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Abstract
Biological growth is often driven bymechanical cues, such as changes in external pres-
sure or tensile loading. Moreover, it is well known that many living tissues actively
maintain a preferred level of mechanical internal stress, called the mechanical home-
ostasis. The tissue-level feedbackmechanismbywhich changes in the localmechanical
stresses affect growth is called a growth law within the theory of morphoelasticity,
a theory for understanding the coupling between mechanics and geometry in grow-
ing and evolving biological materials. This coupling between growth and mechanics
occurs naturally inmacroscopic tubular structures, which are common in biology (e.g.,
arteries, plant stems, airways). We study a continuous tubular system with spatially
heterogeneous residual stress via a novel discretization approach which allows us
to obtain precise results about the stability of equilibrium states of the homeostasis-
driven growing dynamical system. This method allows us to show explicitly that the
stability of the homeostatic state depends nontrivially on the anisotropy of the growth
response. The key role of anisotropymay provide a foundation for experimental testing
of homeostasis-driven growth laws.
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1 Introduction

Biological tissues exhibit a wide range of mechanical properties and active behavior.
A striking example is biological growth in response to the tissues mechanical envi-
ronment. Artery walls thicken in response to increased pressure (Berry 1974; Goriely
and Vandiver 2010), axons can be grown by applying tension (Lamoureux et al. 1992;
Recho et al. 2016), and plant growth is driven by various mechanical cues (Goriely
et al. 2008; Boudaoud 2010). The general idea underlying these phenomena is that
the internal stress state is a stimulus for growth. As stress is rarely uniform, mechani-
cally induced growth often coincides with differential growth, in which mass increase
occurs non-uniformly or in an anisotropic fashion. In turn, differential growth produces
residual stress, an internal stress that remains when all external loads are removed,
appearing due to geometric incompatibility induced by the differential growth. Resid-
ual stress has been observed in a number of physiological tissues, such as the brain
(Budday et al. 2014), the developing embryo (Beloussov and Grabovsky 2006), arter-
ies (Fung and Liu 1989), blood vessels (Fung 1991), solid tumors (MacArthur and
Please 2004), and in a wealth of examples from the plant kingdom (Goriely 2017). In
many cases, residual stress has been found to serve a clear mechanical function; for
instance in regulating size and mechanical properties.

Many living tissues actively grow in order to maintain a preferred level of internal
residual stress, termed mechanical homeostasis. This phenomenon is characterized
by growth being induced by any difference between the current stress in the tissue
and the preferred homeostatic stress. Mechanically driven growth toward homeostasis
poses several interesting and important questions, at the biological, mechanical, and
mathematical level. For instance, what determines the homeostatic stress state? At the
cellular level, the growth response may be genetically encoded, with a homeostatic
state manifest by differential cellular response to mechanical stimuli. From a contin-
uum mechanics point of view, a residually stressed configuration is typically thought
of as corresponding to a deformation from an unstressed configuration; however, it
is not clear that such a deformation should exist to define a homeostatic state. Con-
nected to this is a question of compatibility: is it actually possible for a system to reach
mechanical homeostasis? For example, the boundary of an unconstrained tissue will
always be traction free, and thus, if the homeostatic stress for those boundary cells is
nonzero, then the system can never completely reach homeostasis. From a dynamics
point of view, there is a natural question of stability: is the homeostatic state stable, i.e.,
if the system is perturbed from its homeostatic equilibrium, is it able to grow in such
a way to return to this state? There is also a practical issue of connecting experiment
to theory: how does one quantify the homeostatic state and form of growth response?

Mathematical modeling can be of significant value in addressing such questions and
in suggesting potential experimental measures to quantify the properties of homeosta-
sis. In the simplest and most widely used form, the mathematical description involves
a growth law of the form

G−1Ġ = K : (T − T∗). (1)
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Here overdot represents time derivative, G is a growth tensor, characterizing the
increase or decrease in mass as a local property, T is the Cauchy stress tensor, T∗
is the preferred homeostatic stress tensor, and K is a fourth-order tensor characteriz-
ing the growth response rate due to differences in current and preferred stress. Laws of
the form (1), or slight variations thereof, in which growth is coupled to Cauchy stress,
have been examined by a number of authors (Vandiver and Goriely 2009; Bowden
et al. 2016; Ramasubramanian 2008; Taber 2008), though the most appropriate form
of growth law is a much-debated issue (Taber 1995; Ambrosi et al. 2011; Jones and
Chapman 2012; Goriely 2017). An alternative but related approach involves coupling
growth and Eshelby stress (Ambrosi and Guana 2005) based on thermodynamical
arguments (Epstein 2000; Erlich et al. 2015). Attempts to restrict the form of growth
laws through thermodynamical considerations such as the Coleman–Noll procedure
(Coleman and Noll 1963) have been of limited success due to the inherent thermody-
namical openness and non-equilibrium nature of biological systems (Maugin 1999;
Lebon et al. 2008). The integration of micro-mechanical models with tissue-level
modeling has also been difficult, partly because the lack of periodicity and crystal
symmetry in biological tissues makes the application of homogenization techniques
difficult (Chenchiah and Shipman 2014). Growth dynamics that depend on the current
stress state are inherently challenging to study analytically. Both stress and growthwill
tend to be spatially dependent, with stress being determined through the solution of
a force balance boundary-value problem, and thus, any model will by nature involve
a partial differential equation system. The situation is simplified somewhat by the
slow-growth assumption, which states that growth occurs on a much longer timescale
than the elastic timescale and hence the system is always in a quasi-static mechanical
equilibrium.

