
Bull Math Biol (2019) 81:2960–3009
https://doi.org/10.1007/s11538-018-0443-1

SPECIAL ISSUE: GILLESPIE AND HIS ALGORITHMS

Spatial Stochastic Intracellular Kinetics: A Review
of Modelling Approaches

Stephen Smith1 · Ramon Grima1

Received: 14 January 2018 / Accepted: 3 May 2018 / Published online: 21 May 2018
© The Author(s) 2018

Abstract Models of chemical kinetics that incorporate both stochasticity and diffu-
sion are an increasingly common tool for studying biology. The variety of competing
models is vast, but two stand out by virtue of their popularity: the reaction–diffusion
master equation and Brownian dynamics. In this review, we critically address a num-
ber of open questions surrounding these models: How can they be justified physically?
How do they relate to each other? How do they fit into the wider landscape of chemical
models, ranging from the rate equations to molecular dynamics? This review assumes
no prior knowledge of modelling chemical kinetics and should be accessible to a wide
range of readers.

Keywords Reaction–diffusionmaster equation ·Spatial models ·Brownian dynamics

1 Introduction

Chemical reactions are the building blocks of biology. Substrates bind to enzymes,
messenger RNA binds to ribosomes, proteins bind to DNA, and amino acids bind
to each other—the cumulative effect is ultimately life as we know it. It is perhaps
unintuitive to think in these terms, but any observable behaviour of a living organism
(e.g. a human reading this sentence) can be understood as a series of interactions
between molecules. The question of how microscopic chemistry gives rise to macro-
scopic biology is one of the greatest open scientific problems. Modelling is key to
answering this question: our understanding of the underlying chemistry is good, as
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is our knowledge of the observable biology; what is missing is a model linking the
distinct scales together.

A system can be modelled in a great variety of ways, but not all models are equally
useful. It is theoretically possible to model the biochemistry in an entire cell using
Schrödinger’s equation, but it would not be appropriate. The challenge is to select a
model incorporating the salient details of a system while leaving out the extraneous
ones.

For instance, consider a simple molecule like carbon dioxide, CO2. At the coarsest
level, we could model the concentration of CO2, which refers to the total number of
carbon dioxide molecules divided by the volume of whatever container the molecules
are in (such as a cell or a test tube). The numerical value which we assign to the con-
centration will depend on the concentrations of other chemical species in the container
and the rates of any reactions which involve these species. For instance, there might
be some molecules of carbon monoxide, CO, and some molecules of oxygen, O, and
there might be a reaction of the form:

CO + O
k−→ CO2, (1)

where k denotes the rate at which CO and O are converted into CO2. The basic model
which describes chemical kinetics at this level of complexity is the rate equations
(REs) (Chen et al. 2010).

Alternatively, at a considerably more complex level we could model each atom
of each molecule individually, by considering the forces exerted by each atom in the
volume on every other atom. The three atomswhichmake up any single CO2 molecule
are bonded together and so will exert very strong forces on each other (these forces are
traditionally modelled as springs), but they will also experience weaker forces from
the rest of the atoms (e.g. electrostatic forces). This is a more complex model because
if our container contains, say, 1000 C atoms and 2000 O atoms we will need to keep
track of 9000 distinct quantities (the locations of each atom in 3 spatial dimensions)
rather than 3 in the REs (the concentrations of each species). The basic model which
describes chemical kinetics at this level of complexity is molecular dynamics (MD)
(Frenkel 2001).

There are a huge variety of models spanning the range of complexity from the REs
to MD.We can imagine these models as points on a “complexity scale”, ranging from
the coarsest (the REs) to the extremely complex (the Schrödinger equation), as shown
in Fig. 1. On the left, we find the REs. As we move up the complexity scale, we gain
microscopic detail at the cost of more difficult mathematics or longer computation
times, ultimately resulting in MD. For example, one of the main assumptions behind
the REs is that the diffusion coefficients of all molecules are infinitely fast—relaxing
this assumption pushes us up the complexity scale to a model known as the reaction–
diffusion equations (RDEs) (Murray 2001), which is always going to be more accurate
than the REs, but correspondingly will always incur a greater computational cost.

The two models which we focus on in this review are at an intermediate level of
complexity: the reaction–diffusionmaster equation (RDME) (Gillespie et al. 2014) and
Brownian dynamics (BD) (Lipkov et al. 2011). As we will go on to show, these mod-
els are very different, though they both model the same kinds of processes at roughly
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Fig. 1 The scale of model complexity, ranging from coarse to extremely complex. Between the extremes
are the models of interest in chemical kinetics, ranging from the rate equations (red) to molecular dynamics
(violet). Reviews of the models not studied in depth in this article can be found in Refs. Murray (2001),
Gillespie et al. (2013) and Durrant (2011)

the same level of detail. Unlike the REs, the RDME and BD both acknowledge that
molecules are discrete entities, but they do not go down to atomic-level resolution like
MD. The RDME and BD do not explicitly model water molecules (unlike MD), but
they do model the effect of water molecules (diffusion) which is beyond the scope of
the REs.

The reason for focussing on the RDME and BD is that they are likely to be the
appropriate level of modelling detail for understanding the link between microscopic
chemistry and macroscopic biology (Klann and Koeppl 2012). They are the simplest
models which explicitly model individual reactions and the diffusion of individual
molecules, and so are not too distant from chemistry as we understand it intuitively.
Yet they are not too computationally intensive: both models have already been used to
study systems on the scale of an entire cell (Fange and Elf 2006; Sturrock et al. 2013;
Lipkow et al. 2005; Andrews et al. 2010), and it is surely only a matter of time until
multicellular organisms are within their scope.

It is worth mentioning at this point that this review will not go into detail about
the computational methods used to implement these models in practice (the so-called
simulation algorithms). A relatively recent and comprehensive review of this issue can
be found in Ref. Erban et al. (2007). Instead, our concern will be with the validity of
the RDME and BD, how they are related, when it is appropriate to use them, and how
they fit into the modelling complexity scale. Atypically, the subject of our studies will
be the models themselves rather than the systems to which they could be applied.

Our review is split into three sections. In Sect. 2 we discuss the mathematical ori-
gins of the RDME, followed by a detailed analysis of how it relates to other models
on the complexity scale. In Sect. 3 we discuss the physical origins of BD, followed
by a rigorous discussion of its position in the complexity scale. In Sect. 4 we briefly
discuss the extent to which BD and the RDME agree with each other. We conclude
with a discussion in Sect. 5.

2 The Reaction–Diffusion Master Equation

Consider the following chemical reaction system:

A + B
k1−⇀↽−
k2

C. (2)
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This denotes that a molecule of type A can bind to a molecule of type B to create a
molecule of typeC and that this process occurswith rate k1. Furthermore, amolecule of
typeC can spontaneously unbind into onemolecule of type A and onemolecule of type
B, a process which occurs with rate k2. As mentioned in Introduction, the simplest
method of modelling systems like (2) is to describe the concentrations (number of
molecules per unit volume) of A, B and C as differentiable functions of time, denoted
[A], [B] and [C], respectively. These functions are implicitly defined as the solutions
to a set of ordinary differential equations, the REs:

d[A]
dt

= − k1[A][B] + k2[C],
d[B]
dt

= − k1[A][B] + k2[C],
d[C]
dt

= k1[A][B] − k2[C]. (3)

The equation for d[A]
dt , for example, states that the rate of changeof [A] is equal tominus

the rate at which A molecules are removed from the system (the rate of the binding
reaction, k1, multiplied by the product of concentrations of the reactants, [A][B]) plus
the rate at which A molecules are added to the system (the rate of the unbinding
reaction, k2, multiplied by the concentration of the reactant, [C]). The functional form
of these rates follows from the principle of mass action kinetics (Erdi and Janos 1989),
which states that the rate of a reaction is proportional to the product of concentrations
of the reactants.

Equation (3), coupled with initial concentrations of each species, provides all the
information required to ascertain the concentrations of A, B and C at any time in
the future, either by using a numerical ODE solver (Butcher 2016), or by analytically
solving the equations.

The REs are simple to derive for any system, simple to understand, and easy to
solve with a computer, and therefore they remain by far the most common model of
chemical kinetics in use today, in fields ranging from physical chemistry (Rickard
1997) to cell biology (Schnell and Mendoza 1997).

However, the RE model relies heavily on the assumption that concentrations are
differentiable functions of time, which is clearly untrue since numbers of molecules
must be integer-valued, and therefore discrete. This assumption becomes particularly
egregious when the concentrations are small, so that a system may contain only a few
tens or hundreds of molecules of each species. In addition to this, it must be noted that
chemical kinetics is inherently probabilistic, for a variety of reasons. For one, chemical
reactions are quantummechanical events (Atkins et al. 2018), though the details of this
are beyond the scope of this article. Another reason is that bimolecular reactions occur
only when the two reactants diffuse close enough together to react, and diffusion (the
cumulative effect of huge numbers of collisions with water molecules) is such a com-
plex process that it is typically modelled as random (Gillespie and Seitaridou 2012).

Thinking along the lines of discreteness and randomness leads us to consider
not concentrations [A], [B] and [C], but rather the joint probability mass function
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P(nA, nB , nC ; t), the probability that the system contains exactly nA molecules of A,
nB molecules of B and nC molecules of C at time t . Though this quantity may seem
hopelessly complicated, it turns out that we can say quite a lot about it.

