275°C; electron impact (EI) ionization at 70V and ion source temperature 

at 300°C; 300 seconds of solvent delay; full scan (50–600 m/Z) with acquisition rate of 10 

scans per second; detector range (1400–1600V) with a voltage offset of 200; 31 minutes of 

total chromatographic separation. QCs were run before every 7–9 samples for quality 

assessment. An additional QC sample was run at the beginning of the analysis to equilibrate 

the chromatographic system. A Retention Index (RI) standard was used for calibration of the 

RI in each batch by injecting it both at the beginning and the end. To avoid contamination 

and assure system stability, a routine equipment maintenance was performed before the 

beginning of each batch, consisting of septum and liner replacement and column cut (2–3 

cm).

UPLC-QTOF MS data acquisition

Extracted metabolites from liver tissues were analyzed using an ACQUITY UPLC system 

on-line coupled to a Synapt G2-Si QTOF-MS (Waters Corporation, Milford, MA, USA) in 

positive and negative modes. Chromatographic parameters were set as follows: injection 

volume was 1.5 μL; a reverse-phase ACQUITY UPLC CSH C18 (1.7-μm,100 × 2.1 mm) 

column (Waters) was employed and thermostated at 55°C; separation of the metabolites was 

achieved at 0.4 mL/min flow rate with a mobile phase as a gradient composed of 

acetonitrile:H20 (60:40) containing 0.1% formic acid and 10 mM ammonium formate (A), 

and isopropanole:acetonitrile (90:10) containing 0.1% formic acid and 10 mM ammonium 

formate (B); 15 minutes of total chromatographic separation. MS parameters were set as 

follows: capillary voltage at 1.8 kV and 1.5 kV, and cone voltage at 70 V and 20 V, for 

positive and negative polarity modes, respectively; desolvation gas flow at 900 Lhr− 1; 

temperature at 500°C and 550°C for positive and negative polarity mode, respectively; cone 

gas flow at 100 Lhr− 1; source temperature at 120°C. a LockSpray interface of Leucine 

enkephalin ([M+H]+ = 556.2766 and [M-H]− = 554.2620) was introduced at a rate of 20 

μLmin− 1 to maintain accurate mass. We acquired LC-MS data in centroid full scan mode 

(50–1200 m/z). By pooling together the supernatants, obtained after resuspension in 

appropriate solvent, of each biological group, QCs were run before every 16 samples for 

quality assessment. An additional QC sample was injected at the beginning of the analysis to 

equilibrate the chromatographic system.

GC-TOF-MS data pre-processing

The raw GC-MS data were pre-processed (outlier screening, peak deconvolution, RI 

calibration, metabolite identification, and peak alignment) using ChromaTOF software with 

True Signal Deconvolution package from LECO Corporation (St. Joseph, MI). 

Supplementary Figure 3 depicts the steps involved. Outlier screening was performed to 

remove runs that were significantly different from the others based on the number of peaks 

or the pattern of the chromatogram. Following detection and deconvolution, peaks were 

aligned on the basis of spectral matching for neighbor peaks across different runs. Data 

acquired by running the QC samples were used to evaluate the consistency and 

reproducibility of the peaks across different runs and batches, while the blanks were used to 

detect possible contamination. We filtered out peaks detected in less than 50% of the QC 

samples within a group and in less than 75% of the samples within a group. In addition, 
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unrelated peaks, including contamination, column bleeding artifact and internal standards 

were filtered out along with all unreproducible peaks that showed a relative standard 

deviation (RSD) greater that 50% in more than one group of QCs. Peaks present in 90% or 

more of the samples within a biological group were imputed with the value of the median 

within the group; peaks present between 90 and 75% of the samples were imputed with a 

value corresponding to half of the minimum one detected in the group. The nearest neighbor 

averaging method using the R package impute was used for completing the missing data 

imputation. The ComBat function from the R package sva was applied to correct for batch 

effect.

UPLC-QTOF data preprocessing

LC-MS data preprocessing involves peak detection, retention time correction, identification 

of ions that are related to each other (e.g., isotopes, adducts, in-source fragments, etc.), and 

outlier screening. We used various tools for data pre-processing as illustrated in 

Supplementary Figure 3. Briefly, the raw UPLC-QTOF-MS data were converted into 

Network Common Data Format (NetCDF) using MassLynx (Waters). The NetCDF data 

were then analyzed using the R package XCMS where part of the parameters were 

optimized using the R package IPO.17 XCMS performed peak detection and peak matching. 

