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Abstract

It is well-recognized that solid tumors are genomically, anatomically, and physiologically 

heterogeneous. In general, more heterogeneous tumors have poorer outcomes, likely due to the 

increased probability of harboring therapy-resistant cells and regions. It is hypothesized that the 

genomic and physiologic heterogeneity are related, because physiologically distinct regions will 

exert variable selection pressures leading to the outgrowth of clones with variable genomic/

proteomic profiles. To investigate this, methods must be in place to interrogate and define, at the 

microscopic scale, the cytotypes that exist within physiologically distinct sub-regions (“habitats”) 

that are present at mesoscopic scales. Magnetic Resonance Imaging (MRI) provides a non-invasive 

approach to interrogate physiologically distinct local environments, due to the biophysical 

principles that govern MRI signal generation. Here, we interrogate different physiological 

parameters, such as perfusion, cell density, and edema, using multiparametric MRI (mpMRI). 

Signals from six different acquisition schema were combined voxel-by-voxel into four clusters 

identified using a Gaussian Mixture Model. These were compared to histological and 

immunohistochemical characterizations of sections that were co-registered using MRI-guided 3D 

printed tumor molds. Specifically, we identified a specific set of MRI parameters to classify 
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viable-normoxic, viable-hypoxic, non-viable-hypoxic, and non-viable normoxic tissue types 

within orthotopic 4T1 and MDA-MB-231 breast tumors. This is the first co-registered study to 

show that mpMRI can be used to define physiologically distinct tumor habitats within breast 

tumor models.
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Introduction

Solid tumors are genomically, anatomically, and physiologically heterogeneous, and this 

heterogeneity has prognostic significance for therapy response and emergence of resistance 

(1). Tumors are known to have chaotic vasculature with high permeability, low tone, and 

varying degrees of perfusion and oxygenation, and this has been proposed to be a major 

driver of the evolution of tumor heterogeneity at the genomic level (2). In a number of 

cancers, this regional variability of perfusion within tumors generates altered physiology, 

metabolism, and gene expression patterns, and predicts short time to progression and poor 

overall survival following therapy (3,4). Thus, methods to identify and quantify these 

changes would have great benefit in decision support, especially if noninvasive imaging 

methods could be used to identify and define physiologically distinct regions, or tumor 

habitats, and monitor them longitudinally (5,6).

Magnetic resonance imaging (MRI) is an excellent tool for probing sub-domain variability 

within tumors as it has excellent soft tissue contrast and has a myriad of contrast 

mechanisms that can be leveraged to provide biophysical insight. For example, the 

transverse relaxation time, T2, is sensitive to edema, water (hydrogen) exchange on ionizable 

groups across membranes, as well as macromolecular hydration layers relative to bulk water 

(7). The apparent diffusion coefficient (ADC), calculated from diffusion-weighted (DW) 

MRI sequences, is sensitive to the translational diffusion of water in tissue, which is affected 

by the degree of water translational restriction primarily by lipids or lipid bilayers (8). 

Dynamic contrast enhanced (DCE) MRI provides positive contrast in regions based on the 

delivery of contrast agents, which can be variable, depending the rate and extent of local 

perfusion. It can noninvasively report on tumor vascular characteristics, which may be 

highly informative in the context of spatial tumor heterogeneity (9). Solid tumors frequently 

show a dysfunctional vascular system, resulting in sub-regions within tumors that are 

variably hypoxic, nutrient deprived, and acidic, all of which can have great impact on the 

local selection of cellular phenotypes within these different sub-regions (2,10).

In the clinic, these image data can be combined to define spatially distinct regions with 

similar physiologies, thus known as “habitats” (11). However, in the clinic, there is a lack of 

knowledge regarding the underlying physiology and cell types that give rise to these 

habitats. Therefore, a critical question is whether the biophysical sensitivity of multiple MRI 

parameters can distinguish different tumor habitats that harbor distinct physiologies and 

cytotypes that can be characterized using co-registered histopathology sections. Herein, we 
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test the hypothesis that pixel-by-pixel clusters of multiparametric MRI (mpMRI) voxels may 

provide insight into the existence of regions that are well vascularized or hypoxic, viable or 

necrotic. This is biomedically relevant as hypoxic tumors are associated with a greater 

propensity to metastasize and are known to be resistant to radio-and chemo-therapies 

(12,13). Hypoxic regions result in increased glycolytic metabolism and, because they are 

poorly perfused, are also known to be acidic, which is causally associated with increased 

invasion, metastasis, and immunosuppression (14,15). Of note, phase III clinical trials of the 

hypoxia activated pro-drug (HAP), evofosfamide, failed to meet their statistical endpoints, 

primarily because patients were not stratified according to their hypoxia status (16). Hence, 

a method to infer hypoxia with standard of care imaging could have significant clinical 

impact.

Hence, we propose that heterogeneous, physiologically distinct tumor habitats can be 

identified and quantified by mpMRI, and furthermore, that these regional differences 

represent meaningful physiological states, such as hypoxia. In this study, we used 

computational image analysis to cluster multiple MRI-parameter maps, on a voxel-by-voxel 

basis, in order to identify distinct tumor regions in vivo. These were compared to 

histological characteristics by using 3D-printed tumor molds to co-register MRI and 

histology. To date, no direct and quantitative histological validation of spatially distributed 

habitats, as determined by MRI, has been reported.