In this paper, we study mechanically driven growth in the context of growing tubu-
lar structures. One motivation for a cylindrical geometry is that such structures are
ubiquitous in the biological world, from plant stems (Goriely et al. 2010) to axons
and airways (Moulton and Goriely 2011a, b), and exhibit diverse mechanical behav-
ior. Working within a constrained geometry will also enable us to gain qualitative
insight into the dynamics of structures with growth driven by mechanical homeosta-
sis and to formulate a basic framework for studying the stability of a homeostatic
state. Even in an idealized geometry, the full growth dynamics still consists of a set of
partial differential equations, with mechanical equilibrium requiring the solution of a
boundary-value problem at each time step, and a highly nonlinear growth evolution for
components of the growth tensor. There is no mathematical theory, yet, that allows for
such an analysis. Our approach is therefore to devise a discretization through a spatial
averaging scheme that converts the system to a much more manageable initial-value
problem, to which we can apply standard techniques from dynamical systems. The
discretization we propose consists of defining annular layers of the tubular structure,
such that growth is uniform in each layer, driven by averaged values of the stress
components in a law of the form (1). While this approach enables us to study effi-
ciently properties of the continuous (non-discretized) system as the number of layers
increases, for a smaller number of layers it is also a useful model of a multilayered
tube commonly found in many biological systems.
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F=AG

0 t

Fig. 1 Sketch of kinematic setup

This paper is structured as follows. In Sect. 2, we discuss the general deformation
and growth dynamics for a tubular structure that is homogeneous in the axial direction.
In Sect. 3, we focus on a tubular systemmade of two layers, illustrating the main ideas
of our discretization approach and illustrating the rich dynamics of this system. In
Sect. 4, we generalize from two to N layers. Here we find a rapid convergence of
behavior as the number of layers increases and investigate how the anisotropy of the
growth affects the stability.

2 Continuous Growth Dynamics in Cylindrical Geometry

2.1 Kinematics

We consider a cylindrical tube, consisting of an incompressible isotropic hyperelastic
material, the inner wall of which is attached to a fixed solid nucleus, with the outer wall
unconstrained (see Fig. 1). We restrict to growth and deformations only in the cross
section, such that the cylindrical geometry is always maintained and there is no axial
strain. Moreover, we assume that there are no external forces, so that any deformation
is caused purely by growth and the elastic response.

Geometrically, we work in a planar polar coordinate basis
{
eR, eθ

}
(the same basis

vectors apply to both initial and current configurations), in which the deformation can
be described by the map x : B0 → Bt given by:

x = r
(
R0

)
eR . (2)

For this map, the deformation gradient is

F = r ′ (R0
)
eR ⊗ eR + r

R0 e
θ ⊗ eθ . (3)
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The elastic deformation gradient takes the form

A = αReR ⊗ eR + αθeθ ⊗ eθ . (4)

Incompressibility requires detA = 1; we thus define α := αθ , so that α−1 = αr . We
assume a diagonal growth tensor

G = γ ReR ⊗ eR + γ θeθ ⊗ eθ , (5)

where the difference between radial growth (γ R > 1) and circumferential growth
(γ θ > 1) is shown schematically in Fig. 2. In matrix form (with the basis

{
eR, eθ

}

implied), we have

F =
( dr

dR0 0
0 r

R0

)
, A =

(
α−1 0
0 α

)
, G =

(
γ R 0
0 γ θ

)
. (6)

In the initial (stress-free) reference configuration B0, the inner cylinder wall is
located at R0 = A0 and the outer wall is located at R0 = B0. From the morphoelastic
decomposition F = AG, we find r ′ = γ R/α and r/R0 = αγ θ . By eliminating α, we
obtain

r
(
R0

)
r ′ (R0

)
= γ R

(
R0

)
γ θ

(
R0

)
R0. (7)

Imposing the boundary condition r (A0) = A0, due to the unmoving solid nucleus,
we can integrate (7) as

r =
√

A2
0 + 2

∫ R0

A0

γ R(R̃)γ θ (R̃)R̃ d R̃. (8)

The mathematical and biological significance of our solid nucleus setup is discussed
in Sect. 4.5.

circumferential growth
γR = 1, γθ > 1

isotropic growth
γR = γθ = γ, γ > 1

radial growth
γR > 1, γθ = 1

Fig. 2 Illustration of isotropic and anisotropic growth
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2.2 Mechanics

Given that all deformations are diagonal in the coordinate basis considered here, the
Cauchy stress is also diagonal

T = T RReR ⊗ eR + T θθeθ ⊗ eθ . (9)

LetW
(
αR, αθ

)
be the strain-energy density, which relates to the Cauchy stress tensor

by T = AWA − p1, where p is the Lagrange multiplier enforcing incompressibility.
In components, this reads

T RR = αR ∂W

∂αR
− p , T θθ = αθ ∂W

∂αθ
− p. (10)

With no external loads, mechanical equilibrium requires div T = 0, which takes the
form

∂T RR

∂r
= T θθ − T RR

r
. (11)

Defining Ŵ (α) := W
(
α−1, α

)
, we have

T θθ − T RR = αŴ ′(α). (12)

The above formulation is valid for all isotropic, incompressible material. To make
progress in our analysis, we further restrict it to the simplest possible material model
of a neo-Hookean quadratic strain-energy density given by:

W = μ

2

(
α2
R + α2

θ − 2
)

, (13)

whereμ in small deformations can be identifiedwith the shearmodulus of thematerial.
In this case,

Ŵ (α) = μ

2

(
α2 + α−2 − 2

)
, (14)

for which (11) becomes

dT RR

dR0 = 2μγ R

R0γ θ

[

1 −
(
R0

)4 (
γ θ

)4

r4

]

. (15)

Alongwith (15), we impose T RR (B0) = 0, i.e., the outer edge is stress-free. Equations
(7) and (15), along with boundary condition T RR (B0) = 0, completely determine the
deformation and stress state. Due to the fixed inner boundary condition, for a given
growth tensor (7) can be integrated separately, i.e., the deformation is determined
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independently from the stress, and the radial Cauchy stress is then determined by inte-
grating (15). Once the radial stress component T RR is determined, the circumferential
component satisfies

T θθ = T RR + 2μr2
(
R0

)2 (
γ θ

)2

[

1 −
(
R0

)4 (
γ θ

)4

r4

]

. (16)

Note also that for constantγ R andγ θ , these integralsmaybe performed analytically,
giving explicit expressions for the stress and deformation in terms of the growth. As
we show later, the same holds when extending from one layer to multiple layers; if
the growth in each layer is constant, the stress components may be written explicitly.
It is this fact that we exploit below in formulating a discretized growth dynamics.
This is the main motivating reason for the fixed core geometry we consider. Under
different boundary conditions, the deformation and stress would be coupled, requiring
for instance a root finding exercise to determine the outer radius for which the stress
boundary condition is satisfied. In such a case, the framework below applies at the
expense of added computational complexity.