Consider a very short time period �t , so short that at most one reaction can hap-
pen in it, then consider what we can say about P(nA, nB , nC ; t + �t) in terms of
P(nA, nB , nC ; t). We can end up with exactly nA, nB, nC molecules at time t +�t in
three different ways: (I) if there were nA + 1, nB + 1, nC − 1 molecules at time
t and a binding reaction happened in the interval [t, t + �t); (II) if there were
nA − 1, nB − 1, nC + 1 molecules at time t and an unbinding reaction happened
in [t, t + �t); and (III) if there were nA, nB, nC molecules at time t and no reactions
happened in [t, t + �t). So we can write:

P(nA, nB , nC ; t + �t) = P(I) + P(II) + P(III), (4)

where P(i) represents the probability that scenario (i) happened. By the definition of
conditional probability (Loeve 1977), we can write the following for P(I):

P(I ) = P(nA + 1, nB + 1,

nC − 1 molecules at time t and a binding reaction happened) (5)

= P(nA + 1, nB + 1, nC − 1; t)
× P(a binding reaction happened in time �t | nA + 1,

nB + 1, nC − 1 molecules at time t), (6)

where the conditional symbol | means “given that”.
At this point in the analysis we need to make an assumption, namely that the wait-

ing times between chemical reactions are exponentially distributed. For unimolecular
reactions (i.e. unbinding), Fermi’s golden rule implies that waiting times are very close
to exponential (Dirac 1927; Fermi 1950). For bimolecular reactions (i.e. binding) the
reality is more complicated: reacting molecules must diffuse close together, then col-
lide with a sufficiently high energy, at the correct orientation (Atkins et al. 2018).
Although the underlying processes involved here are ultimately deterministic (at least
at the level we go to in this article), they are so complex that they appear to be ran-
dom, and the overall waiting time will appear to follow some probability distribution.
The exponential distribution is chosen because of the assumption of memorylessness,
meaning that the future of the system depends only on the current state (i.e. molecule
numbers) and not on the states which preceded it. Exponential waiting times are a
direct consequence of this assumption. Though it is a straightforward assumption,
it is not strictly true, for instance, imagine that a system is currently in the state
(nA = 10, nB = 10, nC = 10). According to the memorylessness assumption, the
probability that a binding reaction happens next is independent of how the system got
into its current state, whether from state (nA = 11, nB = 11, nC = 9) and a binding
reaction, or from state (nA = 9, nB = 9, nC = 11) and an unbinding reaction. Yet
if an unbinding reaction happened very recently, then we know that the products of
that reaction will be close together, and so will be significantly more likely to bind
than a typical pair of reactants. In other words, binding reactions are more likely in
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the immediate aftermath of an unbinding, violating the memorylessness assumption.
Choosing the exponential distribution essentially amounts to ignoring this rather sub-
tle effect, but in its favour the exponential distribution has very useful mathematical
properties.

One of the nice mathematical properties of exponentially distributed events is that
the probability of the event happening in a short interval �t is proportional to �t .
By the principle of mass action, this probability is also proportional to the number of
molecules of the reactants. It follows that we can write:

P(a binding reaction happened in time �t | nA + 1,

nB + 1, nC − 1 molecules at time t)

= k1
V

(nA + 1)(nB + 1)�t, (7)

where V is the reaction volume.
Why do we write k1

V instead of just k1? This is quite a subtle point of statisti-
cal physics (Van Kampen 1992), but it can be intuitively justified by a dimensional
argument. Concentrations have units of inverse volume, so in order for Eq. (3) to be
dimensionally consistent, k1 must have units of volume per time, whereas k2 simply
has units of inverse time. The extra V is thus required to make Eq. (7) dimensionally
consistent. It can generally be shown that reactions with n reactants will have their
rates scaled by V 1−n (Van Kampen 1992). This can be intuitively justified by observ-
ing that bimolecular reactions will tend to happen less frequently in larger volumes,
since it is harder for particles to find each other.

Applying the same arguments to scenarios (II) and (III), we find that we can write
Eq. (4) as:

P(nA, nB, nC ; t + �t) = k1
V

(nA + 1)(nB + 1)�t P(nA + 1, nB + 1, nC − 1; t)
+ k2(nC + 1)�t P(nA − 1, nB − 1, nC + 1; t)
+

(
1 − k1

V
nAnB�t − k2nC�t

)
P(nA, nB , nC ; t). (8)

This equation simplifies very nicely to give:

P(nA, nB , nC ; t + �t) − P(nA, nB, nC ; t)
�t

= k1
V

[(nA + 1)(nB + 1)P(nA + 1, nB + 1,

nC − 1; t) − nAnB P(nA, nB, nC ; t)]
+ k2 [(nC + 1)P(nA − 1, nB − 1,

nC + 1; t) − nC P(nA, nB , nC ; t)] . (9)

The left-hand side of Eq. (9), in the limit of small �t , is the definition of a derivative,
and the right-hand side has no �t dependence, so we get:
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d

dt
P(nA, nB, nC ; t) = k1

V
[(nA + 1)(nB + 1)P(nA + 1, nB + 1,

nC − 1; t) − nAnB P(nA, nB , nC ; t)]
+ k2 [(nC + 1)P(nA − 1, nB − 1, nC + 1; t)
−nC P(nA, nB , nC ; t)] , (10)

which is known as the chemical master equation (CME) (Van Kampen 1992). Analo-
gously to theREs, theCMEcan be solved numerically (Munsky andKhammash 2006),
given an initial probability mass function P(nA, nB, nC ; 0), or it can be solved ana-
lytically if it is sufficiently simple (Darvey et al. 1966; Gadgil et al. 2005; Jahnke and
Huisinga 2007; Shahrezaei and Swain 2008; Grima et al. 2012; Smith and Shahrezaei
2015), which this example is (Darvey et al. 1966; Van Kampen 1976; Cianci et al.
2016). A less intensive approach is to approximate either the distribution (Thomas and
Grima 2015; Smith et al. 2015; Andreychenko et al. 2017; Smith and Grima 2017b),
or the moments (e.g. the mean or variance) of P(nA, nB , nC ; t), and a variety of
methods are popular such as the van Kampen approximation (Van Kampen 1992; Elf
and Ehrenberg 2003), moment-closure approximations (Gillespie 2009b; Singh and
Hespanha 2011; Grima 2012; Schnoerr et al. 2014a, 2015), or the chemical Langevin
equation (Gillespie 2000; Schnoerr et al. 2014b). For a recent review see Ref. Schnoerr
et al. (2017).

There is an alternative (and much more popular) approach to the CME, which has
no analogue corresponding to the REs. This approach notes that P(nA, nB , nC ; t) is
not just any function, but is a probability distribution, and therefore, pseudo-random
samples can be drawn from it exactly as one might sample from a Gaussian or a
Poisson distribution (LEcuyer 2012). In fact, P(nA, nB , nC ; t) is actually an infinite
set of related probability distributions indexed by t , and so a sample will be an entire
trajectory of molecule numbers over time. Such trajectories are much more intuitive
than the CME itself, because each trajectory represents a particular realisation of what
we might actually see if we observed a system in real time. Furthermore, it turns out
it is typically computationally much easier to sample from the CME than to solve
the CME, and if we take a large number of sample trajectories we can use them to
estimate P(nA, nB , nC ; t). The reason for this computational difference is that the
cost of numerical solution of the CME scales with the number of possible system
states (i.e. the number of permissible combinations of molecule numbers), while the
cost of sampling scales with the frequency of reactions. Numerically solving the CME
will typically only be worthwhile for systems with a small number of states and fast
reaction rates.

Sampling trajectories of the CME is typically referred to as “simulating” the under-
lying system, for obvious reasons. The most common way to simulate is to use
Gillespie’s stochastic simulation algorithm (SSA) (Gillespie 1977), because this algo-
rithm gives statistically exact trajectories, by taking advantage of the fact that the
waiting times between reactions are exponentially distributed. The SSA can be quite
slow, because it explicitly simulates every reaction, so a huge number of approximate
simulation algorithms have been developed. The most popular is a time-discretised
algorithm called τ -leaping, also by Gillespie (2001), but new algorithms are proposed
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Fig. 2 Stochastic simulations and analytical solutions of Eq. (10). The five multicoloured trajectories are
independent simulations made using the SSA. Exact probability distributions solving Eq. (10) are shown
as perpendicular grey histograms at t = 0.02, 0.05 and 0.08. This makes clear that at each time point t the
numerical value of each trajectory is a sample from the probability distribution solving the CME

every year that typically sacrifice a degree of accuracy for an increase in speed (Salis
and Kaznessis 2005; Cao et al. 2005; Auger et al. 2006). For a recent review see
Ref. Szekely and Burrage (2014).

The relationship between individual sample trajectories and the CME solution
P(nA, nB , nC ; t) is quite unintuitive, so we have shown an example in Fig. 2. The
main graph shows five independent sample trajectories of the CME Eq. (10), showing
the number of A molecules nA over a short time period. Perpendicular to the main
graph are three histograms showing the marginal probability distribution P(nA; t) at
three time points t = 0.02, 0.05 and 0.08. This representation makes it clear that the
values of the trajectories of nA at t = 0.02 (for example) are independent samples of
the distribution P(nA; 0.02). There is a one-to-one correspondence between the dis-
tributions P(nA, nB, nC ; t) and the sample trajectories: if we know the distributions
then we can sample trajectories; if we have enough independent trajectories we can
approximate the distributions to an arbitrarily high degree of accuracy.

One point that we have not satisfactorily addressed so far is the validity of the
principle of mass action, the principle which underpins fundamental equations such
as (7). The principle of mass action is based on combinatorial arguments: if a reaction
has two reactants, A and B say, then the probability of a reaction must be proportional
to the number of ways a reacting pair can be made up, i.e. nAnB different ways;
similarly, if a reaction involves two molecules of A reacting with each other, then we
would expect the reaction probability to scale as nA(nA−1)

2 .
These arguments are not particularly satisfactory when considered from a micro-

scopic point of view: if no pair of molecules is sufficiently close together to collide
and react in a short time �t , then a reaction will not happen, no matter how many
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(a) (c)(b)

Fig. 3 The rationale behind dividing a volume into subvolumes. a The principle of mass action claims that
every reacting pair of molecules is equally likely to react in any time period, including pairs which might be
very distant (blue dotted line). b One solution is to divide the volume into M subvolumes, and only allow
molecules in the same subvolume to react, so reacting pairs are now close together (blue dotted line). c If
M is too large, then there will very rarely be pairs in the same subvolume, and bimolecular reactions will
tend not to happen at all

molecules there are overall; or if only 2 (or 3 or 4 or …) pairs are sufficiently close
together, then the probability of reaction will be roughly proportional to 2 (or 3 or
4 or …) rather than the total number of pairs. The principle of mass action surely
amounts to assuming (nonsensically) that all the pairs are sufficiently close together
to potentially react in a short time�t . The absurdity of this assumption is demonstrated
graphically in Fig. 3a. A counter-argument to this is that we have no way of knowing
how many pairs are close together, so we stick to assuming that a fixed proportion of
them are close together and absorb the proportionality constant into the reaction rate.
But this again is not truly satisfactory because the true proportion of pairs that are
close together is itself a random variable and not a constant.