Materials and methods

Animal models

All procedures were approved by the Institutional Animal Care and Use Committee 

(IACUC), University of South Florida, under the protocols 0549 and 1160. MDA-MB-231 

cancer xenograft and syngeneic 4T1 breast tumors models were developed. A detailed 

description is shown in Supplementary Materials and Methods.

Magnetic resonance imaging

Multiparametric MR images were acquired to study habitats. The mice were imaged on a 7T 

horizontal magnet (Agilent ASR 310; Santa Clara, CA) and (Bruker Biospin, Inc. BioSpec 

AV3HD; Billerica, MA), using a 35 mm Litzcage coil (Doty Scientific; Columbia, SC). 

Mice were maintained anesthetized with 2% isoflurane delivered in 1.5-liter/min oxygen 

ventilation. Body temperature was continuously monitored using a rectal thermometer 

(SAII®, SA Instruments, Stony Brook, NY) and maintained at 37°C by an external heater. 

Respiratory function was maintained at a range of 40–60 breaths per minute, and tumors 

were immobilized without pressure with tape to minimize motion artifacts.

First, anatomical T2-weighted axial images were obtained to observe the entire tumor (slice 

thickness of 1 mm, field of view (FOV) 30 × 30 mm2 and image size 256 × 256), which was 

used to delineate the tumor volume of interest (VOI) to direct the printing of the 3D-printed 

tumor mold. After, in order to optimize the total time of image acquisition, the slice plane 

was adjusted to observe the 11 central slices and used to acquire another T2-weighted image, 

and the T2 map, T2* map, DW-MRI, and DCE-MRI. These were combined and used to 
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analyze the habitat imaging. T2-weighted images were obtained using a TurboRARE 

sequence (Repetition time (TR) = 3287 milliseconds (ms), Echo time (TE) = 72ms, slice 

thickness of 1 mm, FOV 30 × 30 mm2, image size 256 × 256). T2* maps were acquired with 

48 gradient echoes starting at TE = 2.56 ms up to 134.63 ms with a delta TE of 2.81ms and 

T2 maps were with a multi echo sequence (MSME) with a train of 32 echoes starting at 7 ms 

up to 224 ms with a delta TE of 7 ms and a TR of 2791 ms, slice thickness of 1 mm, FOV 30 

× 30 mm2, image size 256 × 256). DW-MRIs were acquired in three directions using three 

b-values (100, 500 and 750 s/mm2. Based on prior studies (17) these are sufficient to 

generate a robust ADC value with a single exponential decay. Image size was 128 × 128/

interpolation to 256 × 256 for 4T1 tumors and native 256 × 256 for MDA-MB-231, TR = 

700 ms, TE =15.72 ms). T1-weighted DCE-MRI were acquired for all 11 slices every 59 

seconds for 22 minutes to obtain 22 time-points (TR = 231ms, TE = 6ms, FOV was 30 × 30 

mm2, image size 256 × 256 and slice thickness of 1 mm) upon intravenous (using a catheter 

in the tail vein) injection of 0.2 mmol/kg Gadobutrol (Gadavist®; Bayer; Whippany, NJ), 

starting the image 3 minutes before the contrast agent injection. The total imaging time per 

mouse, for all sequences combined, was approximately 1 hour.

3D-printed tumor mold

T2-weighted MR images were used to define an isosurface in order to create a 3D-printed 

tumor mold for each individual tumor (Figure 1A). Based on the tumor orientation in the 

MR images, the whole tumor was correctly positioned in a specific mold that contained slots 

every 2 mm (Figure 1B–G) that were aligned with the MRI slices. These slots were used to 

guide the slicing of the tumor to generate oriented histological slices (Figure 1H–J). The 

detailed protocol is described in Supplementary Materials and Methods, and the workflow is 

shown in Figure 1A–J.

Histology and immunohistochemistry (IHC)

Following the MR imaging protocols, mice received an intraperitoneal injection of 

pimonidazole hydrochloride (60 mg/kg; Hypoxyprobe Inc; Burlington, MA) one hour prior 

to euthanasia. Subsequently, tumors were placed into the 3D-printed mold, fixed in Pen-Fix 

(Thermo Fisher Scientific, Waltham, MA), and cut in 2 mm-tumor sections, which were 

paraffin embedded and then subsequent serial sections of 4 μm were obtained to perform 

histological staining. Standard hematoxylin and eosin (H&E) and immunohistochemical 

staining procedures were performed for pimonidazole and cluster of differentiation 31 

(CD31; also known as platelet endothelial cell adhesion molecule, PECAM-1), which were 

used to define the habitats in histological slides. In addition, IHC was performed for 

carbonic anhydrase IX (CA-IX) and peripilin-1, which were used in additional analyses. 

Detailed protocol is described in Supplementary Materials and Methods.

Co-registration of MRI and histological slices

Histological slices were scanned at 20x magnification (Aperio AT2, Leica Biosystems, 

Buffalo Grove, IL) and loaded in MATLAB (Natick, MA) for co-registration with MRI. 

Optimal 3D-alignment of tumor VOIs from MRI and histological slices was estimated using 

an optimization procedure that was designed and implemented specifically for this project 

(Figure 2A–C). We used an approach that we refer to as ‘non-monolithic’, in which the 
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optimization procedure consists of outer and inner optimization problems. Namely, in each 

step, the outer optimization loop rotates and shifts the 3D-tumor surface reconstructed from 

MRI images and calculates contours obtained by its intersection with equally distant planes 

to mimic tumor slicing. Those contours were used by an inner optimization loop to find 

rotation of corresponding contours from histological slices that minimize the pixel-wise 

Euclidean distance between them. Both optimization loops utilized gradient-based trust-

region-reflective algorithm implemented in MATLAB’s lsqnonlin function (18,19).