2.3 Growth Law

We now impose a homeostasis-driven growth law of the form (1). In the plane polar
geometry, this takes the form

γ̇ R =
{
K RR

[
T RR − (

T RR)∗] + K Rθ
[
T θθ − (

T θθ
)∗]}

γ R ,

γ̇ θ =
{
K θR

[
T RR − (

T RR)∗] + K θθ
[
T θθ − (

T θθ
)∗]}

γ θ .
(17)

Here K RR := KRRRR , K Rθ := KRRθθ , K θR := KθθRR , K θθ := Kθθθθ are the
only non-vanishing components of the fourth-order tensor K , and are assumed to be
constant in space and time.

2.4 Discretization Approach

For given homeostatic stress values and components of K , the growth dynamics is
fully defined, with the growth components evolving according to (17). Even in the sim-
plified cylindrical geometry, this comprises a system of nonlinear partial differential
equations. Moreover, viewing the dynamics as a discrete process is still complicated
by the fact that at each time step updating the growth requires knowing the stress com-
ponents, which requires integration of (15), which requires integration of (7), which
cannot be done analytically for general spatially dependent γ R and γ θ .

However, as stated above, for constant γ R and γ θ , the integrals determining stress
may be computed analytically. This suggests a discretization process whereby the
annular domain is divided into discrete layers, eachwith constant growth, and such that
the growth in each layer evolves according to averaged values of the stress. In this way,
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analytical expressions may be determined for both the stress and the average stress,
and hence, the dynamics is reduced to a set of ordinary differential equations for the
growth components. The inhomogeneity of the full model is replaced by a piecewise
homogeneous model. This preserves the key idea of inhomogeneity (allowing, for
instance, circumferential growth to be higher near the nucleus than away from it), but
is more analytically tractable and allows for precise statements about the long-term
dynamics, stability, and qualitative investigation such as the influence of radial versus
circumferential stress to the growth dynamics.

3 Growth Dynamics for 2-Layer System

3.1 Kinematics

Wefirst consider two elastic layers attached to a solid nucleus and in perfectmechanical
contact at their interface. In the initial reference configuration B0, the inner wall has
the radial coordinate R0 = A0, the middle wall at R0 = A1 and the outer wall at
R0 = A2. In the current configuration Bt , the same material points have coordinates
that are r (A0) = A0, r (A1) = a1 and r (A2) = a2 (see Fig. 3).

We impose that in the reference configuration the two annular layers enclose the
same area πΔ2 . The initial reference radii of the two rings thus satisfy

Δ2 = A2
2 − A2

1 = A2
1 − A2

0 . (18)

The deformation follows the same equations formulated in Sect. 2.1, but with piece-
wise homogeneous growth

γ
(
R0

)
=
{

γ1 if A0 ≤ R0 ≤ A1,

γ2 if A1 < R0 ≤ A2 .
(19)

where γ1 and γ2 are constant. Note that our convention is to use subscript to denote
different layers and superscripts for the coordinate basis index. Here, we have imposed

Fig. 3 Kinematic setup for the two-layer system. The innermost layer is attached to an unmoving nucleus
(a0 = A0) and the boundary condition at the outer layer is no pressure T RR (A2) = 0
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isotropic growth, i.e., γ R
1 = γ θ

1 = γ1 and γ R
2 = γ θ

2 = γ2. The same ideas apply for
anisotropic growth, but this simplification reduces the dynamics to a 2D phase space
for γ1, γ2. In principle, one could also have piecewisematerial properties and piecewise
K values; however, our objective is to consider the dynamics in a reduced parameter
space, hence the only distinction between the layers is the different growth rates.

The deformation in each layer comes from integrating (8), subject to r (A0) = A0
and r (A1) = a1. We obtain

r
(
R0

)
=

⎧
⎪⎪⎨

⎪⎪⎩

r1
(
R0

)
:=

√
A20 + γ 2

1

[(
R0

)2 − A20

]
if A0 ≤ R0 ≤ A1 ,

r2
(
R0

)
:=

√
A20 + γ 2

1 Δ2 + γ 2
2

[(
R0

)2 − A21

]
if A1 < R0 ≤ A2 .

(20)

Note that at R0 = A1, r is continuous but not differentiable.

3.2 Mechanics

The stress balance (15) determines the radial stress as

T RR
(
R0

)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T RR
1

(
R0

)
:= T RR

2 (A1) + μ

∫ R0

A1

2

R̃

(

1 − R̃4γ 4
1

r41

)

d R̃, R0 ∈ [A0, A1],

T RR
2

(
R0

)
:= T RR (A2)︸ ︷︷ ︸

0

+ μ

∫ R0

A2

2

R̃

(

1 − R̃4γ 4
2

r42

)

d R̃, R0 ∈ [A1, A2].
(21)

From (16), we then obtain the circumferential stress T θθ
(
R0

)
:

T θθ
(
R0

)
= (22)

⎧
⎪⎪⎨

⎪⎪⎩

T θθ
1

(
R0

) := T RR
1

(
R0

) + μ
2r21

γ 2
1 (R

0)
2

[
1−

(
R0

)4
γ 4
1

r41

]
, R0 ∈ [A0, A1],

T θθ
2

(
R0

) := T RR
2

(
R0

) + μ
2r22

γ 2
2 (R

0)
2

[
1 −

(
R0

)4
γ 4
2

r42

]
, R0 ∈ [A1, A2].

The expressions T RR
1 and T RR

2 as well as T θθ
1 and T θθ

2 can be determined analyti-
cally as functions of A0, A1, A2, μ, γ1 and γ2, though the exact expressions are long
and have been suppressed here.