It turns out that the principle of mass action is closely related to the diffusion of
the reacting molecules. The diffusion coefficient is essentially a measure of the rate at
which a randomly diffusing particlemoves around the reaction volume. A particle with
a very high diffusion coefficient could have diffused all over the volume in a short time
�t , whereas a particle with a small diffusion coefficient may only have covered a small
region of space. (The average distance covered by a diffusing molecule before it reacts
is known as the Kuramoto length, see Ref. Grima and Schnell 2008.) It follows that
the principle of mass action could plausibly apply if particles have very high diffusion
coefficients, so that any pair could potentially collide in a short time �t . This idea
can actually be proved from a microscopic point of view (and we will demonstrate
this later), but only if we assume all particles have infinite (or practically infinite)
diffusion coefficients. (Of course, the concept of an “infinite diffusion coefficient” is
physically impossible, and we will address this point shortly.) Doubting the principle
of mass action is then essentially equivalent to believing that the diffusion coefficients
might not be high enough for the reaction volume to be well mixed, and this is a
sensible belief as far as cell biology is concerned (Wojcieszyn et al. 1982). Clearly, an
alternative approach is needed: in particular, we want a model which can tell us how
many pairs of particles are “close together” at any given time.

The simplest way to go about this is to subdivide the entire reaction volume into
small subvolumes, with the implication that we will consider molecules in the same
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subvolume to be “close together”, while molecules in different subvolumes are not.
Supposewehave chosen to divide our volume intoM subvolumes,which for simplicity
we assume are equally sized; then, the probability of a reaction involving A and B
in subvolume i will be proportional to n(i)

A n(i)
B , where n(i)

X denotes the number of
molecules of species X in subvolume i . This idea is shown in Fig. 3b.

While superficially satisfying, this description actually raises more questions than
it answers, at least at first. Principally, how should we choose M? Clearly, we should
choose M > 1; otherwise, the description is identical to the CME, and generally, if M
is small we will tend to have the same issues with the principle of mass action that the
CME had, which drove us to seek a newmodel. On the other hand, if we make M very
large, the subvolumes will become very small (possibly smaller than the physical size
of a molecule) and the probability of two reacting molecules being in the same subvol-
ume at a given time becomes negligible. As shown in Fig. 3c, this results in bimolecular
reactions simply not happening, which is clearly something we would like to
avoid.

Choosing the correct partition of the volume into subvolumes requires us to be
more specific about what we truly mean by “close together”, a phrase about which
we have thus far been deliberately vague. To do this, we would need to propose
a physical model for how chemical reactions occur, including molecular sizes and
shapes, how they diffuse, whether they react immediately upon collision or whether
they need a sufficiently large kinetic energy, and how electrostatic and hydrodynamic
interactions impact on the reaction. These are questions that go far beyond the scope
of our models, which would significantly detract from their simplicity. As a result, the
standard response is to be vague about the value of M , suggesting that it should be
neither too small nor too large. Though this is not a very satisfying answer, it highlights
that there is no value of M which can be pre-specified for all situations: the correct M
will depend on a number of factors and will likely be different for different situations,
such as different diffusion coefficients.

Another significant issue with this model is how we decide how many molecules
are in the i th subvolume. This is an issue because molecules, in reality, do not remain
in the same location forever, but diffuse throughout the reaction volume—indeed, it
was the issue of diffusion which led us to seek out a new model. To address this issue,
drawing on the argument in Ref. Gillespie et al. (2014), we will consider a simplified
one-dimensional volume and a single diffusing molecule currently located at a point
x . It is well known that the probability density functions of diffusing point-particles
obey a partial differential equation (PDE) called the diffusion equation:

∂

∂t
p(x, t) = D

∂2

∂x2
p(x, t), (11)

where p(x, t) is the probability density of finding the particle at location x at time t ,
and D is the particle’s diffusion coefficient. We can rewrite Eq. (11) in terms of small
increments �t and �x and rearrange to get:

p(x, t + �t) = p(x, t) + D�t

�x2
[p(x + �x, t) − 2p(x, t) + p(x − �x, t)] . (12)
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Now, consider a partition of the total volume into M subvolumes of incremental width
�x , and let subvolume k be centred around the point x . If we denote by q(k, t) the
probability that the molecule is in subvolume k at time t , then we will have that:

q(k, t) =
∫ x+�x/2

x−�x/2
p(y, t)dy ≈ p(x, t)�x, (13)

where the approximation will tend to hold when �x is small. It follows that we can
write:

q(k, t + �t) = q(k, t) + D�t

�x2
[q(k + 1, t) − 2q(k, t) + q(k − 1, t)] . (14)

In other words, in a short time �t , the probability that the molecule moves from
subvolume k to subvolume k + 1 is equal to D�t

�x2
. Equation (14) has the form of a

master equation, which implies that the waiting time for a molecule diffusing between
subvolumes is approximately exponential, at least when the subvolumes are small, but
it is a reasonable approximation even when the subvolumes are quite large.

This leads us to amodel inwhich particles “hop” between neighbouring subvolumes
at random times, and thewaiting times between hoppings are exponentially distributed.
This means that we can represent hopping events as just another type of reaction event.
This seems a little counter-intuitive, but makes sense when studied in detail. Let us
consider system (2) again under this model. We can write X (i) to denote the species
X in subvolume i . Then we can write the new system in the following way:

A(i) + B(i)
k1−⇀↽−
k2

C (i) for i = 1, . . . , M,

A(i)
k(A,i, j)
D−−−−⇀↽−−−−
k(A, j,i)
D

A( j) for i, j = 1, . . . , M,

B(i)
k(B,i, j)
D−−−−⇀↽−−−−
k(B, j,i)
D

B( j) for i, j = 1, . . . , M,

C (i)
k(C,i, j)
D−−−−⇀↽−−−−
k(C, j,i)
D

C ( j) for i, j = 1, . . . , M,

(15)

where k(X,i, j)
D is the “hopping rate” at which a molecule of type X in subvolume i

will hop into subvolume j , which will be equal to zero if i and j are not neighbouring
subvolumes. Note that we do not use the specific rate obtained in Eq. (14), because
that rate is derived assuming that the subvolumes are arranged in a particular regular
manner, and we would like to retain generality for the time being. Clearly, system (15)
is much more complicated than (2), but there is little actual difference in principle.
Both systems comprise species, reactions and rates—it just happens that the “species”
in system (15) are not just the types of molecules (A, B,C), but the types of molecules
in a particular subvolume (A(i), B(i), C (i)). This might be unintuitive, but it makes no
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difference mathematically. It follows, then, that any technique which can be applied
to system (2) can also be applied to system (15).

For example, analogously to the REs (3), we can write equations for the concen-
trations [A(i)], [B(i)] and [C (i)] (intuitively, the local concentrations of A, B and C in
subvolume i):

d[A(i)]
dt

= − k1[A(i)][B(i)] + k2[C (i)] +
M∑
j=1

[
−k(A,i, j)

D [A(i)] + k(A, j,i)
D [A( j)]

]
,

d[B(i)]
dt

= − k1[A(i)][B(i)] + k2[C (i)] +
M∑
j=1

[
−k(B,i, j)

D [B(i)] + k(B, j,i)
D [B( j)]

]
,

d[C (i)]
dt

= k1[A(i)][B(i)] − k2[C (i)] +
M∑
j=1

[
− k(C,i, j)

D [C (i)] + k(C, j,i)
D [C ( j)]

]
, (16)

where, as before, M is the number of subvolumes. Equation (16) is the analogue of
the REs with spatial resolution, but it would be helpful if we had a better idea of the
form of the hopping rates k(X,i, j)

D . Calculating the hopping rates from microscopic
principles is an extremely challenging problem and, in fact, is still an open research
question. In the simplest case, where each subvolume is an equally sized cube (or
square, or line segment) of side length h arranged in a Cartesian grid, then we have
already seen that there is a simple expression:

k(X,i, j)
D =

{ DX
h2

if i neighbours j,
0 otherwise,

(17)

where DX is the diffusion coefficient associated with particles of type X .
Ifwe imagine a one-dimensional array of subvolumes of equal size arranged in a line

of length L , such that subvolume 1 neighbours subvolume 2, subvolume 2 neighbours
subvolumes 1 and 3, subvolume 3 neighbours 2 and 4, etc., then Eq. (16) becomes:

d[A(i)]
dt

= − k1[A(i)][B(i)] + k2[C (i)] + DA

(L/M)2

[
[A(i−1)] − 2[A(i)] + [A(i+1)]

]
,

d[B(i)]
dt

= − k1[A(i)][B(i)] + k2[C (i)] + DB

(L/M)2

[
[B(i−1)] − 2[B(i)] + [B(i+1)]

]
,

d[C (i)]
dt

= k1[A(i)][B(i)] − k2[C (i)] + DC

(L/M)2

[
[C (i−1)] − 2[C (i)] + [C (i+1)]

]
,

(18)

for i = 2, . . . , M − 1 with small modifications for the end subvolumes 1 and M
depending on the boundary conditions.We can now imagine taking the limitM → ∞.
There are a couple of issueswith this. First, we already noted that choosing subvolumes
too small could be a problem because the probability of two molecules being in the
same subvolume would become negligibly small, thus making bimolecular reactions
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unusually rare events. We will bypass this issue by saying that the limit M → ∞ is
simply an approximation, which we expect to be accurate when concentrations are
high. The second issue is that the notation [A(i)] becomes meaningless when M is
infinite. This we will solve by replacing [A(i)] with [A] which we consider to be a
function of location x = i L