Histological image analysis

VisioPharm software (Broomfield, CO) was used to detect the positive pixels for each IHC 

marker (pimonidazole, CD31 and CA-IX) and to segment the H&E images into viable or 

non-viable tumor subregions based on cellular characteristics. Data from H&E, 

pimonidazole and CD31 images were imported into MATLAB (Natick, MA) and used to create 

downsampled histological habitat maps. To do this, images were segmented into super-

pixels of 117.19 μm × 117.19 μm square grid, which corresponds to one voxel size of MRI, 

as detailed in Supplementary material and methods (“Superpixel grid” section). Each super-

pixel has multiple subpixel values. Thus, H&E was used to classify subpixels into viable or 

non-viable (Figure 3A). Pimonidazole positive subpixels were assigned as hypoxia (Figure 

3B), and subpixels positive for CD31 (blood vessels) were assigned as viable (Figure 3C). 

Thus, four habitats were classified as viable-normoxic (green), viable-hypoxic (magenta), 

non-viable hypoxic (yellow) and non-viable normoxic (blue) (Figure 3D and E). Detailed 

protocols are described in Supplementary Materials and Methods, “Histological image 

analysis” and “Superpixel grid” sections.

Additionally, an algorithm was created in VisioPharm software (Broomfield, CO) for the 

identification of adipocytes, as detailed in Supplementary Materials and Methods.

Parametric maps in MRI

All parameter maps were obtained using nonlinear least squares pixel-by-pixel fit 

(Levenburg-Marquardt) (20,21) to the corresponding functions for T2 map, T2* map and 

ADC map from DW-MRI. For T2 and T2* fitting, the signal equation was of the form S(TE) 

= S0 exp (–TE/T2), applied to multiecho (spin or gradient) images spaced by TE. For the 

determination of ADC, multiple b-value images were used and fit according to: S(b) = S0 

exp (–b D), where D is the ADC b is the b-value, and S0 is the intensity of the non-weighted 

pixel. T2 and T2* maps were computed in ParaVision (Bruker Biospin, Inc, Billerica, MA) 

whereas ADC maps were calculated through in-house MATLAB (Natick, MA) code. DCE 

maps were obtained by first extracting time-series curves for each pixel, and performing 

nearest neighbor interpolation by a factor of 8, and then calculating the appropriate 

parameter through analysis of the pre- and post-contrast agent bolus time-series on a pixel-

by-pixel basis also with in-house MATLAB (Natick, MA) code. The slope is numerical ratio: 

ΔST1/Δt., where ΔS is the T1-weighted signal intensity temporal change, and Δt is the 

corresponding time-difference. The area under the time-series curve (AUC) is the sum of the 

entire curve. The time to maximum (TTM) is the time that corresponds to the maximum 

enhancement achieved. The slope, AUC and TTM maps were calculated from the first 20 

mins following contrast injection.
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Statistical clustering

For each pixel within the tumor VOI, map values of the MR relaxation, diffusion and 

semiquantitative DCE map parameters were associated together in a six-dimensional vector 

for the purposes of classification. MRI parameters were weighted equally. Before clustering, 

the parameters were normalized by the mean value of that parameter within the data set. 

Parameter map values within the tumor VOI were used to simultaneously classify four 

clusters, which was decided based on the number of habitats determined through histological 

analysis. With MATLAB (Natick, MA) (Statistics and Machine Learning Toolbox), a maximum 

likelihood estimates of a Gaussian Mixture Model (GMM) was fit using an expectation 

maximization algorithm. A GMM was chosen to account for intravoxel heterogeneity, which 

reflects the complex microenvironment in a voxel. Pixel locations and classification 

information that were determined from clustering were mapped onto the corresponding 

pixels of T2-weighted reference images with color denoting which cluster a pixel belonged 

to. Clustering was performed using only the mpMRI parametric information and explicit 

spatial information was not used as additional constraints. Spatial information was only used 

to identify and track each parameter set.

Statistics

For each tumor type, statistical analyses were performed separately. One-way Analysis of 

variance (ANOVA) followed by Tukey post hoc was used to determine statistical 

significance of MR parameters values between clusters (habitats). That is, during the 

clustering of mpMRI data, each pixel had values of six MR parameters (T2 map, T2* map, 

ADC map, slope, AUC and TTM maps) associated with it. Thus, these pixel values of each 

MR parameters were compared between habitats (viable-normoxic, viable-hypoxic, non-

viable-hypoxic and non-viable normoxic) by ANOVA using MATLAB (Natick, MA). In 

addition, pixel values of each MR parameter were averaged, resulting in a mean value per 

MR parameter per sample for each habitat. These mean MR parameter values were 

compared between habitats by ANOVA using GraphPadPrism 7.0 (San Diego, CA).

MRI and histological habitat-maps comparison algorithm

To minimize the error in the map comparison, the MRI and histological habitat-maps were 

first rigidly co-registered based on their shape and intensity. The registration was restricted 

to rotation and translation only to avoid maps deformation. After co-registration step, each 

category/habitat in both maps was compared using the comparison technique based on a 

sliding window technique, developed in Costanza, and Kuhnert et al., (22,23). Detailed 

protocol is described in Supplementary Materials and Methods.