We note that the radial stress component is continuous at the interface between
layers. This can be seen by evaluating T RR

2 at A1 in (21), which gives T RR
1 (A1) =

T RR
2 (A1). The circumferential stress, however, is discontinuous at the interface unless

the growth rates of adjacent layers are equal, γ1 = γ2. See also Fig. 4.
Sample stress profiles for varying values of γ1 (with γ2 = 1) are given in Fig. 4.

With γ1 > 1, the inner layer grows uniformly; hence, its reference state is a uniformly
expanded annulus; however, it is constrained by attachment to the core and to the
ungrowing outer layer. Thus the inside of the inner layer is in radial tension (the inner
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Fig. 4 Radial (top) and
circumferential (bottom)
components of Cauchy stress for
A0 = 1, A1 = √

5/2, A2 = 2,
Δ = √

5/2, μ = 1, γ2 = 1 and
γ1 as indicated
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  R0

  R0

edge is “stretched” radially to match the core), the outside is in radial compression,
and the entire layer is in compression in the hoop direction. The outer layer, on the
other hand, is forced to expand circumferentially to accommodate the growing inner
layer and is in circumferential compression; this is balanced by a compression in the
radial direction. The inverse effect occurs with γ1 < 1.

3.3 Growth Law

We define the average stresses T1 and T2, for both radial and circumferential stress
components, as

T1 = 2

Δ2

∫ A1

A0

T1
(
R̃
)
R̃d R̃ , T2 = 2

Δ2

∫ A2

A1

T2
(
R̃
)
R̃d R̃. (23)

Our approach is to modify the growth dynamics so that the (constant) growth in each
layer evolves according to the averaged stress values. That is, we study the system

γ̇1 = γ1

{
K RR

[
T RR
1 − (

T RR
1

)∗] + K θθ
[
T θθ
1 − (

T θθ
1

)∗]}

γ̇2 = γ2

{
K RR

[
T RR
2 − (

T RR
2

)∗] + K θθ
[
T θθ
2 − (

T θθ
2

)∗]}
.

(24)

Note that the isotropic growth enforces K RR = K θR and K θθ = K Rθ ; hence, there
are only two (rather than four) growth rate constants K RR and K θθ . To further reduce
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the parameter space, we make the additional assumption that the homeostatic stress
values are equivalent in layers 1 and 2, that is

(
T RR)∗ := (

T RR
1

)∗ = (
T RR
2

)∗ and
(
T θθ

)∗ := (
T θθ
1

)∗ = (
T θθ
2

)∗
. (25)

We emphasize that while T RR
i and T θθ

i for i = 1, 2 are averages over actual stresses
according to (23), the homeostatic values

(
T RR
i

)∗
and

(
T θθ
i

)∗
for i = 1, 2 are pre-

scribed values that may, but need not, correspond to averages of physically realizable
stresses.

To facilitate the analysis, we rescale all stress quantities by a characteristic value
σ , e.g., T̂ RR = T RR/σ , and rescale time as t̂ = tσK θθ . We also introduce

K̃ := K RR/K θθ and T̂ ∗ := K̃
(
T̂ RR

)∗ +
(
T̂ θθ

)∗
. (26)

The parameter K̃ is a measure of anisotropy of themechanical feedback, i.e., a weight-
ing of the contribution of radial versus circumferential stress to the (isotropic) growth
response. The rescaled growth law is then

γ̇1 = γ1

[
K̃ T RR

1 + T θθ
1 − T ∗] ,

γ̇2 = γ2

[
K̃ T RR

2 + T θθ
2 − T ∗] .

(27)

Here we have re-defined the overdot as derivative with respect to the rescaled time,
and we have dropped all hats for notational convenience. Note that all stress averages
depend nonlinearly on γ1 and γ2, but not on the spatial coordinate R0, which has been
integrated out.

3.4 Stability Analysis

To investigate the behavior of the growth dynamics, we can now apply standard tech-
niques of dynamical systems to (27); that is we seek equilibria satisfying γ̇1 = 0 and
γ̇2 = 0 and compute their stability. Let

{
γ
eq
1 , γ

eq
2

}
denote an equilibrium state. The

nonlinear nature of the dependence of T RR
1 , T RR

2 , T θθ
1 and T θθ

2 on γ1, γ2 makes it
difficult to compute analytically the number and location of equilibrium states as a
function of the parameters K̃ and T ∗ and we shall use numerical methods to this end.

For a given equilibrium state, we then perform a linear stability analysis. Let 0 <

ε 	 1 and expand as

γ1 = γ
eq
1 + εγ 1 + O

(
ε2
)

,

γ2 = γ
eq
2 + εγ 2 + O

(
ε2
)

.
(28)
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Introducing γ = (γ1, γ2) to describe the state of the system (27), its linearly expanded
version (to order ε) takes the form

γ̇ = Jγ , (29)

where the Jacobian matrix has entries

Ji j =
[

∂γ̇i

∂γ j

]

γ=γ eq
. (30)

Stability is determined in the usual way by the form of eigenvalues of J, which are the
roots of the characteristic equation

0 = (J11 − λ)(J22 − λ) − J12 J21. (31)

3.5 Bifurcation Diagram

The number of equilibrium states and their stability depend on the values of K̃ and T ∗.
In Fig. 5a, we present a phase diagram that shows four regions with distinct dynamical
behavior. These can be summarized as follows:

– Region I has four equilibrium states, of which one is a stable node, two are saddles,
and the fourth is either an unstable node or an unstable focus.

– Region II has four equilibrium states: two are saddles and the other two are either
stable nodes or a stable focus and stable node. A Hopf bifurcation at the interface
of Regions I & II transforms the unstable focus into a stable focus.

– Region III has two equilibrium states, one of which is a stable node, the other a
saddle node. At the interface between Regions II and III, a saddle node bifurcation
occurs that annihilates the stable node and saddle node in Region II.

– Region IV has no equilibrium states.

In Fig. 5b, we showphase portraits for the selected points P1–P5.Nullclines are plotted
as blue and green curves, illustrating the appearance and disappearance of equilibrium
states as categorized above.