It also performed automatic missing values imputation by rereading the raw data files and 

integrating them in the region of the missing peaks. R package CAMERA was used for ion 

annotation (process of grouping all adducts, cluster ions and charge state entities derived 

from the same analyte).

Difference Detection

A mixed model ANOVA was applied on peaks detected by GC-MS and LC-MS to evaluate 

their association with tissue and racial groups. Four tissue groups (HCC-N, ADJ-N, HCC-C, 

ADJ-C, and three racial groups (AA, AS, EA) are considered in this study. To implement the 

mixed model ANOVA, we used the lsmeans function from the R package lsmeans.18 The 

model can be represented by the equation below:

yi jk = μ + τi + α j + βk + (αβ) jk + εi jk, i = 1, …, n jk, j = 1, 2, 3,

k = 1, 2, 3, 4, εi jk ∼ N 0, σ2 , τi ∼ N 0, ω2

where yijk is the analyte level for subject i from race j and tissue group k, μ is the grand 

mean, Ti is the random effect for patient, i, αj, βk, and (αβ)jk are the main effects and 

interaction effects for the jth race and kth tissue group respectively. j=1,2,3 indicates race 

AA, AS, EA respectively; k=1,2,3,4 indicates HCC-C, ADJ-C, HCC-N and ADJ-N, 

respectively. The mixed model ANOVA was also separately fit using the data from the AA 

and EA participants only, because no cirrhotic (HCC-C and ADJ-C) samples were available 

in our AS group. To account for multiple testing, we calculated false discovery rate (FDR) 

using the Benjamini-Hochberg (BH) method. Fold changes were calculated considering the 

median of raw intensity values.

Ferrarini et al. Page 7

J Proteome Res. Author manuscript; available in PMC 2020 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Metabolite identification

Identification of analytes detected by GC-TOF-MS was achieved by comparing the 

experimental spectra with the ones compiled in the NIST 2011 and Fiehn 2013 libraries. In 

addition, the GOLM database was employed for confirmation. RI calibration was applied to 

further assist the identification. Putative IDs were assigned to the analytes detected by LC-

MS by using MetaboQuest (http://omicscraft.com/tools/) that searches mass values against 

major compound databases including HMDB, METLIN, KEGG, MMCD and LIPID MAPS. 

It also calculates putative ID prioritization scores by building a network of putative IDs 

based on metabolic and biochemical pathways. Furthermore, we acquired MS/MS spectra 

for a subset of statistically significant analytes. The metabolite extracts for MS/MS analysis 

were prepared following the same steps described previously. mzXML files were parsed 

using pyteomics python library. In each mzXML file, expected retention time values from 

previous experiments were used to access the scans of the targeted analytes. mzXML 

function in pyteomics library was used to access the m/z and corresponding intensity 

information within the expected retention time. Top 10 peaks with highest intensities were 

used for metabolite identification by comparing the observed fragmentation patterns against 

experimental and in-silico fragments in spectral libraries. We used tools such as 

MetaboQuest, METLIN, and CEU Mass Mediator to search against libraries and assign 

spectral matching scores.

4. Results and Discussion

Both GC-MS and LC-MS platforms were used to evaluate the levels of the metabolites 

extracted from the HCC area and adjacent non-HCC area of liver surgical specimen 

collected from 40 patients. In each of the five batches for GC-MS and one batch for LC-MS 

analyses, samples were randomized prior to the metabolite extraction step, GC-MS 

derivatization step, and MS data generation step. The stability of both platforms was 

assessed using QC samples analyzed during data acquisition.

As shown in Table 3, 946 peaks were detected by GC-MS, 8197 by LC-POS-MS, and 1799 

by LC-NEG-MS. After filtering out some of the peaks, statistical analysis was performed on 

the remaining ones to identify those with significant changes in HCC-C vs. ADJ-C and 

HCC-N vs. ADJ-N. Among the analytes with assigned ID, the majority of alterations 

seemed to occur in the HCC-N vs. ADJ-N comparison with a total of 78 detected by GC-MS 

and 404 by LC-MS with FDR < 10%. In HCC-C vs. ADJ-C, only 3 analytes by GC-MS and 

13 by LC-MS were found significant with FDR < 10%.