M as well as time. In the limit M → ∞, x approaches
a continuous quantity, so that differentiation with respect to x becomes valid. For

example, DA
(L/M)2

[[A(i−1)] − 2[A(i)] + [A(i+1)]] converges to DA
∂2[A]
∂x2

in the limit
M → ∞. As a result, we get the following PDEs:

∂[A]
∂t

= − k1[A][B] + k2[C] + DA
∂2[A]
∂x2

,

∂[B]
∂t

= − k1[A][B] + k2[C] + DB
∂2[B]
∂x2

,

∂[C]
∂t

= k1[A][B] − k2[C] + DC
∂2[C]
∂x2

. (19)

These PDEs are the well-known reaction–diffusion equations (RDEs), ubiquitous in
mathematical biology (Murray 2001), and popularised by Alan Turing in his seminal
paper Ref. Turing (1952). Turing famously demonstrated that certain systems (Gierer
and Meinhardt 1972) could be unstable when modelled with the RDEs, but stable
when modelled with the REs: this kind of instability manifests itself as visual patterns
(e.g. spots, stripes) in an RDE simulation. The Turing instability (as it is now known)
is believed by some to be the cause of biological patterns such as zebrafish stripes
(Nakamasu et al. 2009) or the regular spacing between mammalian digits (fingers
and toes) (Sheth et al. 2012; Raspopovic et al. 2014), but there is still controversy
around whether the Turing mechanism is really behind these phenomena (Watanabe
and Kondo 2015). One of the current biggest challenges in synthetic biology is there-
fore to synthesise a Turing patterning network in living cells (Lengyel and Epstein
1992; Diambra et al. 2014; Borek et al. 2016; Scholes and Isalan 2017; Smith and
Dalchau 2018a, b), which would provide convincing evidence of Turing’s theory.

Aswell as the REs, we can also apply theCMEmethodology to system (15). Instead
of the probability mass function P(nA, nB , nC ; t), we now consider a new probability
mass function P(�nA, �nB , �nC ; t), where �nX = (n(1)

X , . . . , n(M)
X ) is a vector of molecule

numbers, with one entry for each subvolume. Because of the complexity of the RDME,
we have to introduce some new notations to be able to write it down compactly: we
let E(X,i) be the shift operator which replaces any instance of n(i)

X with n(i)
X + 1. For

example: E(X,i)n
(i)
X = n(i)

X + 1, and, E−1
(X,i)n

(i)
X = n(i)

X − 1, and for any function f (·),
E(X,i) f (n

(i)
X ) = f (n(i)

X + 1). Note that the inverse operator E−1
(X,i) replaces n

(i)
X with

n(i)
X − 1.
Following the argument for the CME, we consider a time-step�t , sufficiently short

that at most one reaction (including hopping events) can occur. Then, we consider the
ways we can end upwith �nA, �nB, �nC molecules at time t+�t . This can happen if: (I) a
binding reaction happens in subvolume i , for some i = 1, . . . , M , in the time interval
[t, t+�t); (II) an unbinding reaction happens in subvolume i , for some i = 1, . . . , M ,
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in [t, t + �t); (III) a particle of type X hops from subvolume i to subvolume j , for
some i, j = 1, . . . , M and X ∈ {A, B,C}, in [t, t + �t); or (IV) no reactions happen
in the time interval [t, t + �t). Clearly, this is much more complicated than for the
CME, but exactly the same principles apply, and after some simplifications we obtain
the following equation:

d

dt
P(�nA, �nB , �nC ; t) =

M∑
i=1

k1M

V

[
E(A,i)E(B,i)E

−1
(C,i) − 1

]
n(i)
A n(i)

B P(�nA, �nB , �nC ; t)

+
M∑
i=1

k2
[
E−1

(A,i)E
−1
(B,i)E(C,i) − 1

]
n(i)
C P(�nA, �nB, �nC ; t)

+
M∑
i=1

M∑
j=1

k(A,i, j)
D

[
E(A,i)E

−1
(A, j) − 1

]
n(i)
A P(�nA, �nB, �nC ; t)

+
M∑
i=1

M∑
j=1

k(B,i, j)
D

[
E(B,i)E

−1
(B, j) − 1

]
n(i)
B P(�nA, �nB , �nC ; t)

+
M∑
i=1

M∑
j=1

k(C,i, j)
D

[
E(C,i)E

−1
(C, j) − 1

]
n(i)
C P(�nA, �nB, �nC ; t),

(20)

noting the correct volume scaling k1M
V for the bimolecular reaction. This equation is

known as the reaction–diffusion master equation (RDME). The first two lines corre-
spond to the two reactions in each subvolume, while the final three lines correspond
to the hopping of particles of type A, B and C , respectively, between neighbouring
subvolumes.

Now that we have the RDME (which is really just a special type of CME); we
can do to it anything that we could do to the CME. For instance, it is possible to
solve RDMEs analytically, if they are composed exclusively of certain types of linear
reactions (Jahnke and Huisinga 2007; Gadgil et al. 2005) or purely reversible reactions
(Cianci et al. 2016). The example (15) is actually solvable, as long as the hopping
events are reversible (i.e. as long as k(X,i, j)

D = k(X, j,i)
D , for all X = A, B,C and

i, j = 1, . . . , M). Other analytical approximation techniques for the CME which are
beyond the scope of this article [e.g. the van Kampen approximation (1992) and the
chemical Langevin equation (Gillespie 2000)] can also be applied to the RDME, and
have been, with interesting results (Smith et al. 2016; Ghosh et al. 2015).

Any stochastic simulation algorithm designed for the CME can also naturally be
applied to the RDME (Stundzia and Lumsden 1996; Elf and Ehrenberg 2004; Bern-
stein 2005; Fange et al. 2012). Several new issues arise when simulating the RDME,
however. For example, stochastic simulation algorithms tend to have computation time
proportional to the frequency of reaction events (Gillespie 1977). If the hopping rates
are quite large, then an RDME simulation may take substantially longer than an equiv-
alent CME simulation—it is not uncommon for upwards of 99% of the simulation time
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Fig. 4 a If subvolumes are arranged in a grid, all hopping rates are straightforwardly given by Eq. (17). b
If subvolumes are of irregular shapes, and boundaries between subvolumes are of different sizes, it is not
clear how to best choose hopping rates

to be spent simulating hopping events rather than chemical reactions. This issue in
particular has driven a huge amount of research into fast and accurate simulation of
the RDME (Elf et al. 2003; Drawert et al. 2010; Roberts et al. 2013; Fu et al. 2014).

It is worth going into a little more detail now about the hopping rates k(X,i, j)
D . In the

simplest case where each subvolume is of the same size, Eq. (17) can be used. This
case is demonstrated in Fig. 4a: neighbouring subvolumes (such as 1 and 3) all have
the same hopping rates between them, whereas non-neighbouring subvolumes (such
as 1 and 2) have zero hopping rates. More generally, subvolumes can be of any shape
and size, and the size of the boundaries where two neighbouring subvolumes join can
vary greatly as well. Such a case is shown in Fig. 4b: neighbouring subvolumes (such
as 1 and 2) tend to be of different sizes, so the hopping rate in one direction will
generally be different from the other; moreover, boundaries between neighbours are
not necessarily of the same length (such as the boundaries between 2 and 4, and 2 and
5), and shorter boundaries will tend to be crossed by fewer molecules, and so should
have correspondingly lower hopping rates. In these cases, the hopping rate should (in
principle) be calculated using a first passage time approach with the diffusion equation
(Redner 2001), but this is often computationally unfeasible and in practice there is no
easy answer. Some authors have proposed techniques for choosing these rates in a
manner which agrees optimally with Brownian diffusion (Isaacson and Peskin 2006;
Engblom et al. 2009; Bayati et al. 2011; Drawert et al. 2012; Lotstedt and Meinecke
2015; Meinecke et al. 2016; Meinecke and Ltstedt 2016), but these are typically
simulation-based and not analytically straightforward.

In this section, we typically assume that molecules do not occupy any volume
themselves (i.e. they are point-particles), but relaxing this assumption leads to even
more complex hopping rates. These rates typically depend on the concentrations of
the various species in the destination subvolume j , so that a subvolume with a high
concentration of molecules is less likely to be able to accommodate a new molecule
hopping into it (Elderfield 1985; Baker et al. 2010; Fanelli and McKane 2010; Cianci
et al. 2016). Writing the hopping rate as a linear function of the concentrations is
a popular choice, but when concentrations are very high certain nonlinear functions
have been shown to be more accurate (Meinecke 2017; Cianci et al. 2017; Smith et al.
2017).

When diffusion coefficients are large, simulations of the RDME can become very
slow (because molecules will hop around many times between reactions) (Drawert
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et al. 2010), and significant modifications to the hopping rates have been introduced
to address this issue. In particular, it is common to allow particles to hop between
non-neighbouring subvolumes i and j (Taylor et al. 2014). The implication is that
the particle did in fact follow a neighbour-to-neighbour path from i to j , but the
intermediate steps are eliminated for speed: a very careful choice of the hopping rates
is required in these cases to correctly model diffusion.

We have seen how the RDMEwas obtained as an extension of the CME, to address
the problem of mass action kinetics. In this sense, the RDME is a top-down model,
since it is not a simplification of a more detailed microscopic model like Brownian
dynamics. The risk with top-down models is that the new components (the hopping
rates, in the case of the RDME) could be added in a flawed manner, making the model
inconsistent with the other well-established models. In short, the RDME is just the
CME with some additional terms to explicitly model diffusion, but how do we know
that these additional terms are correct?

This question has plagued users of the RDME for decades. A whole subgenre of the
reaction–diffusion field is dedicated to comparing the RDME with microscopic mod-
els, including various types of Brownian dynamics and molecular dynamics, which
are taken to be the “ground truth”. Almost invariably, because of the complexities
of the models involved, it is stochastic simulations of models which are compared,
rather than the actual equations which make up the models (Baras and Mansour 1996;
Dobrzynski et al. 2007; Fange et al. 2010). As a result, the outcome of these compar-
isons is typically to suggest optimal values of the various RDME model parameters
(reaction rates, hopping rates, number and size of subvolumes) to get best agreement
with the “ground truth” model, for a particular reaction–diffusion system. Such com-
parisons are therefore very limited in their applicability: there is no reason to believe
that the optimal hopping rates (for example) for one systemwill be the same for another
system, even if they are quite similar.