As is evident in Fig. 5, there is a wealth of possible dynamical behavior exhibited in
this system. That an idealized two-layer model with isotropic growth and equivalent
homeostatic values in each layer has such a rich structure highlights a more generic
complex nature of mechanically driven growth. Our intent is not to fully categorize
the behavior; rather this system should be seen as a paradigm to illustrate complex
dynamics. Nevertheless, several observations are in order.

One observation from the phase portraits in Fig. 5b is that unbounded growth is not
only possible but “common,” at least in the sense that many parameter choices and
initial conditions lead to trajectories for which γi → ∞. Perhaps the most natural
initial condition is to set γ1 = γ2 = 1, which corresponds to letting the system evolve
from an initial state with no growth. Examining the trajectories in Fig. 5b shows that
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K
~

T*

K
~

T*

K
~

T* K
~

T*

(a)

(b)

K
~

T*K
~

T*K
~

T*

Fig. 5 a Bifurcation diagram for two layered actively growing piecewise homogeneous system. b Equilib-
rium states and their dynamical characterization. Parameter values were A0 = 1, A1 = 1.562, A2 = 1.970

123



3232 A. Erlich et al.

points P1 and P2 would not evolve toward the single stable state, but rather would
grow without bound.

Another point of interest is that while regions I, II and III contain stable equilibria,
the stable states in Regions I and III satisfy γ

eq
1 γ

eq
2 < 1. These are equilibria for

which one of the layers has lost mass (at least one of the γi < 1). Growth in both
layers requires both γi > 1, and we find that such an equilibrium only exists in a small
subset of Region II, shaded dark blue in Fig. 5. We further see that T ∗ < 0 in the
dark blue region, and K̃ approximately in the range 10–17. This implies that in order
for a stable equilibrium to exist where both layers have grown, the homeostatic stress
must be compressive in one or both components, and the system must respond more
strongly to radial than to circumferential stress.

Admissible Versus Inadmissible Homeostatic Values. In Fig. 5, we imposed the home-
ostatic stress T ∗ to be equal in each layer. Moreover, T ∗ could take any value and thus
had no direct correspondence to a physically realizable stress state. We now define
an admissible homeostatic value as the average over a stress field that can be physi-
cally realized with the given geometry and boundary conditions. Such an admissible
homeostatic stress state derives from a homeostatic growth, i.e., a given growth field
γ ∗ = (

γ ∗
1 , γ ∗

2

)T defines a spatially dependent stress, and averaging according to (23)
then gives admissible values for the homeostatic stress:

T RR
i

(
γ ∗) and T θθ

i

(
γ ∗) , i = 1, 2 . (32)

An inadmissible homeostatic value is one that cannot be expressed as an average over
an actual stress, i.e., there exists no γ ∗ defining T

∗
.

Growth Law with Admissible Homeostatic Values. To conclude our analysis of the
two-layer system, we return to the same growth law, but for admissible homeostatic
values. Due to the spatial inhomogeneity of the stress profile in the two-layer cylinder
(see for instance Fig. 4), it is not possible to have equal homeostatic values in each
layer 1 and 2. The growth law with admissible homeostatic values reads

γ̇1 = γ1

{
K̃
[
T RR
1 (γ ) − T RR

1

(
γ ∗)] +

[
T θθ
1 (γ ) − T θθ

1

(
γ ∗)]} ,

γ̇2 = γ2

{
K̃
[
T RR
2 (γ ) − T RR

2

(
γ ∗)] +

[
T θθ
2 (γ ) − T θθ

2

(
γ ∗)]} .

(33)

The phase space for this system is now inherently three dimensional, as the homeostatic
stress values are defined by the two choices γ ∗

i as opposed to the single value T ∗. Here
we restrict our analysis to a single example, with γ ∗

1 = 5.867, γ ∗
2 = 3, and K̃ = 23.5,

thus representing a preferred state defined by significant growth in each layer, and
with strongly anisotropic growth dynamics due to the large value of K̃ . The dynamics
are presented in Fig. 6. The contour plot in Fig. 6a shows that there are in total four
equilibrium states. The streamlines and trajectory plots in Fig. 6b, c reveal that the
equilibria consist of a stable spiral, two saddles, and one stable node. It is interesting
to note that P4, which is the equilibrium state at which both γ

eq
i = γ ∗

i , is unstable; that
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Fig. 6 Trajectories and layer sizes for highly anisotropic growth law with admissible homeostatic state. a
Contours for γ̇1 = 0 and γ̇2 = 0 for the system 6. As can be confirmed from the stream plots b, c, there is
one stable spiral, two saddles, and one stable node. The saddle point P4 in (b) is the homeostatic equilibrium(
γ ∗
1 , γ ∗

2
)
. Parameters: μ = 2, Δ = √

3 (A0 = 1, A2 = √
7). K̃ = 23.5. Homeostatic growth: γ ∗

1 = 5.867,
γ ∗
2 = 3

is, the system does not remain at the equilibrium state through which the homeostatic
values were defined.

Included in Fig. 6b are three sample trajectories, with the size of each layer shown
at different times, and illustrative of the variety of dynamical behavior. The green
trajectory quickly settles to a stable state marked by significant resorption (both γi <

1); the blue and red trajectories sit outside the basin of attraction of P1 and show an
initial period of resorption followed by significant growth. The red trajectory is in the
basin of attraction of the stable focus and thus oscillates between growth and decay
as it approaches the stable point at P3, while the blue trajectory, just outside the basin
of attraction, ultimately grows without bound, never reaching an equilibrium state.

4 Growth of Discrete N Layer System

Next, we generalize the dynamical system of the previous section from two to N layers
where growth and stresses are constant throughout each layer. If N is sufficiently large,
a system of N layers can be used as a suitable spatial discretization of a continuous
growth profile on which precise statements can be obtained. In this case, we can
generalize Eq. (33) to N coupled ODEs. We will analyze the stability of this system
near a homeostatic equilibrium and show to what extent the results obtained for N = 2
remain unchanged as the discretization is refined (N increases), which informs the
stability of the continuous (N → ∞) system.