Supplementary Tables 1 (ST1) and 2 (ST2) present the complete list of the statistically 

significant analytes with assigned putative identifications in HCC-C vs. ADJ-C and HCC-N 

vs. ADJ-N comparisons, respectively. The tables present FDR obtained by univariate 

statistical analysis, and fold changes for the entire cohort (WP) as well as stratified by racial 

groups (AS, AA, EA). While the first putative ID (with score ≥ 750), returned after spectral 

matching with Fiehn 2013 library, is presented for those detected by GC-MS, multiple 

putative IDs obtained from the MS-based search results (with 10 ppm tolerance) by 

MetaboQuest are listed for analytes detected by LC-POS-MS and LC-NEG-MS.
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Among the analytes with statistically significant alterations in HCC-N vs. ADJ-N, 18 were 

selected for further investigation based on their biological relevance and verification of their 

putative identification. These include 8 metabolites detected by GC-MS, 7 by LC-MS in the 

positive mode, and 6 by LC-MS in the negative mode (3 metabolites were detected by both 

GC-MS and LC-MS). Table 4 presents these metabolites and their statistical levels 

considering all racial groups together (Whole population) as well as the AS, AA, and EA 

groups. Based on the FDR <10% cutoff, hypoxanthine, adenosine monophosphate, PC 

(34:2), and glycerylphosphorylethanolamine showed statistically significant alteration only 

in the whole population, while the rest of the metabolites showed statistically significance in 

one or two of the racial groups in addition to the whole population. Supplementary Table 3 

presents the information (EI and/or ESI fragments) we used to confirm the identities of the 

metabolites reported in Table 4. Some of these metabolites were further confirmed by 

comparing their retention time values and MS/MS fragmentation pattern with those from 

reference compounds that we run side by side under the same LC-MS/MS conditions.

The selected metabolites belong to tricarboxylic acid (TCA) cycle, glycolysis pathway, 

purine metabolism, and energy metabolism. Specifically, succinic acid, fumaric acid, and 

malic acid, are metabolites that belong to TCA cycle. In this study they were found 

significantly downregulated in HCC-N vs. ADJ-N, consistently with other liver tissue 

metabolomic studies where HCC and non-tumor tissues were compared,14,15,19,20 in whole 

population, AA, and EA groups. The TCA cycle allows the release of stored energy into 

adenosine triphosphate (ATP) and CO2, through the oxidation of acetyl-CoA derived from 

carbohydrates, fats, and proteins, regulating the oxidative metabolism in the cells. The 

decrease in the level of TCA intermediate metabolites together with the decrement of 

glucose, and the increment of lactic acid, as also shown in our study, suggests the rapid 

consumption of glucose during glycolysis having a low level of aerobic oxidation via the 

TCA cycle itself.14

Hypoxanthine, xanthosine, and adenosine monophosphate (AMP) belong to purine 

metabolism. In this study they were detected by both GC-MS and LC-MS showing the same 

trend between HCC-N and ADJ-N tissues across all racial groups. While hypoxanthine and 

AMP show their statistically significance only in the whole group, xanthosine shows it in the 

AA, and EA group in addition to the whole population. Previous metabolomic studies on 

liver tissue have reported similar alterations between HCC and non-HCC tissues.15,20 

Purines, which are the basic components of nucleotides, provide the necessary energy and 

cofactors for cell survival and proliferation. Therefore, impaired purine metabolism is 

related to progression of cancer.21 A new viewpoint on how a cell regulates purine need has 

been reported underlying how purine metabolism may contribute into cancer progression.22

Also reported in HCC tumors is the significant changes of the acylcarnitines class. 