Results

A novel analysis of mpMRI data and its co-registration with histology, allowed us to 

successfully classify 4 different tumor habitats: viable-normoxic, viable-hypoxic, non-

viable-hypoxic and non-viable normoxic, in pre-clinical breast tumor models.
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3D alignment of MRI and histology

Custom code was developed to estimate the optimal 3D alignment of MRI and histological 

slices. The aligning algorithm tested different angles of MRI reconstructed tumor surface 

inclination (within -5 to +5 degrees limits) together with z-position of the initial slice to 

establish the alignment that minimized the total Euclidean distance between the contours 

from an MRI VOI and corresponding contours from the H&E (Figure 2A–C).

The quality of these fits (Q%) was expressed in terms of the Jaccard index, which was 

calculated as the area (in mm2) classified as tumor by both the MRI outline or aligned 

histology, divided by the total area encompassed by either MRI or histology. Overall, 

samples showed a high quality of fit, with a mean similarity index Q percentage of 83 ± 4 % 

for 4T1 breast tumors (n = 60 slices from 12 tumors) and 80 ± 4% for MDA-MB-231 breast 

tumors (n = 19 slices from 4 tumors). Individual values for each slice are shown in Table 1.

Distinct regions were identified by MRI and confirmed by histology

To generate habitat maps from histology; histological slices, each corresponding to an 

aligned MRI slice, were stained with H&E and with markers of blood vessels (CD31), 

hypoxia (pimonidazole), and hypoxia plus acidity (CA-IX) (24). Pimonidazole staining was 

observed largely in the peri-necrotic viable cell area, while CA-IX staining extended well 

beyond the pimonidazole regions, (Supplementary Fig. S1A–L), especially in 4T1 tumors 

(Supplementary Fig. S1A–F). CA-IX is a hypoxia-inducible factor (HIF) client and is thus 

induced by hypoxia. However, it has also been characterized as “pH-stat” which is 

responsible for acidifying the extracellular pH of tumors (24). This incomplete registration 

between CA-IX and pimonidazole staining has also been reported in other studies (25), 

suggesting that the CA-IX positive/pimonidazole-negative areas were “pseudo-hypoxic”, a 

process wherein cells express hypoxia induced proteins even in the presence of oxygen (26). 

Hence, only pimonidazole was used as a hypoxia marker in the further analyses.

Histological sections were segmented into four (viable-normoxic, non-viable normoxic, 

viable-hypoxic, or non-viable hypoxic) tumor regions, according to cellular characteristic in 

H&E (Figure 3A) and specific staining of pimonidazole (Figure 3B) and CD31 (Figure 3C). 

First, tumors were segmented into viable and non-viable tumor cells based on the staining 

pattern analyzed by a board-certified pathologist in the H&E sections. Non-viable cell 

regions were composed of necrotic cells and cells in the transition from viable to necrosis 

(Supplementary Fig. S2). CD31 stains vascular endothelial cells, and was observed in viable 

tumor regions previously classified by H&E. Hence, pixels positive for CD31 were assigned 

as viable, while pimonidazole positive pixels were used to classify hypoxia. Then, the output 

of the viable, non-viable, pimonidazole, and CD31 masks were used to create the 

histological habitat maps (Figure 3D), which were downsampled to the same resolution as 

that of the proposed habitat maps determined from MRI, using a superpixel grid (Figure 3E).

We then developed an algorithm to segment mpMRI data into different tumor regions (i.e. 

proposed habitats). A GMM was chosen to account for intravoxel heterogeneity, which 

reflects the complex microenvironment in a voxel, clearly observed in histological 

superpixels. Classification of tumor habitats was achieved by clustering six MRI parameter 
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map values simultaneously: a T2 map, T2* map, ADC map, and three DCE-MRI maps 

(slope, AUC, and TTM). The Statistics and Machine Learning Toolbox (MATLAB Release 

2018a The MathWorks, Inc., Natick, MA), was used to perform GMM clustering with 

diagonal covariance type, a regularization value of 0.1, centroid seeding with k-means++, 

and 150 repetitions. Clustering was initiated and performed in the same fashion for both 

tumor models. However, classification of pixels was performed independently for each 

model.

Representative MRI and histology-derived habitat maps for isogenic murine (4T1) model are 

shown in Figure 4A–F and supplementary Fig. S3A–F, while for the xenografted human 

(MDA-MB-231) breast cancer model are shown in Figure 4G–L and supplementary Fig. 

S3G–L. An algorithm based on a “moving/sliding window” (22,23) was used to quantify the 

agreement between the habitat maps from MRI and histology. A score from 0–1 was given 

for the agreement of each corresponding habitat and the average was calculated to obtain the 

total score, as shown in Supplementary Table S1.

Across 26 such analyses, the total moving window score ranged from 0.58 to 0.67. In 

addition, we calculated the scores by comparing all possibilities for incorrect classifications 

in the habitat maps from MRI to those of histology, in order to establish the dynamic range 

between correct and incorrect scores. The average for the incorrect classifications is shown 

in Supplementary Table S1 and the individual values for each sample are detailed in 

Supplementary Table S2.

As shown in Figure 4, the cluster that showed high enhancement in AUC, higher slope, and 

lower TTM (Figure 4A) were localized in the edge of the tumors and classified as a viable 

habitat (green) (Figure 4B), which were compared with the viable tumor cell regions in 

histology (Figure 4C–F). The core of the tumors had relatively lower DCE slope and AUC 

values, which were associated with the non-viable tumor cells regions in histology (blue in 

Figure 4F), showing the highest scores of similarities (>0.72). Clusters that showed 

moderate enhancement in DCE corresponded to two hypoxic areas in histology (yellow and 

magenta in Figure 4F). Same results were observed for the MDA-MB-231 tumor model 

(Figure 4G–L). These proposed habitats, hypoxic viable (H1; magenta) and hypoxic non-

viable (H2; yellow) were analyzed separately or combined into one hypoxic habitat 

(H1+H2). When comparing the maps with H1+H2 combined, the total score for the 

agreement between the proposed habitat maps in MRI and histology was slightly higher.