An alternative (though much trickier) approach is to directly compare the RDME
with the “ground truth” model by writing out equations for both and discerning to
what extent they agree (Collins and Kimball 1949; Fange et al. 2010; Hellander et al.
2015). This kind of comparison will provide general rules about when models agree
and will not generally be limited by system specifics. The challenge is that “ground
truth” models tend to be very hard to write down, since they are very complex and
are usually conceived as models for simulation rather than mathematical analysis. A
pioneer in this kind of comparison is Isaacson, who has published several articles
analytically comparing the RDME with a variety of “ground truth” models (Isaacson
2008, 2009, 2013). Two principal results emerge from Isaacson’s work. First, the
RDME can be thought of as an approximation to a particular BD model known as the
Smoluchowski model (1917) (more on this later), but there is no limit in which one
converges to the other (Isaacson 2009). It can be rigorously proved that asM increases,
the approximation first gets better, and then gets worse (while never actually showing
perfect agreement), and it is hard to know in general which M is the optimal one.
In a similar vein, Hellander et. al. have shown that there exists a hard upper limit on
M , above which the RDME cannot agree with the Smoluchowski model because the
subvolumes become unphysically smaller than the size of a molecule (Hellander et al.
2012). Isaacson’s second principal result is that the RDME can be modified to create
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a new model (known as the “convergent RDME”, or CRDME) in which molecules
can react with molecules in different subvolumes, according to certain strict rules
(Isaacson 2013). The CRDME was shown to converge precisely to another BD model
known as the λ − ρ model (Erban and Chapman 2009) (more on this later). Overall,
it seems that the RDME never quite sits comfortably with BD, and potentially, this
could call its accuracy into question.

But we take a slightly different view of the RDME to those who wish to compare
it to a “ground truth” model. Considering the RDME as an approximation to a micro-
scopic model necessarily involves questions about molecular shapes and sizes and
about the physical chemistry of reactions, questions which take us far from the neat
simplicity of the CME. TheRDMEwas conceived as a version of the CMEwith spatial
resolution, to address the question of how diffusion affects chemical systems. Users
of the RDME are not necessarily interested in (or even aware of) the size and shape
of the molecules they are modelling, and to require knowledge of these quantities to
correctly parameterise the RDME is a potential overcomplication. In our view, the
RDME is a neat and straightforward model for qualitatively understanding the effect
of diffusion on stochastic reaction systems, an important academic question for which
no other model is well suited, but it is probably not appropriate to answer questions
where numerical accuracy are paramount, and in these cases a microscopic model may
be more suitable.

We do not worry particularly about the RDME’s agreement with more complex
models, to the extent that we do not discredit it as a model simply because it disagrees
with more microscopic models, but in Sect. 4 we do try to analyse why the RDME
differs from BD. However, it is very important that the RDME should agree with the
simpler models on the complexity scale in the conditions under which those models
are accurate. In particular, we would like the RDME to agree with the CME when
diffusion is very fast (i.e. when spatial resolution becomes unimportant); we would
like the RDME to agree with the RDEs when concentrations are very high (i.e. when
stochasticity becomes unimportant); and we would like it to agree with the REs when
both of the above conditions hold (high concentrations and fast diffusion).

2.1 The Limit of Fast Diffusion

We have previously mentioned the concept of “infinite diffusion”, which is somewhat
counter-intuitive and is worth discussing. Diffusion coefficients in reality cannot be
infinite. In the case of spherical particles, they are given by the Stokes–Einstein relation
D = kBT

6πηr , where kB is the Boltzmann constant, T is the temperature, η is the viscosity
of the solvent, and r is the particle radius (Gillespie and Seitaridou 2012). All of these
quantities are finite and nonzero, so infinite diffusion is necessarily unphysical. When
we say “infinite diffusion” we are not thinking of limiting case of small particle radii,
low viscosity or high temperatures. Instead, we mean that the rate at which a particle
moves between regions of space (the hopping rate, in the RDME) is much higher than
the rate at which it is involved in chemical reactions (these conditions are typically
referred to as “reaction-limited” (Grima and Schnell 2006), but thinking instead in
terms of “infinite diffusion” will prove to be useful shortly). In other words, a typical
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particle will diffuse throughout the reaction volume several times before actually
reacting. Under these conditions, the principle of mass action kinetics can reasonably
be said to hold, since any pair of particles will have time to move close together before
a reaction takes place, and the concept of particles being too far apart to react no longer
makes sense. For this reason, we expect the CME to be an accurate model under the
conditions of “infinite diffusion”, and so if the RDME is also accurate, it should agree
with the CME in this case.

To answer the question of agreement between the CME and RDME, we will study
a straightforward but general example. For simplicity, we will consider a system con-
sisting of only one chemical species, A, and two equally sized subvolumes inside a
total volume of size V . The set-up is shown in Fig. 5a. The arguments that follow in
fact apply to systems with any number of species and any number of subvolumes of
any sizes, and a complete proof can be found in Ref. Smith and Grima (2016).

The system will consist of R reactions which take the form s j A → r j A for j =
1, . . . , R. The rate of reaction j will be given by an arbitrary function f j (nA, V ). The
CME of our system takes the form:

d

dt
P(nA; t) =

R∑
j=1

[
f j (nA + s j − r j , V )P(nA + s j − r j ; t) − f j (nA, V )P(nA; t)] .

(21)
In contrast, the RDME takes the form:

d

dt
P

(
n(1)
A , n(2)

A ; t
)

=
R∑
j=1

[
f j

(
n(1)
A + s j − r j ,

V

2

)
P

(
n(1)
A + s j − r j , n

(2)
A ; t

)

− f j

(
n(1)
A ,

V

2

)
P

(
n(1)
A , n(2)

A ; t
)]

+
R∑
j=1

[
f j

(
n(2)
A + s j − r j ,

V

2

)
P

(
n(1)
A , n(2)

A + s j − r j ; t
)

− f j

(
n(2)
A ,

V

2

)
P

(
n(1)
A , n(2)

A ; t
)]

+ k(A,1,2)
D

[(
n(1)
A + 1

)
P

(
n(1)
A + 1, n(2)

A − 1; t
)

− n(1)
A P

(
n(1)
A , n(2)

A ; t
)]

+ k(A,2,1)
D

[(
n(2)
A + 1

)
P

(
n(1)
A − 1, n(2)

A + 1; t
)

− n(2)
A P

(
n(1)
A , n(2)

A ; t
)]

. (22)

We note that the second argument of the f j in the RDME is V
2 because each subvolume

has volume V
2 . Because each of the subvolumes is equal in size, and since they share a

boundary, we can safely assume k(A,1,2)
D = k(A,2,1)

D . If this were not the case, it would
imply a net flow of particles from one volume to the other, which may be appropriate
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for modelling some problems, but not the typical problem of diffusion which has no
directional bias.

The limit of infinite diffusion implies that lines 3 and 4 of Eq. (22) will tend to
overwhelmingly dominate, unless P(n(1)

A , n(2)
A ; t) has a form which makes lines 3 and

4 equal to zero. It follows that the system will converge to this form (the equilibrium
distribution of lines 3 and 4) infinitely quickly, i.e. the following equation holds at all
times:

0 = k(A,1,2)
D

[(
n(1)
A + 1

)
P

(
n(1)
A + 1, n(2)

A − 1; t
)

− n(1)
A P

(
n(1)
A , n(2)

A ; t
)]

+ k(A,2,1)
D

[(
n(2)
A + 1)P(n(1)

A − 1, n(2)
A + 1; t

)
− n(2)

A P
(
n(1)
A , n(2)

A ; t
)]

. (23)

Since k(A,1,2)
D = k(A,2,1)

D , this simplifies further to:

0 =
(
n(1)
A +1

)
P

(
n(1)
A +1, n(2)

A − 1; t
)

− n(1)
A P

(
n(1)
A , n(2)

A ; t
)

+
(
n(2)
A + 1

)

P
(
n(1)
A − 1, n(2)

A + 1; t
)

− n(2)
A P

(
n(1)
A , n(2)

A ; t
)

. (24)

This equation looks complicated, but in fact it has a straightforward non-trivial solu-
tion:

P
(
n(1)
A , n(2)

A ; t
)

=
{

nA!2−nA

n(1)
A !n(2)

A ! if n(1)
A + n(2)

A = nA,

0 otherwise,
(25)

where nA is, as before, the total number of molecules of A in the entire volume. The
solution (25) is a Binomial

(
nA, 1

2

)
distribution, which is intuitively not surprising. If

diffusion is infinitely fast, at any given time, each molecule has a 50% chance of being
in subvolume 1 and a 50% chance of being in subvolume 2. If there are nA molecules
overall, then the solution must be the one given in Eq. (25).

We now take a moment to think about the meaning of the functions f j . Since
waiting times between reactions are exponentially distributed, f j (nA, V )�t is the
probability that reaction j happens in a short time period of length�t , given that there
are nA molecules in the volume V . f j is precisely this probability in the CME, but the
analogous expression for this probability in the RDME is not immediately obvious,
because the RDME concerns the local molecule numbers n(1)

A and n(2)
A and the total

molecule number nA is never explicitly modelled. Let us nonetheless denote it by
f̄ j (nA, V ). It follows that the total molecule number in the RDME with infinitely fast
diffusion satisfies the following equation:

d

dt
P(nA; t) =

R∑
j=1

[
f̄ j (nA + s j − r j , V )P(nA + s j − r j ; t) − f̄ j (nA, V )P(nA; t)] ,

(26)
which is exactly the CME (21), but with f j replaced by f̄ j . There is a subtle point here:
we are saying that we can rewrite the RDME in terms of the total molecule numbers
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nA, rather than the local molecule numbers n(i)
A . We can do this because diffusion is

infinitely fast, and so n(i)
A becomes a random variable parameterised by nA, and the

values of n(i)
A at any two distinct time points are uncorrelated. If diffusion were not

infinitely fast, we would not be able to rewrite the RDME in the form of Eq. (26)
without losing some information.