A major difference compared to the two-layer model is the method to obtain home-
ostatic values. Previously, homeostatic values were prescribed via the homeostatic
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growth values γ ∗
1 , γ

∗
2 . In the present model, homeostatic values are obtained by assum-

ing the existence of a prescribed continuous homeostatic growth profile γ ∗ (R0
)
. The

homeostatic values
{
γ ∗
i

}
are then obtained through local averaging of the prescribed

profile γ ∗ (R0
)
over an interval by generalizing Eq. (23). These values are admissible

by construction.
Since growth is taken as constant in each layer, the stresses can be determined fully

analytically and a stability analysis can then be performed. The stability analysis will
inform under which conditions the dynamical systemwill either relax to a homeostatic
state after a small perturbation or lead to an instability.

4.1 Kinematics

We consider N perfectly connected annuli, separated by N +1 interfaces, which in
the initial reference configuration have the radial coordinate values {A0, A1, . . . , AN }
as sketched in Fig. 7. The K -th annulus is defined by AK−1 ≤ R ≤ AK for K ∈
{1, . . . , N }. We choose a particular discretization so that the area between layers,
πΔ2, is constant:

A2
K − A2

K−1 := Δ2 = const. (34)

We can write AK explicitly as

A2
K = A2

0 + KΔ2 . (35)

Given a continuous curve γ
(
R0

)
, we define the piecewise constant growth profile by

taking the average

γK := γ
(
R0

) = 2

Δ2

∫ AK

AK−1

γ
(
R̃
)
R̃d R̃, K = 1, . . . , N . (36)

The growth value γK is constant for all K . We demonstrate the construction of the
discrete profile {γK } from the continuous profile γ

(
R0

)
in Fig. 8, inwhichwe consider

Fig. 7 Kinematic setup for an
isotropically growing N layered
system. Note that the
discretization is chosen such that
the areas of each layer are equal
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Fig. 8 Growth γ continuous
versus averaged. The continuous
curve (37) is plotted in blue, and
the average over a particular
discretization according to (36)
is shown by a solid piecewise
constant black curve (N = 8
with A0 = 1, AN = 5 and
Δ = √

3)

(R0) continuous

i averaged

1 2 3 4 5
R0

0.5

1.0

1.5

2.0

2.5

as an example the continuous function

γ
(
R0

)
= 2 − 3

2
sin

(
π

R0 − A0

AN − A0

)
. (37)

Once {γK } are obtained, we compute the radial map rK
(
R0

)
from the discrete

profile {γK }. Note that while γK is a constant throughout the K -th layer, the radial
map rK is a function of the radial coordinate R0:

r2K

(
R0

)
= r2K−1 (AK−1) + γ 2

K

[(
R0

)2 − A2
K−1

]
, r20

(
R0

)
= A2

0. (38)

Explicitly, this implies

r2K

(
R0

)
= A2

0 +
(

Δ2
K−1∑

i=1

γ 2
i

)

+ γ 2
K

[(
R0

)2 − A2
K−1

]
. (39)

Notice that the recursive expression (38) and the explicit expression (39) are consistent
with the requirement

rK−1 (AK−1) = rK (AK−1) , (40)

which means that r is continuous at each interface AK−1 (Fig. 9).

4.2 Mechanics

Stress Components. In the continuous version, the radial stress T RR is obtained from
(15). The discrete version reads

∂T RR
K

∂R0 = 2μ

R0

[

1 − γ 4
K

(
R0

)4

r4K
(
R0

)

]

, T RR
N (AN ) = 0 . (41)
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Fig. 9 Radial function rK
(
R0

)

for the case of discrete growth
γi , computed according to (39).
The dashed line represents the
case of no deformation r = R0;
everything below the dashed line
is resorption (“shrinking”),
everything above this line is
growth (Parameters as in Fig. 8)

Traction continuity at the interfaces implies

T RR
K (AK ) = T RR

K+1 (AK ) . (42)

We define τ RR
(
R0

)
as the indefinite integral over the right hand side of (41) (dropping

the integration constant),

τ RR
(
R0

)
:= −μ

r2K−1 (AK−1) − A2
K−1γ

2
K

r2K
(
R0

) − μ log

[
r2K

(
R0

)

(
R0

)2

]

, (43)

from which, we express the radial stress in the K-th layer as

T RR
K

(
R0

)
= τ RR

K

(
R0

)
− τ RR

N (AN ) +
N−1∑

i=K

μ
A2
i

(
γ 2
i+1 − γ 2

i

)

r2i (Ai )
. (44)

The circumferential stress T θθ is related to the radial stress T RR through (16). The
discrete version of the relationship between T RR and T θθ is given by

T θθ
K

(
R0

)
= T RR

K

(
R0

)
+ κK

(
R0

)
, (45)

where

κK

(
R0

)
:= 2μr2K

(
R0

)

γ 2
K

(
R0

)2

(

1 − γ 4
K

(
R0

)4

r4K

)

. (46)

Stress profiles corresponding to the growth law (37) are depicted in Fig. 10a (radial)
and Fig. 10b (circumferential).

Average Stress. As in the two-layer case, average values for the radial and circumfer-

ential stress can be computed exactly. The average radial stress in the K -th layer T RR
K

is
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Fig. 10 Stress profile and stress
averages for the growth profile
(37). a Radial stress profile T RR

and average stress profile T RR .
The analytical curve was
obtained from (44) and the
numerical curve (for validation)
was obtained from (15). In both
the numerical and analytical
case, the piecewise growth
profile γi according to (36) was
used. The average stress was
computed according to (47) with
the same growth profile as the
other curves. b Circumferential
stress profile T θθ and average

stress profile T θθ . The analytical
curve was obtained from (45)
and the numerical curve (for
validation) was obtained from
(16). The average stress was
computed according to 49. All
other parameters are as in Fig. 8,
with Young’s modulus μ = 1

TRR

Tθθ

  R0

  R0

(a)

(b)