DCE-MRI maps were the most informative to differentiate the habitats

First, voxel values of each MRI-parameter, such as T2 map, T2* map, ADC map, AUC, 

slope and TMM were compared individually between the four MRI-defined habitats. An 

ANOVA multiple comparison test showed a large number of statistically significant (p 

<0.0001) comparisons between clusters. 216 comparisons were calculated for the 4T1 

samples, and 212 were statistically significant, while 144 comparisons were calculated for 

the MDA-MB-231 samples, and 138 were statistically significant (Supplementary Table S3). 

These results indicate that the GMM algorithm was robust in classifying regions that 

contained distinct characteristics in each set of MRI-parameters.
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Subsequently, the mean values of each MRI-parameter were calculated for each sample, and 

ANOVA was used to compare these mean values between the four MRI-defined clusters for 

4T1 (Figure 5A) and MDA-MB-231 (Figure 5B) tumor models. These analyses indicated 

that only the maps derived from DCE-MRI showed a statistically significant difference 

between the clusters, while the T2, T2* and ADC maps were not significantly different for 

either tumor type. Although each individual MRI parameter is likely to contribute to the 

clustering, the DCE-MRI maps were the most informative to differentiate the habitats. 

Notably, the DCE analyses used were agnostic, and not fitted to a 2-compartment model 

requiring accurate knowledge of the arterial input function (AIF). In fact, histograms for 

slope, AUC and TTM showed different distribution in each habitat (Supplementary Fig. 

S4A–H). Indeed, the spatial distribution observed in the DCE-MRI maps alone 

(Supplementary Fig. S5A) showed a good visual correlation with pimonidazole staining in 

histology (Supplementary Fig. S5B and C).

We thus created new MRI-habitat maps without the ADC maps by clustering the other five 

MRI-parameters into four clusters. The MRI-cluster maps were visually similar to the MRI-

cluster maps created with 6 parameters (Supplementary Fig. S6) and showed similar results 

in further analyses. The comparison of voxel values of each MRI-parameter between 

habitats (clusters) showed that 422 of 432 comparisons were statistically significant for the 

4T1 samples, while 141 of 144 were statistically significant for the MDA-MB-231 samples 

(Supplementary Table S4). When comparing the MRI-parameter mean values for each breast 

tumor type, the DCE-MRI maps remained statistically different between the proposed 

habitats, whereas T2 did not differ significantly for both tumor types. T2* map values were 

higher in non-viable habitat when compared with hypoxic viable or hypoxic non-viable 

habitats (Supplementary Figure 7A and B), and it was statistically significant for the 4T1 

tumors.

The similarity index also showed similar moving/sliding window scores when comparing the 

histology-habitats and MRI-cluster maps (Supplementary Table S5). Supplementary Table 

S6 shows the scores for all incorrect possibilities between habitats from MRI and histology.

DW-MRI did not distinguish viable and non-viable cell habitats

Surprisingly, DW-MRI did not show great value in distinguishing viable from non-viable 

cell habitats in these breast tumors. This was unexpected because diffusional restriction is 

assumed to be due to high cellularity, and thus increased ADC is commonly considered to be 

a marker of necrosis. Regions with non-viable cells showed both high and low ADC values 

(Supplementary Figure S8A and B). A close analysis of histology suggested it might be due 

to the mixing of non-viable cells at different stages of the necrotic process, which were 

classified as non-viable as detailed previously in Supplementary Figure S2.

Alternatively, as these breast cancer models were orthotopic, the tumors cells were 

inoculated into the mammary fat pad with a high content of adipocytes. If these are in 

necrotic volumes, they may diffusionally restrict water and thus also contribute to the low-

ADC values. To investigate this, we performed IHC for perilipin-1, a protein located on 

adipocyte lipid droplets, which positively stained adipocytes within the breast tumor tissue 

(Supplementary Figure S9A and B). Once the presence of adipocytes was confirmed, we 
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quantified the adipocytes in each region that was previously segmented in histology (Figure 

6 A and B). Results showed that the percentage of adipocytes area in the non-viable tumor 

cell region was significantly higher than in the viable tumor cell region (Figure 6C and D). 

Interestingly, it is possible to observe that a region of adipocytes identified in the H&E can 

be detected as a low signal region in the ADC map which is also observed in the T2* map 

(Figure 6 E–G).

Discussion

It is well established that the microenvironment in solid tumors is heterogeneous, 

characterized by inadequate perfusion, hypoxia, and acidosis (2). Hypoxia contributes to 

radiation and chemotherapy resistance and consequently with aggressive tumor phenotypes 

and poor outcomes (12). In vivo knowledge of the spatial distribution of hypoxic and other 

subregions in tumors can potentially provide important prognostic information and improve 

treatment planning. Thus, in this study we aimed to determine whether mpMRI is capable of 

identifying and distinguishing hypoxic, viable, and non-viable tumor habitats. To answer this 

question, there were four separate problems to overcome: 1) Co-registration of MRI and 

histology, 2) Statistical clustering and classification of mpMRI maps into sub-regions, 3) 

Classification of histology for the determination of tumor habitats and 4) Measurement and 

scoring of agreement between imaging and histology. Based on the findings that address 

these questions, we have successfully demonstrated that mpMRI can identify these four 

tumor habitats. More importantly, our study showed that specifically semi-quantitative DCE-

MRI had a great potential in identifying the hypoxic fractions in breast tumors. This is 

clinically relevant, given the relationship with hypoxia and resistance to therapy and the 

common acquisition of DCE-MRI in the workup of breast cancer patients.