It remains to evaluate f̄ j : if it is equal to f j then we have proved that the RDME
converges to the CME in the limit of fast diffusion. f̄ j (nA, V )�t is the probability that
reaction j happens in a time period �t and is equal to the probability that it happens
in subvolume 1 or in subvolume 2. Since these events are independent, we get:

f̄ j (nA, V )�t=
nA∑

n(1)
A =0

nA∑
n(2)
A =0

P
(
n(1)
A , n(2)

A ; t
) [

f j

(
n(1)
A ,

V

2

)
�t+ f j

(
n(2)
A ,

V

2

)
�t

]

= 2
nA∑

n(1)
A =0

nA∑
n(2)
A =0

P
(
n(1)
A , n(2)

A ; t
)
f j

(
n(1)
A ,

V

2

)
�t

= 2E

[
f j

(
n(1)
A ,

V

2

) ∣∣∣nA

]
�t, (27)

where the conditional expectation, E [�|nA], denotes the expected value of � given
that there are nA molecules overall. In short, f̄ j is proportional to the expected value
of f j under the binomial distribution (25). We can try some example f j ’s to see what
happens. For instance, if we choose f j (nA, V ) = k for some constant k, then we get:

f̄ j = 2E [k|nA] = 2k �= k = f j , (28)

so f j cannot simply be a constant. On the other hand, if we choose the correct volume
scaling for a zero-order reaction propensity, f j (nA, V ) = kV , then we get:

f̄ j = 2E

[
k
V

2
|nA

]
= 2k

V

2
= kV = f j , (29)

so the RDME and CME are consistent. This shows the importance of the correct
volume scaling for reaction rates. Some other standard rates are the monomolecular

rate f j (nA, V ) = knA, corresponding to a reaction of the form A
k−→, which gives:

f̄ j = 2E
[
kn(1)

A |nA

]
= 2k

nA

2
= knA = f j , (30)

and the bimolecular rate f j (nA, V ) = k
V nA(nA − 1), corresponding to a reaction of

the form A + A
k−→, which gives:

f̄ j = 2E

[
2k

V
n(1)
A (n(1)

A − 1)|nA

]
= 4k

V

(
nA

4
+ n2A

4
− nA

2

)
= k

V
nA(nA − 1) = f j .

(31)
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These standard rates provide consistency between the RDME and CME, although
the original physical reasoning behind these volume scalings have nothing to do with
the RDME (Van Kampen 1992). But even rates which scale correctly with volume
can have problems if they are unphysical in other ways. For instance, if we chose
f j (nA, V ) = k

V n
2
A, which has the correct volume scaling for a bimolecular reaction,

we would get:

f̄ j = 2E

[
2k

V

(
n(1)
A

)2 |nA

]
= 4k

V

(
nA

4
+ n2A

4

)
= k

V
nA(nA + 1) �= k

V
n2A = f j .

(32)
Our RDME consistency criterion appears to very carefully select for rate functions
with a sound physical basis, so it is clearly necessary to be very careful with rates
before using the RDME.

While the “bad” rate functions given above are clearly just mistakes which can be
rectified, there are some other genuine rate functions in common usage known as “non-
elementary rates” which are not so fortunate. These include Hill function rates and
Michaelis–Menten rates (Lawson et al. 2015). The Michaelis–Menten rate function
has the form f j (nA, V ) = kVnA

KV+nA
, which gives:

f̄ j = 2E

[
kVn(1)

A

KV + 2n(1)
A

|nA

]
= kVnA 2F1

( KV
2 + 1, 1 − nA; KV

2 + 2;−1
)

2nA
( KV

2 + 1
)

�= kVnA

KV + nA
= f j , (33)

where 2F1(a, b; c; d) is a hypergeometric function (Abramowitz and Stegun 1964).
The RDME rate in this case is so different from the CME rate that it could give very
wrong results if used. To check this, we simulated the following system:

∅ k1−→ A, A
MM−−→ ∅, (34)

where ∅ denotes that we are not interested in the species involved, and MM denotes
that the reaction occurs with the Michaelis–Menten rate k2VnA

KV+nA
. System (34) was

simulated using both the RDME with M = 2 and fast diffusion, and the CME. The
results are shown in Fig. 5. For the chosen parameters (see caption) the distributions
are remarkably different: the RDME distribution has mean of around 7 compared
with 11 for the CME. It is clear that using the RDME with non-elementary rates is
a fundamentally bad idea. For more details of this effect, see Ref. Smith and Grima
(2016).

We set out to demonstrate that theRDME is consistentwith theCMEwhen diffusion
is infinitely fast, and we proved that this is the case but only under certain conditions.
It appears that there is a strict subset of rate functions which are compatible with the
RDME, and if a rate function is used which is not from this subset then the RDME is
no longer a consistent model. This does not cast doubt on the RDME necessarily, but
it does imply that extra caution should be taken when choosing rates for the RDME.
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Fig. 5 Comparing the fast diffusion limit of the RDME with the CME. a In the CME, any molecule (red)
can react with any other (dashed blue line); in the RDME molecules can only react with other molecules
in the same subvolume (dashed blue lines), but they can “hop” between neighbouring subvolumes (blue
arrows). b The equilibrium distribution of the CME (yellow) and RDME with M = 2 and fast diffusion (
kD = 40, blue) for system (34) obtained from stochastic simulations, with k1 = 0.1, k2 = 1, K = 100
and V = 1. If the RDME is correct these two distributions should essentially agree, but they are clearly
very different. Note that the RDME distribution remains the same for larger kD

2.2 The Limit of High Concentrations

As we have mentioned, the RDME is just a type of CME, and so any argument that
holds for the CME will also hold for the RDME. The most fundamental result in the
theory of stochastic chemical kinetics is that the CME converges to the REs when
concentrations are high, thus implying that stochasticity stops being important for
high concentrations. We will not go into the proof of this here, but it is discussed in
detail in Refs. Kurtz (1971, 1972), Van Kampen (1992), Gardiner (1986), Ball et al.
(2006) and Hepp et al. (2015). Naturally, this means that the RDME also converges to
the spatially discretised analogue of the REs, Eq. (16), when concentrations are high.
We will briefly offer a justification of this here, although it is not a rigorous proof by
any means.

We will think about the number of A molecules in subvolume i at a time t + �t ,
n(i)
A (t +�t), conditional on the molecule numbers at time t . n(i)

A is typically a random
variable, but when concentrations are high it will converge to its mean by the law of
large numbers, so we can essentially treat it as a fixed value for now. Two facts help
us to evaluate n(i)

A (t + �t). Firstly, because there are huge numbers of molecules of
all types in all subvolumes, a huge number of reaction events of each type will happen
in the time period [t, t + �t). This implies that we do not need to think about the
probability that a reaction happens, but the number of times it happens, and by the law
of large numbers this number will converge (in the limit of high concentrations) to
its expected value. Secondly, even though a huge number of reactions will happen in
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[t, t+�t),�t is still small, so the total molecule numbers will not change significantly
over that period. This means that we can use n(i)

A (t) to refer to the value of n(i)
A at any

point in the interval [t, t + �t). Following this argument, for system (2) in a volume
V with length L divided linearly into M subvolumes, thinking about the rates of the
processes which can increase or decrease n(i)

A , we find that we can write:

n(i)
A (t + �t) = n(i)

A (t) − k1M

V
n(i)
A (t)n(i)

B (t)�t + k2n
(i)
C (t)�t

+ DAM2

L2

[
n(i−1)
A (t) − 2n(i)

A (t) + n(i+1)
A (t)

]
�t. (35)

Note that we have used the volume scaling k1M
V for the bimolecular reaction. Using

the same arguments as in the derivation of the CME, Eq. (4), we can rearrange the
�t’s in Eq. (35) to produce a differential equation:

d

dt
n(i)
A = −k1M

V
n(i)
A n(i)

B + k2n
(i)
C + DAM2

L2

[
n(i−1)
A − 2n(i)

A + n(i+1)
A

]
. (36)

We can divide through by the volume of the subvolumes V
M to get the concentrations:

d

dt
[A(i)] = − k1[A(i)][B(i)] + k2[C (i)] + DAM2

L2

[
[A(i−1)] − 2[A(i)] + [A(i+1)]

]
.

(37)
Note that the volume scaling of the bimolecular rate disappears when we convert to
concentrations. Equation (37) is exactly Eq. (18), which is the spatial analogue of
the REs. We have already discussed that, in the limit of high concentrations, we can
justifiably take the limit M → ∞ to produce the RDEs Eq. (19), so the RDEs turn
out to be the limiting form of the RDME when concentrations are high.

2.3 The Combined Limits of Fast Diffusion and High Concentrations

We have established that the RDME reduces exactly to the CME in the limit of fast
diffusion (if the rates are physically valid) or the RDEs in the limit of high concentra-
tions; in this section, we will briefly consider what happens when both of these limits
are applied simultaneously.

We have already noted that the high concentration limit of the CME is the REs, and
we have a rough sketch of why this is the case. We will not go into the subject again
here, and the proof can be found in Refs. Van Kampen (1992) and Gardiner (1986)

But what happens to the RDEs when diffusion is fast? The RDEs have the form:

∂

∂t
[A] = R([A]) + DA∇2[A], (38)

where R(·) denotes reaction terms. When diffusion is fast, the second term of (38)
dominates unless ∇2[A] = 0, which happens if [A] is a spatially uniform concentra-
tion.When diffusion is infinitely fast, the concentration [A]will converge to a spatially
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Fig. 6 How the RDME fits into
the scale of model complexity
shown in Fig. 1. There is no
direct relationship between the
RDME and any of the more
complex models
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uniform concentration infinitely quickly. In that case, [A] will have no spatial depen-
dence and will simply become a function of t . The RDEs then obey:

∂

∂t
[A] = R([A]), (39)

which are simply the REs. It does not matter, therefore, in which order the limits of
fast diffusion and high concentrations are applied: either way the RDME becomes the
REs.