Consistent with previous studies,14,23 we found that short-chain acylcarnitines such as 

propionylcarnitine was significantly downregulated in the AS, AA in addition to the whole 

population. These metabolites are primarily involved in lipid metabolism in cells by 

transporting fatty acids inside the mitochondria where they are subjected to oxidization and 

conversion into energy through the TCA cycle. Their downregulation together with the 
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downregulation of TCA intermediates suggests a reduced consumption of carboxylic acids 

in the mitochondria.15

Coenzyme Q10, found in this study significantly decreased in HCC-N v ADJ-N, particularly 

among the AA, is an essential compound for the transport of electrons in the mitochondrial 

respiratory chain and for antioxidant defense. Its downregulation has been observed in many 

solid tumors and recently it has been investigated in a study where HCC tumors were 

compared to paired non-tumor tissues. A correlation between the decreased expression of 

coenzyme Q10 and prenyl diphosphate synthase subunit 2 (PDSS2), a key factor in its 

synthesis, was also observed and in vitro and in vivo investigated implying that PDSS2 

deficiency, due to mutation in its gene, could induce hepatocarcinogenesis. 24

Fatty acids are the metabolites required for both structural and functional purposes needed 

for membrane synthesis. We found linoleic acid significantly altered in the whole 

population, and AA groups. Its downregulation is consistent with previous liver 

metabolomics studies.15,25 Specifically, Beyoğlu et al. found that among the fatty acids, 

linoleic acid was the only one statistically significantly decreased in HCC tissues suggesting 

that HCC may engage in enhanced arachidonic acid synthesis, because linoleic acid is the 

starting point for de novo synthesis of arachidonic acid.

In a previous untargeted metabolomics study conducted on liver tissues, 

lysophosphorylcholine (LPC) levels were observed to have decreased in cancer tissues while 

phosphorylcholine (PC) levels were increased.15 Comparable results were found in this 

study with significant downregulation of PC (34:2) and upregulation of PC (36:1), PC 

(38:2), and PC (38:3). The majority of the metabolomic studies involving both liver tissues 

and sera have reported imbalance of these metabolites suggesting their participation in 

different biological processes that promote HCC development.26

Metabolites belonging to the glycerolipid metabolism (glycerol 3-phosphate, 

glycerylphosphorylethanolamine, glycerophosphocholine) displayed statistically significant 

changes in tumor vs. non-tumor tissues in this study, as previously reported,27 with glycerol 

3-phosphate significantly altered in both AA and EA, and glycerophosphocholine in AA 

only. Dysregulation of glycerolipid metabolism may contribute to HCC by affecting the 

insulin uptake and glucose consumption, leading to a reinforced capacity for the cell to 

proliferate under conditions that would normally be considered unviable.28

Overall, as shown in Table 4, among the 18 metabolites selected in this study, the majority 

(thirteen out of 18) showed statistically significant changes (FDR < 10%) in AA, six of 

which belonging to lipid metabolism. All seven metabolites that were found statistically 

significant in EA are a subset of the fourteen significant metabolites selected for AA. 

Among the three metabolites found significant for AS, only one overlaps with those selected 

for AA, the other two are unique to AS. Figure 2 depicts the dot plots of three metabolites 

that most exhibited statistically significant changes in AA, coenzyme Q10, linoleic acid, and 

PC (38:3). The dot plots for the remaining fifteen metabolites selected in this study are 

shown in Supplementary Figures 4–6. Confirmation of the observed changes in metabolites 

level by targeted quantitation is a pre-requisite for subsequent biological interpretation and 
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for their investigation in peripheral blood aimed at identifying accurate noninvasive HCC 

biomarkers.

In summary, the results obtained in this study demonstrate that metabolomic analysis of liver 

tissues not only offers holistic information on dynamic metabolic responses to the HCC 

mechanism, but also allows the investigation of racial disparity by identifying metabolites 

associated to HCC in a race-specific manner.

5. Conclusion

Metabolic reprogramming is crucial for carcinogenesis; therefore it is generally known that 

metabolic profile variations are present in HCC patients at the time of their diagnosis.8 In 

this study, we report a metabolomic approach to find HCC-associated metabolites by 

comparing paired liver tissues obtained as surgical specimen from the participants in this 

study. The levels of metabolites in tissues were assessed by both GC-MS and LC-MS 

platforms. We selected 18 metabolites that showed statistically significant change in their 

levels between HCC and non-HCC liver tissues. These metabolites belong to tricarboxylic 

acid (TCA) cycle, glycolysis pathway, purine metabolism, and energy metabolism that are 

specifically involved in HCC formation. In addition, we investigated the metabolites that 

showed significant association to HCC in a race-specific manner. In view of these, we 

believe the metabolites identified in this study may have the potential not only to elucidate 