In the era of targeted therapies, there is a growing interest in noninvasive techniques for 

monitoring therapy response. Studies have shown that functional imaging modalities, such 

as DW-MRI and DCE-MRI are able to longitudinally assess therapeutic responses indicating 

changes in cellularity and vascularization/perfusion, which precede morphological changes 

(27). An increase in ADC values in response to therapy has been associated with necrosis 

(17), while early changes in DCE-MRI parameters have been related to therapy effectiveness 

(17,27) and prediction of clinical outcome (28). In addition, DCE-MRI (13,29,30) as well as 

different mpMRI approaches (31,32), have been explored to identify hypoxia, which can be 

valuable in guiding therapies, for example as a tool to handle the hypoxia-induced 

chemoradioresistant tumor fraction, that can be integrated to treatment planning with HAPs 

(33) or radiation (34). Positron emission tomography (PET) based radiotracers, such as 18F-

Fluoromisonidazole (18F-FMISO) and 18F-fluoroazomycin arabinoside (18F-FAZA), have 

also been used to identify hypoxia (35), however they suffer from low dynamic range, and 

are not routinely available (36), unlike DCE-MRI.

In the current study, four tumor subregions were identified by clustering mpMRI maps, and 

classified as viable, hypoxic viable, hypoxic non-viable and non-viable tumor cells based on 

the co-registered histology. MR imaging and histology co-registration is complicated by 

tumor shrinkage and deformations resulting from tissue fixation, differences in scale, 

pathology sectioning variability, and errors in determining the correspondence of slices (37). 
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Histology is essential to characterize the in vivo tumor habitats; however, its ability to do 

this is highly influenced by the co-registration accuracy, as tissue deformations may 

influence the spatial correlation of ex vivo histology and in vivo MRI (38). Several strategies 

have been proposed to overcome these limitations, including fiducial markers, ex vivo MRI, 

as well as MRI-based 3D-printed molds (37,39). Here, by using specific 3D-printed molds 

we were able to co-register the slices with high accuracy, showing similarity indexes higher 

than 80%.

As far as the comparisons of habitats between MRI and histology, it is worth mentioning that 

histopathology processing can introduce errors in the direct spatial comparison of the ex 
vivo and in vivo habitats localization. To compare habitat maps between modalities, we used 

a moving/sliding window technique, which mimics human perception. Most of the existing 

comparison methods including Chi Square and Dice Similarity Index compare the maps on 

pixel-to-pixel basis, omitting the global similarity between the compared maps. Hence, the 

compared maps include some extent of noise and miss-registration and those methods may 

fail to capture the global similarity that can only be seen be human eye. Given that we have 

largely satisfied the criterion of MRI and histology co-registration, we demonstrated that the 

distinct regions, as delineated by mpMRI, are in fact habitats. This is perhaps the only 

realistic means to determine the biology of these MRI subregions, and sets the groundwork 

for future application to ensure that MRI can reliably identify tumor habitats when 

histological assessment is not possible.

Different analyses of mpMRI data have been used to segment tumors into distinct 

subregions. Notably, Henning et al. (32) were able to identify an intratumoral subregion that 

increased after radiotherapy, likely as a selective survival due radioresistant phenotype. Four 

subregions were identified using k-means clustering of DW-MRI and T2 data, while IHC 

differentiated two viable subregions into well-vascularized (HIF-1 negative) and hypoxic 

(HIF-1 positive) (32). The radioresistant hypoxic region showed intermediate ADC values 

and T2 lower than the well-vascularized viable region (32). More recently, a novel spatially 

regularized spectral clustering algorithm applied to mpMRI data accurately characterized 

tumor into viable, peri-necrotic (hypoxic) and necrotic subregions, which showed strong 

correlation with co-registered histological slides in a glioblastoma xenograft model (40). By 

imposing spatial constraints on a standard GMM clustering, the methodology showed 

greater accuracy in determining tumor subregions than other partitional clustering 

algorithms, such as k-means, combined fuzzy C-means (FCM) and GMM (40). It is 

important to note that given MRI’s spatial resolution, the presence of different habitats 

within single voxels is expected. By examining superpixels from histology in our analyses, it 

is evident that multiple habitats typically exist within each MRI voxel, thus, a mixture 

model, such as GMM, is preferred as it may provide insight into the mixing of biological 

habitats in tumors. In the current study, spatial constraints were not imposed; which suggests 

that the choice of MRI parameters used in this study was able to distinguish the subtle 

differences in tumor habitats.

Presumably, each individual MRI parameter map is sensitive to different biophysical aspects 

within a given voxel. Results showed that between the six parameters used, DCE-MRI maps 

were the most capable of distinguishing tumor subregions, as they significantly differed 
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between clusters. Interestingly, DW-MRI did not contribute significantly to the identification 

of these subregions, showing similar ADC values between habitats. In addition, T2* was a 

significant indicator of high fat regions, which appeared to also have lower ADC values.