Overall, we have found that the RDME can be thought of as a “parent model”
of the CME, the RDEs and the REs, with the relationship between them shown in
Fig. 6. Specifically, if we use both the RDME and the CME (for example) to model
the same system, and the system is such that we expect the CME to be correct (i.e.
diffusion is fast), then the two models will give identical predictions. This is great
for the RDME and demonstrates its place in the complexity scale (Fig. 1), but the
RDME is nonetheless a top-down model with no guaranteed microphysical basis. In
the next section, we investigate what happens if we try to reach the same point on the
complexity scale by starting at the most complex point and systematically applying
simplifications.

3 Brownian Dynamics

The theory of MD considers systems consisting of particles, each of which exerts
forces on the surrounding space, including van der Waals and electrostatic forces
(Frenkel 2001; Atkins et al. 2018). Imagining a system of N particles, and a particle
i with position xi , we can add up the forces at that point caused by all other particles
in the system to get Fi (xi ), which is the force that would be felt by particle i .

It is worth going into some detail about what is meant by “particle” in MD. In
the most complex forms of MD, “particle” means “atom” (McCammon et al. 1977;
MacKerell et al. 1998; Buch et al. 2010). Atoms which are bonded together into
molecules experience spring-like forces between eachother, ensuring that their average
separation is equal to the empirically calculated bond length. Alternatively, at the
simplest level, each molecule is considered a single particle, and so forces act on the
centre of mass of themolecule rather than its constituent atoms (Alder andWainwright
1959, 1960).Naturally, there are no spring-like forces in this description since there are
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no chemical bonds between particles. In between these two extremes are descriptions
of intermediate complexity, where each particle represents a handful of atoms. For
instance, one or more water molecules could be treated as a single particle (Wang et al.
2009; Riniker and van Gunsteren 2011), or a protein molecule could be treated as a
chain of particles (up to amino acids) connected by spring-like forces (bonds) (Smith
and Hall 2001; Ding et al. 2005; Tozzini 2005). In the remainder of this discussion we
will, for simplicity, assume the simplest form of MD: “particle” means “molecule”.
Since all forces act on molecule centres of mass, issues such as molecular shape,
molecular orientation and rotation are all absorbed into the force term Fi (xi ). For all
intents and purposes, it may be simpler henceforth to think of molecules as spheres,
though all our arguments apply to general molecular shapes.

It is also worth saying something initially about how chemical reactions occur in
MD. Reactions are typically beyond the capabilities of MD simulators: the reasons for
this are complex, but fundamentally, it is because reactions are quantum mechanical
(Atkins et al. 2018), while MD uses classical mechanics. There are quantum mechan-
ical versions of MD, but they are well beyond the scope of this article and, besides, are
extremely computationally intensive (Hu and Yang 2008). We will therefore postpone
discussion of chemical reactions until a later point in this section.

We will now consider what we can say about the dynamics of our system of N
particles. By Newton’s second law, the change in momentum of particle i is equal to
Fi (xi ). We can therefore write:

mi
∂2xi
∂t2

= Fi (xi ), (40)

wheremi is particle i’smass. Thismodel is perfectly good in theory, but there is an issue
of scale. A system of N particles consists of N coupled versions of Eq. (40), each of
which is really 3 equations (assuming a three-dimensional system volume), so we end
up with 3N coupled equations. In the vast majority of systems of interest to biologists,
water molecules are by far the most numerous particles: a simple calculation shows
that a typical 1µm3 Eschericia coli cell contains upwards of 1010 molecules of water
alone. Trying to solve Eq. (40) with N on that kind of scale is simply impossible, even
for the best computers. One solution to this is to study only a very small subvolume,
much smaller than a cell, possibly containing only one protein (Klepeis et al. 2009).
But unfortunately the most interesting biochemistry concerns interactions between
several different biological molecules, possibly located in several different parts of
the cell, and systems of this kind are beyond the capabilities of molecular dynamics.

The issue, in essence, is that in order to simulate a useful number of interest-
ing molecules a much greater number of water molecules must also be simulated.
It was realised that a way around this problem might be to not simulate the water
molecules explicitly, but rather to approximate the effect of water molecules on the
other molecules by adding terms to Eq. (40) (Pastor et al. 1988). This would dramat-
ically reduce N , and so dramatically increase the size of systems we could plausibly
simulate.

The approximation of the water molecules has three components, which have an
intuitive justification.Wewill use the word “collide” to refer to a steric (van derWaals)
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)III()II()I(

Fig. 7 Three effects of water molecules (blue) on the motion of a large particle X (orange). I Water
molecules collide on all sides of the large particle apparently at random (black arrows). If X is stationary,
there is no directional bias to the random collisions. II If X is moving right, water molecules will collide
more frequently on the particle’s right side and less frequently on its left. There will be a deterministic
force opposing X ’s velocity. III The arrows show how the water molecules might move in the time it would
have taken them to collide with X had X been stationary (dotted circle). The water molecules on the left
have not yet collided with anything, while the molecules on the right have collided and reflected away with
higher speeds. They are all further to the right than they would have been otherwise, causing a net flow of
water to the right

interaction between particles, this can be thought of as a usual collision between hard
objects (or, for simplicity, hard spheres). A graphical explanation of these effects is
shown in Fig. 7

(I) When water molecules collide with a larger molecule, X , they will apply a force
and thereby induce a change in X ’s velocity. This is simply due to the conservation
of momentum and the conservation of energy. The direction and magnitude of
this change are highly variable and are well approximated by a random quantity.
Because of the huge number of collisions, the central limit theorem implies that
this random force will be approximately Gaussian (Loeve 1977). See Fig. 7 (I).

(II) When X moveswith somenonzero velocity, it will tend to collidemore frequently
with water molecules in its direction of travel. That is, if X is moving to the right,
it will tend to experience more collisions on its right side, and fewer on its left
side, than the average predicted by (I). The number of collisions will scale with
themagnitude of X ’s velocity (since faster-moving particleswill experiencemore
such collisions in a fixed time period). See Fig. 7 (II).

(III) This component is much more subtle and takes some explaining. Let us say X
is initially stationary and is hit on the left by a water molecule. Now X starts
to move to the right with a fixed speed. After a short time, before it collides
with anything else, it will have moved a short distance. Now we think about a
potential water molecule which might be about to collide with X . If it is about to
collide from above, below, the front or the back, then the fact that X has moved
makes essentially no difference to its behaviour. If it is about to collide from the
left, it will have to travel slightly further before it collides than it would have if
X had not moved. If it is about to collide from the right, it will have to travel
slightly less far before it collides. Now suppose the water molecule has collided,
and been reflected, and is now travelling away from X . On average, the water
molecule will be slightly further to the right than it would have been if X had
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been stationary. Furthermore, a post-collision water molecule moving right will
be moving faster than it otherwise would have been, thanks to the extra energy
from the moving X ; similarly, a post-collision left-moving water molecule will
be moving more slowly. Now imagine another large stationary molecule, Y , to
the right of X . It is now slightly more likely to be hit on the left and by a faster-
moving water molecule. Another large stationary molecule, Z , to the left of X ,
is slightly less likely to be hit on the right, and if it is hit it will likely be by a
slower-moving water molecule. These two molecules will now both be slightly
more likely to move right. Large molecules above, below, in front of and behind
X will tend to be unaffected.
Perhaps a more intuitive—though less microscopic—way to think of this is in
terms of pressure. If X moves slightly to the right, it will vacate some volume
to its left, so there will be a slightly lower water pressure to its left, and water
molecules will rush to fill the void. It will also occupy some volume to its right,
so there will be a slightly higher water pressure to its right, and water molecules
will be pushed out. There will therefore be a net flow of water molecules to the
right in the vicinity of X , and so Y and Z will tend to be moved slightly right by
the flow.
Mathematically, this manifests itself in a peculiar way: when effect (I) or (II)
induces a force on a particle j , effect (III) ensures that all other particles in the
system also experience a small force as a result. These forces will be separation
dependent, so that two nearby particleswill experience strongly correlated forces,
while distant particles are weakly correlated. This effect is known as a “hydrody-
namic” interaction between particles, because it is really a fluid dynamical effect
(Ermak and McCammon 1978).

(I), (II) and (III) all refer to forces induced by steric interactions (collisions) between
water molecules and the larger molecule i , but (I) is a random component, (II) is a
deterministic component, and (III) is the consequence experienced by molecule i of
components (I) and (II) acting on all other molecules in the system. The new version
of Eq. (40), implementing all the components, is known as the Langevin equation, and
it has the following form:

mi
∂2xi
∂t2

= Fi (xi ) +
N∑
j=1

√
2kBT

(
�

1
2

)
i j

ξ j −
N∑
j=1

�i j
∂x j

∂t
, (41)

where kB is the Boltzmann constant, T is the temperature, ξi is a standard Gaussian
randomvector, and� is a 3N×3N matrix known as the “friction tensor”. Thematrix�

can be split into 3×3 blocks: the term �i j refers to the 3×3 submatrix corresponding

to the effect of particle j’s motion on particle i . The matrix �
1
2 is the square root of

the friction tensor.
Effect (I) is described by the term

√
2kBT

(
�

1
2

)
i i

ξi , i.e. the component of the

square root friction tensor for the effect of particle i on itself. Similarly, effect (II)
is described by −�i i

∂xi
∂t . Effect (III) is incorporated in two distinct ways: first, any

random force felt by any particle j , ξ j , has a hydrodynamic effect on particle i—this is
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the reason for the first sum in Eq. (41); secondly, the velocity of any particle j induces
a hydrodynamic force on particle i—this is the reason for the second sum in Eq. (41).
The hydrodynamic friction tensor � mediates these two hydrodynamic contributions,
and it is a complicated function of the relative positions of all the particles in the
system. The details of the hydrodynamic implementations are well beyond the scope
of this article; for a nice summary, see Ref. Ermak and McCammon (1978) which
gives examples of the Oseen (Yamakawa 1971) and Rotne–Prager (Rotne and Prager
1969) implementations.