T RR
K = −τ RR

N (AN ) +
N−1∑

i=K

μ
A2
i

(
γ 2
i+1 − γ 2

i

)

r2i (Ai )
+ 2

Δ2

[
νrrK (AK ) − νrrK (AK−1)

]
(47)

where νK
(
R0

)
is defined as

νrrK

(
R0

)
:= μ

[

A2
K−1 − r2K−1 (AK−1)

γ 2
K

]

log
[
r2K

(
R0

)]
− 1

2
μ
(
R0

)2
log

[
r2K

(
R0

)

(
R0

)2

]

. (48)

We have seen in (45) how the circumferential stress T θθ relates to the radial stress
T RR . The average over that expression is

T θθ
K = T RR

K + κK . (49)

We have presented an expression for κK in (46). The average over κK is

κK = 2μ
[
r2K (AK ) − γ 2

K A2
K

]

Δ2γK 2 log

[
A2
Kr

2
K (AK )

A2
K−1r

2
K−1 (AK−1)

]

. (50)
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According to (49), the expression for T θθ
K is the sum of κK (see 50) and T RR

K (see 47).
The average radial and circumferential stress components are depicted as horizontal
lines in the respective layers in Fig. 10a (radial) and Fig. 10b (circumferential).

4.3 Generating a Homeostatic State from a Prescribed Growth Profile.

The discretization and averaging process described above enables for a concise frame-
work for studying growth dynamics. As the homeostatic state is defined by a growth
profile—a function that is only constrained to be positive—a generic classification
of dynamic behavior is likely untractable. Our intent, rather, is to briefly investigate
stability and the rate of convergence in terms of the number of layers. For this, we
restrict attention to a linear homeostatic growth profile γ ∗ (R0

)
, characterized by a

single parameter, C1,

γ ∗ (R0
)

= 1 + C1

(
R0 − A0

)
, C1 (AN − A0) < 1. (51)

Note that this growthprofile satisfiesγ ∗ (A0) = 1, i.e., no growth at the inner boundary.
We obtain the discrete homeostatic stress profile

{
γ ∗
i

}
from the continuous profile

γ ∗ (R0
)
by computing the average according to (36). The homeostatic stress T (γ ∗) is

computed from the discrete homeostatic stress profile
{
γ ∗
i

}
according to (44) and (45).

The homeostatic values T (γ ∗) are obtained as averages according to (47) and (49). It
is important to note that the homeostatic stress is generated by prescribing a growth
profile (51), which by definition ensures that the homeostatic stress is admissible.

4.4 Growth Dynamics

We consider a growth law that generalizes (33) to N layers. The main difference with
(33) is that the values for homeostatic stress are obtained by the linear growth profile.

The growth law reads

γ̇K = γK

{
K̃
[
T RR
K (γ ) − T RR

K (γ ∗)
]

+ T θθ
K (γ ) − T θθ

K (γ ∗)
}

,

K = 1 . . . N . (52)

In order to consider the stability of (52) in the neighborhood of the homeostatic state,
we expand growth around its equilibrium values:

γK = γ ∗
K + εγ̃K + O

(
ε2
)

, K = 1, . . . , N . (53)

To linear order in ε, the dynamical system simplifies to

˙̃γ = Jγ̃ . (54)
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The eigenvalues of the Jacobian matrix J characterize the stability of (52) near the
homeostatic state. The components of the N × N matrix J are

Ji j =
[

γi

(

K̃
∂T RR

i (γ )

∂γ j
+ ∂T θθ

i (γ )

∂γ j

)]

γ=γ ∗
, i, j = 1, . . . , N . (55)

We characterize the stability in the neighborhood of the homeostatic state as a function
of two non-dimensional parameters: The mechanical feedback anisotropy parameter
K̃ and the slope of the homeostatic growth profile C1. The latter appears in (55)
through γ ∗ (see Sect. 4.3).

Figure 11a shows a bifurcation diagram of the stability of the dynamical system
(52) as a function of K̃−1 and C1 for N = 9 layers (note that unlike in Fig. 5,
here we use the inverse of K̃ to focus on large circumferential stress). The regions
are colored according to the largest real part of the eigenvalues λi of J, that is λ =
Max(Re λ1,Re λ2, . . .Re λN ). There are three parameter regions: an unstable region
(orange), a stable region (blue), and an undecidable region (green) for which λ is
within a small tolerance of zero. This last region is included as it is typically within
numerical error and its inclusion allows tomake precise statements about stability. This
relatively shallow region of λ is further explored in Fig. 12 and allows us to identify
the clearly stable and clearly unstable regions of the diagram. Figure 11b–e shows that
for increasing values of N (that is, a refinement of the discretization), the regions are
practically unchanged (b–d), and that the largest eigenvalue of four selected points
converges reliably to a finite positive (P1 and P2) or negative (P3 and P4) eigenvalue.

The green shallow region is more explicitly visualized in Fig. 12. This plot shows in

the vertical axis the value of the largest real eigenvalue computed at
(
K̃−1,C1

)
from

the Jacobian matrix (55). The planes λ = tol and λ = −tol are shown in dark gray,
and eigenvalues between are assumed to be in the shallow (green) region in which
stability cannot be decided from an expansion of γ according to (53) to first order in ε.

Thus, we see that there exist a region of stability, and a region of instability, which
both persist (for large enough N ) independently of the discretization. A strongly
anisotropic growth law (K̃−1 close to zero or negative) is required for the system to
be unstable. We also considered the convergence as N increases for a representative
sample of points in the stable and unstable regions and confirmed that there was no
significant change inλ.We expect that the stable and unstable regions represent the true
behavior of the full (inhomogeneous) system discussed in Sect. 2. The intermediate
(green) shallow region of eigenvalues has a more complicated structure due to the
discretization that is not expected in the full system.