Historically, ADC values have been asserted to reflect tumor cellularity (41) and are 

generally different between viable and necrotic tumor subregions where necrotic clusters 

present high ADC values but differing T2 values (42–44). However, low ADC values have 

also been reported in regions of hypocellularity, which were suggested to be coagulative 

necrotic regions or areas of extreme hypoxia that has previously been reported in a diffusion-

restricted necrotic region (45).

In the current work, the mean ADC values in the non-viable tumor cell regions were 0.00086 

mm2/s for 4T1 and 0.00089 mm2/s for MDA-MB-231 breast tumors. Histologically, these 

areas were composed of mixtures of cells in the transition from viable to necrotic tissue. 

Cells in a final stage of necrosis will show rupture of the cell membrane and release of the 

cytoplasmic contents to the extracellular area. However, non-viable cell regions also contain 

cells where membrane rupture has not yet occurred and therefore continues to restrict the 

diffusion of water; and, consequently these can display continued low ADC values. In 

addition, other reasons may have contributed to these ADC values, such as the presence of 

coagulative necrosis, which is the default necrotic pattern associated with ischemia or 

chronic hypoxia (46), and more likely the presence of adipocytes in the tumor, as we show in 

Figure 6.

Thus, these results suggest that ADC itself cannot be used as a sole parameter to distinguish 

necrotic, hypoxic, and viable regions, at least in the case of progressing tumors used in this 

study, which describe necrosis in the context of progression and not in response to therapy. 

With regard to therapeutic response, ADC may likely increase and may presage tumor 

response given that relative changes in ADC are likely due to induction of cell death by an 

external agent (41,47). This is an important distinction and one that is not experimentally 

addressed herein.

Unlike DW-MRI, the DCE-maps were distinct in viable, hypoxic, and non-viable 

subregions. Several studies have used different DCE-MRI data analyses to delineate the 

spatial intratumoral vascular heterogeneity, defining tumor areas that are well-perfused, 

hypoxic and necrotic (48–51). Interpretations of DCE-MRI can involve qualitative analysis 

that require computational-based curve fitting algorithms using a bi-compartmental model 

with AIF. However, one of its primary challenges is the reproducibility, as the quantification 

is heavily influenced by the definition of an appropriate AIF (52). Semi-quantitative 

parameters seem to be more sensitive in the context of intratumoral heterogeneity, for 

example to subtle physiological differences that distinguish viable and hypoxic regions (48).

Here, we used model-free parameters to capture sensitivity to multiple aspects of 

microvascularity to be able to discern varying degrees of enhancement. For example, larger 

amounts of enhancement in the rim of the breast tumors are obvious in DCE slope maps; 

whereas, slower enhancement is best captured by a TTM map. In fact, the clusters showing 

higher enhancement in AUC, higher slope, and lower TTM were localized in the edge and 
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corresponded to viable cells in histology. This suggests that these cells have greater access to 

blood supply and are in an environment rich in nutrients and oxygen (10). On the contrary, 

poorly perfused areas were localized in the center, and classified as non-viable.

Regions identified as hypoxic tend to have a larger TTM; hence, they are potentially 

identified in TTM maps, and could be missed by a standard DCE analysis that are often 

collected over times that are short compared to the TTM, and therefore overemphasize 

regions with high perfusion, high permeability and high slope. Here, we were able to 

identify two hypoxic subregions, both localized in the peri-necrotic area, but one extending 

to the viable tumor cells region and other concentrated in the non-viable tumor cells region. 

It is known that as a consequence of chronic hypoxia, poorly perfused tumor areas may 

become necrotic, or develop adaptive mechanisms that enable them to survive in acidic and 

hypoxic conditions, such as switching to anaerobic glycolysis as their primary energy source 

(53). Perhaps this population of hypoxic viable tumor cells exhibits a phenotype of therapy 

resistance that may be inferred by MRI. In fact, studies have shown that the spatial 

distribution of viable, hypoxic and necrotic tumor subregions can be determined solely 

based on the uptake curves from DCE-MRI (48,54).

In summary, we present a novel method for co-registration of MRI and histology, and then 

we showed that mpMRI permits the quantification of tumor habitats. This method holds 

great promise for monitoring evolutionary dynamics in tumors. If generally applicable, it 

may provide insight into selection pressures that occur during tumor progression, which 

could be used as a non-invasive imaging method for the monitoring of the Darwinian 

dynamics following therapy in cancer. In addition, the power of semi-quantitative DCE-MRI 

parameter maps in identifying hypoxia presented here is of greater interest, since DCE-MRI 

is already routinely used in the clinic. The ability to incorporate these analyses into routine 

practice for patient management and therapeutic planning is a field worth exploring in future 

investigations.
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Statement of significance

This study demonstrates that non-invasive imaging metrics can be used to distinguish 

sub-regions within heterogeneous tumors with histopathologic correlation.
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Figure 1. Workflow for the 3D-printed tumor mold.
T2-weighted images were used to segment the tumor contours and create a 3D-printed tumor 

mold. (A) Tumor volume of interest (VOI) (red) in MRI T2-weighted image (upper: coronal, 

bottom: axial, field of view 30 × 30 mm2; image size 256 × 256); (B) 3D tumor 

reconstruction; (C) Mold designed in SOLIDWORKS and (D) printed in the 3D printer; (E) 
Tissue dyes were used to help with tumor orientation when inserting tumor into the 3D 

printed mold; (F) Tumor tissue inside the 3D-printed mold; (G) CT image (H) Tumor was 

cut in slices of 2 mm in thickness; (I) Slices were placed into individual cassettes; (J) Each 

tumor slice was cut into histological section of 4 μm and stained with H&E.
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Figure 2. Estimation of the optimal 3D alignment of MRI and histology.
(A) T2-weighted axial slices (field of view 30 × 30 mm2; image size 256 × 256); (B) 3D 

representation of the tumor contour obtained by MRI (grey) and overlay of co-registered 

histological slices; (C) Histology images co-registered to the contours of the tumor on the 

surface on ‘b’.