HCC pathophysiology but also to help investigate racial disparities in HCC. Future work 

will focus on further investigating the observed changes in metabolites level by targeted 

quantitation in liver tissues and peripheral blood.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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EA European-American

FAME Fatty acid methyl esters

GC Gas chromatography

HBV Hepatitis B virus

HCV Hepatitis C virus

HCC Hepatocellular carcinoma

HCC-C Hepatocellular carcinoma paired to adjacent cirrhotic tissue

HCC-N Hepatocellular carcinoma paired to adjacent normal tissue

LC Liquid chromatography

MS Mass spectrometry

QTOF Quad-Time-of-flight

TOF Time-of-flight

TCA Tricarboxylic acid cycle

TNM Tumor, Node, Metastasis

UPLC Ultra performance liquid chromatography
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Fig 1. 
Overview of tissue sample preparation for metabolomics analysis by GC-MS and LC-MS.
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Fig 2. 
Metabolites with statistically significant change (FDR < 10%) in HCC-N vs. ADJ-N for AA.

Ferrarini et al. Page 15

J Proteome Res. Author manuscript; available in PMC 2020 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ferrarini et al. Page 16

Table 1.

Characteristics of the study cohort.

AS(N=10) AA(N=14) EA(N=16)

Age Mean (SD) 56.8 (11.4) 59.4 (12.8) 65.6 (11.9)

Gender Male % 100 78.6 62.5

BMI Mean (SD) 15.3(12.4) 31.3(10.9) 28.4(15.0)

HCV Serology
HCV Ab+ % 30 57.1 31.2

HCV RNA+ % 20 21.4 25

HBV Serology
anti HBC+ % 20 7.1 0

HBs Ag+ % 20 28.6 0

Smoking
Yes % 80 64.3 50

No % 20 35.7 50

Alcohol
Yes % 50 42.9 43.8

No % 50 57.1 56.3

MELD
Mean (SD) 8.9 (3.7) 11.2 (4.7) 10.8 (4.7)

MELD <10 % 50 50 50

AFP Median (IQR) 3.6 (0.925) 11.2 (147.3) 5.4 (14.025)

AST Median (IQR) 93 (108) 132 (140) 127.5 (171.8)

ALT Median (IQR) 93 (81) 141(135) 101(128.5)

Child Pugh score
Mean (SD) 6.1 (1.7) 6.2 (1.7) 6.4 (1.3)

Median (IQR) 5 (1) 6 (1) 6 (1.25)

Child Pugh Class

A % 70 78.6 62.5

B % 20 7.1 37.5

C % 0 7.1 0

HCC Stage
Stage I % 50 42.9 37.5

Stage II % 30 21.4 25
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Table 2.

Information of the chemicals and reagents used in this study.

Manufacturer Chemical & reagents Product Number

Millipore Sigma (Burlington, MA)

Alkane standard mixture 68281

Fatty acid methyl ester standards (FAMEs) C8 (260673); C9 (245895); C10 (299030); C12 
(234591); C14 (P5177); C16 (P5177); C18 (S5376); 

C20 (10941); C22 (11940); C24 (87115); C26 
(H6389); C28 (74701).

Myristic-d27 acid 366889

Methoxyamine hydrochloride 226904

Pyridine 360570

Debrisoquine D1306

4-nitrobenzoic acid 72910

TCI chemicals (Portland, OR) FAME C30 T0812

Avanti Polar Lipids (Alabaster, AL)
d35-lysophosphocholine 860398

d7-sphingosine-1-phosphate 860659

Thermo Fisher Scientific (Waltham, MA) MSTFA TS-48910

Fisher Scientific (Hampton, NH)

HPLC grade water W6-4

2-propanol A-461–212

Acetonitrile A955–1

Formic acid A117–50

Ammonium formate A11550
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Table 3.

Summary of detected and statistically significant analytes for each platform utilized in this study.

No FEATURES after GC-MS LC-POS-MS LC-NEG-MS

peak detection and 
alignment

946 8197 1799

data filtering 728 2286 593

Putative ID assigned 
by MS-based search

250 1122 429

Significant features HCC-C vs. ADJ-C HCC-N vs. ADJ-N HCC-C vs. ADJ-C HCC-N vs. ADJ-N HCC-C vs. ADJ-C HCC-N vs. ADJ-N

p< 0.05; FDR <10% 3 78 8 265 5 139
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