4.5 Solid Nucleus Versus Pressurized Cylinder

Our choice for boundary conditions has been a solid nucleus at the inner wall of the
cylinder, r(A0) = A0, and a no-pressure condition at the outer wall, T RR(B0) = 0.
These conditions are advantageous for mathematical analysis because the deformation
map (8) can be easily integrated for a piecewise constant growth profile, with the
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Fig. 11 Bifurcation diagram and convergence for N -layered cylinder system. a–d The unstable (orange)
and stable (blue) regions retain their shape for increasing values of N . e For a representative sample of points

P1 to P4, the convergence of the largest eigenvalue is very good (see interpretation in text). The
(
K̃−1,C1

)

coordinates are P1 (0.1, 2.5), P2 (−0.25,−0.5), P3 (0.5,−0.5), P4 (1, −0.5). Other parameters areμ1 = 1,
A0 = 1, AN = 2

result (39). Similarly, the radial stress (15) and circumferential stress (16) can be
explicitly integrated for a piecewise constant growth profile, with stresses (44) and
(45), respectively, and average stresses (47) and (49), respectively. Explicit forms of
the average stresses are very advantageous for our model, in which derivatives of
these expressions must be computed to obtain the Jacobian (55). In many biological
tubular systems, however, the boundary conditionwill be a pressure difference between
inner and outer cylinder walls, due to hydrostatic pressure maintained inside the tube.
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Fig. 12 Detailed depiction of the shallow (green) region from Fig. 11. The large shallow region has a fine
structure which is an artifact of discretization and is not expected in the full inhomogeneous system. For
this reason, we choose a three color system in Fig. 11a–d, in which the shallow region and its fine structure
are merged into one region defined by −tol ≤ λ ≤ tol. The two planes serving as upper and lower bounds
of this region are depicted in dark gray. Values above λ = tol are stable, below λ = −tol are unstable

Consider the following boundary conditions:

T RR (A0) = P, T RR (B0) = 0, (56)

where P is the prescribed pressure. Now, instead of (8), the integration of the radial
map reads

r =
√

a2 + 2
∫ R0

A0

γ r (R̃)γ θ (R̃)R̃d R̃. (57)

Notice that where previously we had the known nucleus position A0, we now have
the unknown current inner cylinder coordinate a. Therefore, even for a piecewise
constant growth profile, (57) cannot be directly obtained because a is unknown. To
determine a, it is necessary to integrate the radial stress T RR while using the boundary
condition (56) in the form −P = T RR(B0) − T RR(A0). This requires a numerical
root finding algorithm (e.g., Newton’s Method) to determine a, as shown in Ben Amar
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and Goriely (2005) for a spherical shell. As the difference between a solid nucleus
boundary condition and a pressure difference boundary condition (56) lies only in a
difference for the inner cylinder wall, we expect that the techniques outlined in this
article (stress-averaging, N -layered cylinder) will apply to the pressurized cylinder
setup, albeit at extra computational cost.

5 Conclusion

It is now well appreciated that growth can induce mechanical instabilities (Goriely
and Ben Amar 2005; Ben Amar and Goriely 2005). The related problem that we
have considered in this paper is the stability of a grown state through its slow-growth
evolution. The question is not therefore about mechanical instability but about the
dynamic stability of a preferred homeostatic state. While the former is characterized
by a bifurcation from a base geometry to a more complex buckled geometry, occur-
ring on a fast elastic timescale, the latter involves the system evolving away from a
given stress state on the slow growth timescale. In general the homeostatic state is
not homogeneous; hence, the issue of stability requires the analysis of partial differ-
ential equations defined on multiple configurations with free boundaries. There are
no standard mathematical tools available to study this problem even for simple non-
homogeneous systems. An alternative is to consider the stability of states that are
piecewise homogeneous (in space). The problem is then to establish the stability of
coupled ordinary differential equations describing locally homogenous states through
the traditional methods of dynamical systems. Within this framework, we considered
two relatively simple problems.

First, we considered the dynamical stability of a two-layer tube with different,
but constant, growth tensors in each layer. We characterized the dynamics of the full
nonlinear system and showed that the number of equilibria and their stability varies
greatly and gives rise to highly intricate dynamics which we organized via several
bifurcations. We identified a parameter region where the system is stable. We found
that the growth dynamics of tubular structures in the neighborhood of the homeostatic
equilibrium depends in a nontrivial way on the anisotropy of the growth response
and that the equilibrium becomes unstable for highly anisotropic growth laws. This
complexity of dynamics naturally raises the question about stability of homeostatic
equilibria for more general systems.

Second, we showed that given a continuous law in a cylindrical geometry, we can
introduce a suitable discretization of the problem that keeps all the characteristics
of the continuous problem. We showed that for a linear growth law, there are clear
regions where stability and instability persist independently of the discretization (for
sufficiently large N ). We expect that these regions represent the true behavior of the
full inhomogeneous system. This result allows us to characterize the stability of a
morphoelastic growing cylinder.

As our results (in particular Fig. 11) show, admissible homeostatic states can lead
to either mechanically stable or unstable equilibria. This suggests a way to distinguish
between physiological (stable) and pathological unbounded (unstable) growth. Indeed,
our model also suggests a natural growth termination mechanism. The question of
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growth termination (what triggers a tissue to stopgrowing?) is amuch-debatedquestion
in developmental biology. It has been particularly well studied in the model system of
theDrosophila melanogaster wing disk where the morphogen Decapentaplegic (Dpp)
has been identified as the main regulator of growth. A number of models propose
growth regulation and termination based on a combination of mechanical effects and
Dpp concentration. Some of them are continuum models (Aegerter-Wilmsen et al.
2007; Ambrosi et al. 2015), others are vertex models (Shraiman 2005; Hufnagel et al.
2007) but none of them is entirely satisfactory (Vollmer et al. 2017). We hope that
the dynamical stability of homeostatic states offers an alternative way of looking at
growth termination, which emerges naturally in our model as a stable equilibrium.

While we have only scratched the surface of the complex dynamic behavior that
exists in such systems, the framework presented here provides a tool to explore growth
dynamics and stability of homeostatic states and finally address some of the funda-
mental challenges of morphoelasticity (Goriely 2017): What growth laws, in general,
would lead to dynamically stable homeostatic states? What is the final size of a grow-
ing organism for a given growth law? What are the conditions under which growth
dynamics produces oscillatory growth?
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