Jardim-Perassi et al. Page 19

Cancer Res. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Segmentation of histological tumor sections. (A) Tumor section stained with hematoxylin & 

eosin (H&E) and respective masked representation of viable (green) and non-viable (blue) 

cells region; (B) Tumor section stained with pimonidazole and respective masked 

representation of positive pixels for pimonidazole in viable (magenta) and non-viable 

(yellow) regions; (C) Tumor section stained with CD-31 and respective masked 

representation of positive pixels for CD-31 (cyan). (D) Superimposed image classifying 4 

habitats in histology, represented as viable cells in green and non-viable cells in blue, 

hypoxic areas in viable cells regions in magenta and hypoxia areas in non-viable cells 

regions in yellow. (E) Ground truth habitats map from histology, created using a super-pixel 

of 117.19 μm × 117.19 μm square grid to downsample the image to an equivalent MRI 

resolution.
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Figure 4. Representative examples of the corresponding habitat maps from MRI and histology. 
4T1 tumor is shown in (A) and MDA-MB-231 is shown in (G).
Six MRI parameter maps were obtained [T2-map, T2*-map, Apparent diffusion coefficient 

(ADC), Slope, Area under the curve (AUC) and time to max (TTM)]. Field of view 30 × 30 

mm2; image size 256 × 256; Tumor volume of interest (VOI) is shown in red. (B and H) 
These six MRI parameter maps were clustered by using a Gaussian Mixture Model (GMM) 

to create the Habitat Maps. Cluster green shows high enhancement in DCE and cluster 

region blue shows low enhancement in DCE. Magenta and yellow clusters show moderate 

enhancement in DCE. Histological images ((C and I) H&E; (D and J) pimonidazole and (E 
and K) CD31) were used to create downsampled habitat-maps derived from histology (F 
and L) in the same resolution of MR images. The colors in histology (ground truth) habitat 

maps are delineated by viable cells region in green, non-viable cells region in blue and 

hypoxic areas in viable or non-viable regions in magenta and yellow, respectively.
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Figure 5. 
Mean values of each parameter from habitat maps generated by clustering six MRI-

parameters [T2-map, T2*-map, Apparent diffusion coefficient (ADC), Slope, Area under the 

curve (AUC) and time to max (TTM)].Mean values of each parameter were compared 

between clusters (habitats) for the (A) 4T1 (n=6 samples) and (B) MDA-MB-231 (n=4 

samples) tumor samples. Graphs represent mean and SD. p-values were obtained using one-

way analysis of variance (ANOVA) followed by the Tukey test for comparison of mean 

values between regions (a-c indicate p<0.05 between groups).
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Figure 6. 
Identification of adipocytes in each segmented region (viable, hypoxic viable, hypoxic non-

viable, non-viable) in histological samples. (A) Adipocytes observed in non-viable cells 

region; (B) Adipocytes observed in viable (#) and non-viable (*) cells region; (C and D) 
Relative area of adipocytes (%) in 4T1 and MDA-MB-231 histological tumor samples. 

Graphs represent mean and SD. p-values were obtained using one-way analysis of variance 

(ANOVA) followed by the Tukey test for comparison of mean values between regions 

(*p<0.05; ** p<0.01; ***p<0.001; ****p<0.0001 (n=6 histological samples for 4T1 and 

n=8 histological samples for MDA-MB-231). (E) Representative example of a MDA-

MB-231 sample showing the adipocytes identified in histology (masked in yellow), which 

can be observed as a region with low signal in the corresponding ADC Map in (F) and is 

also visible in the T2* map in (G) (MR images = field of view 30 × 30 mm2; image size 256 

× 256).
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Table 1.

Quality of fit (Jaccard index; Q%) for each corresponding slice of MRI and histology.

Sample ID Pitch 
(angle in 
degree)

Roll 
(angle in 
degree)

Fit quality (Q)

Histological slices

MDA-MB-231 Average (%) 1st slice 2nd slice 3rd slice 4th slice 5th slice 6th slice 7th slice

MDA-1 −2.08 −4.94 84 83 77 90 85

MDA-2 3.34 4.99 78 81 71 80 74 82

MDA-3 1.87 −4.97 83 86 82 82 81

MDA-4 −0.99 −1.44 75 67 73 79 73 82 76

4T1

4T1–1 1.55 −0.93 90 89 92 90 90

4T1–2 −4.92 1.54 75 76 87 83 54 76

4T1–3 4.99 −4.6 79 57 86 92 80

4T1–4 3.36 −4.84 81 78 89 81 81 88 70

4T1–5 −0.06 5.00 80 76 86 83 74

4T1–6 4.98 −4.67 85 85 86 86 84

4T1–7 0.61 −4.64 82 86 79 78 91 77

4T1–8 −0.73 2.05 82 78 88 88 85 85 69

4T1–9 0.00 0.00 85 74 85 91 91

4T1–10 −3.82 4.63 88 89 93 89 90 87 82 86

4T1–11 1.40 4.95 83 86 87 85 83 75

4T1–12 0.49 −4.99 83 80 84 81 85 78 89
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