The hydrodynamic effect (III) is often left out of the Langevin equation, because
it is subtle and complicated to implement. In that case, instead of Eq. (41) we get the
much simpler form:

mi
∂2xi
∂t2

= Fi (xi ) + √
2γi kBT ξi − γi

∂xi
∂t

, (42)

where ξi is now an uncorrelated Gaussian random vector, and the scalar γi = �i i

is the “friction coefficient”. It is easy to see the differential contributions of effects
(I) and (II) in Eq. (42). However, there is no physically valid reason to eliminate the
hydrodynamic effects at this stage, so we will leave it in for now and discuss when it
may be appropriate to remove it later.

Equation (41) is a significant improvement on Eq. (40), and for computational
simulations, it does well, but the presence of second derivatives makes it somewhat
difficult to study analytically. However, a simplification can be made due to the fact
that molecules in water exist in low-Reynolds number conditions, which implies that
viscous effects dominate and inertial forces are negligible (Purcell 2014). The result

is that ∂2xi
∂t2

= 0 and so Eq. (41) is simplified.
This is quite complicated, so it worth exploring what is actually happening. Let us

temporarily ignore the random collisions with water molecules and think about what
happens to a molecule moving through water at a constant velocity. Intuition is not
very helpful here, since we are used to thinking about water from a human point of
view: if a human is swimming in water at a constant speed, then stops swimming, their
motion will slow until they stop completely, i.e. there is a (relatively) lengthy period of
decreasing speed (acceleration). This is not what happens to amolecule (e.g. a protein)
in water. A closer analogy would be a human swimming through a viscous fluid, such
as treacle: when the human stops swimming, they simply stop moving instantly, there
is no notable period of decreasing speed. (Of course, there is one, but it happens over
such a short timescale that it is negligible.) Water from the point of view of a protein is
just like this: it stops moving instantly, there is no protracted period of slowing down.
This is the intuitive reason why we can set the acceleration term to zero in Eq. (41).
See Ref. Purcell (2014) for an interesting discussion of this effect.

It follows that Eq. (41) becomes:

0 = Fi (xi ) +
N∑
j=1

√
2kBT

(
�

1
2

)
i j

ξ j −
N∑
j=1

�i j
∂x j

∂t
. (43)
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Using linear algebra techniques, this set of equations (for i = 1, . . . , N ) can be
rearranged to give expressions for the velocity of each particle:

∂xi
∂t

=
N∑
j=1

(
�−1

)
i j
F j (x j ) +

√
2kBT

γi
εi , (44)

where �−1 is the matrix inverse of the hydrodynamic friction tensor �, and εi is
a standard Gaussian random vector which (unlike ξi ) is correlated with ε j (for
all j = 1, . . . , N ) according to a complicated hydrodynamic function (Ermak and
McCammon 1978). The effect of the linear algebraic rearrangement is to replace the
sum of velocities in Eq. (43) with a sum of forces in Eq. (44). The implication is that
any force between two particles (such as a steric repulsion) will induce a (typically
miniscule) change in the velocity of every other particle in the system, even if the
force does not affect them directly.

Equation (44) is known as Brownian dynamics (Einstein 1956), and in essence,
it says that the large molecule’s velocity has a deterministic component (due to the
forces between each pair of large molecules) and a random component due to random
collisions with the water molecules. It is tempting to think that individual collisions
with the water molecules induce a random change in the large molecule’s position,
and that is what Eq. (44) seems to imply, but this is not quite correct. The individual
water molecules actually induce random changes in the large molecule’s velocity, and
these changes will tend to happen extremely frequently, so in reality several water
molecules contribute to each substantive change in the large molecule’s position. This
may seem like a semantic distinction, but it is worth bearing in mind that each random
position increment corresponds to a large number of actual collisions.

The next simplifying step we can make is to assume that Fi (xi ) = 0 everywhere
and to decorrelate the random vectors εi , which essentially amounts to ignoring steric
(van der Waals), electrostatic and hydrodynamic interactions. This may seem to be
a preposterous approximation to make, given that Eq. (44) is already quite simple,
but there is a logic behind it. If we were trying to simulate (i.e. solve) Eq. (44) on a
computer,wewouldmost likely use anEuler scheme such as the oneused inRef.Ermak
and McCammon (1978). To do this, we would pick a small time-step �t and apply
the update rule:

x(t + �t) = x(t) +
N∑
j=1

(
�−1

)
i j
F j (x j )�t +

√
2kBT

γi
εi�t (45)

to each particle at each time-step. This is not too computationally intensive in itself,
but the problem is that for each particle the associated force function Fi (·), the matrix
�−1 and the size of the correlation in εi depend on the relative locations of all the other
particles in the system. All the different Fi ’s,

(
�−1

)
i j ’s and correlations must be re-

evaluated at every time-step, and this is what seriously slows down the computation.
So it is clearly going to be useful to assume Fi (xi ) = 0, and the εi ’s are uncorre-
lated, but how can we justify this physically? If the concentrations of molecules are
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quite dilute, so that pairs of molecules rarely come close enough to interact sterically,
electrostatically or hydrodynamically, then Fi (xi ) would genuinely be equal to zero
and εi ’s would be genuinely uncorrelated, for the vast majority of particles, the vast
majority of the time.

We can then use the following equation for BD:

xi = √
2DiWt , (46)

where Wt is a three-dimensional Wiener process (confusingly also known as Brow-
nian motion) and Di = kBT

γi
is the diffusion coefficient of particle i . The Wiener

process,Wt = (W (1)
t ,W (2)

t ,W (3)
t )T , is a stochastic process defined bymakingW (i)

t+�t

a Normal
(
W (i)

t ,�t
)
random variable, for i = 1, 2, 3. Mathematically,Wt is the time

integral of ξ (Karlin 2014).
It is worth considering the assumption of diluteness that lies behind Eq. (46). Until

very recently, and to a large extent currently, diluteness was the sine qua non of
modelling biochemistry. This was partly due to the modeller’s preference for simple
models like the REs and the RDEs, which implicitly assume diluteness, but also due to
cell biologists’ incomplete knowledge about the cellular environment. Then seminal
work byZimmerman andTrach (1991) andZimmerman andMinton (1993) introduced
both modellers and cell biologists to the idea of “macromolecular crowding” (Ellis
2001), an idea which has since become extremely fashionable in fields ranging from
computational physics (Torquato and Stillinger 2010; Hofling and Franosch 2013) to
bioengineering (Tan et al. 2013; Chapanian et al. 2014).

The basic idea is that the cell contains high concentrations of large molecules.
Zimmerman estimated that up to 30% of the internal volume of an Eschericia coli
cell could actually be occupied by large molecules rather than water (Zimmerman and
Trach 1991). Under these conditions, the behaviour of an individual molecule will be
seriously affected by the other largemolecules in its vicinity, even if they do not interact
chemically. There is an open question of how we might accurately modify Eq. (46)
to account for this effect. Perhaps the obvious answer is to take a step backwards and
bring the F(·) back into the equation, and this is a common approach (McGuffee and
Elcock 2010; Bruna and Chapman 2012; Smith and Grima 2017a), but then we again
have the problem of computational efficiency.

There are two other modifications to Eq. (46) which are currently in common usage.
The first is to replace the diffusion coefficient D with a modified diffusion coefficient
D̃, typically D̃ = D(1−αφ), whereφ is the local fraction of volume occupied by large
molecules and α is a constant (Weissberg 1963; Blum et al. 1989; Fanelli andMcKane
2010; Galanti et al. 2014; Smith et al. 2017). The rationale is that diffusing through a
crowded medium might be analogous to diffusing through a viscous medium, and so
reducing the diffusion coefficient accounts for an increase in viscosity. There is some
computational evidence to back this up, but insufficient for the matter to be considered
solved (Saxton 1994; Klann et al. 2009).

Many scientists believe the effect of crowding is more complex than a modifica-
tion of the diffusion coefficient, and so the second modification is correspondingly
less simple. The idea is to replace the Wiener process Wt with another process with

123



2990 S. Smith, R. Grima

non-Gaussian increments. The rationale is that the variance of a Wiener process is
proportional to t , and some experiments appear to show that the variance of diffusion
in a crowded environment is proportional more generally to tα , an effect known as
“anomalous diffusion”. Generally, it is observed that α < 1 inside cells, which is
known as “subdiffusion” (Weiss et al. 2004; Banks and Fradin 2005); however, α ≈ 1
(“diffusion”) (Dauty and Verkman 2004) and α > 1 (“superdiffusion”) (Reverey et al.
2015) have also been observed. Variants of the Wiener process for pre-specified val-
ues of α are commonly used in simulations (Metzler and Klafter 2000; Marquez-Lago
et al. 2012), but the idea behind this is not uncontroversial and it raises questions
(Dix and Verkman 2008). For example, how do we know which value of α to pick
in any given simulation? The debate around anomalous diffusion in the cytoplasm is
still very much open, and much more experimental evidence will be needed to reach
a satisfactory conclusion.

The question of how to modify Eq. (46) to include hydrodynamic effects is a diffi-
cult one and has not been studied in significant detail. It is common to either just use
Eq. (44) and livewith the computational cost (Ermak andMcCammon 1978), or else to
simply pretend hydrodynamic effects do not exist (Cichocki and Hinsen 1990; Ridg-
way et al. 2008; McGuffee and Elcock 2010). The latter option is surprisingly popular
and can have significant negative results. Hydrodynamic interactions are believed to be
amongst the most important kinds of interactions between biological molecules (Ando
and Skolnick 2010), more so than electrostatic effects, and so simply ignoring them
cannot be wise. There is some evidence that steric effects and hydrodynamic effects
could simply cancel each other out (Felderhof 1978)—so potentially including both
or neither in a model might be OK, while including just one might be a bad idea—but
much more evidence is needed for this to be a practical solution. Alternatively, some
authors have attempted to calculate the effect of hydrodynamic interactions on diffu-
sion coefficients (Felderhof 1978;Ohtsuki andOkano 1982) and reaction rates (Deutch
and Felderhof 1973)—then it might be possible to modify them accordingly and claim
that hydrodynamics have been taken into account. This is probably the most plausible
approach, but again considerably more work is needed to make this method practical.

To bring the discussion back to Brownian dynamics, there is still somethingmissing
from our model Eq. (46): How do reactions happen? Reactions with 1 reactant (i.e.
unbinding reactions) are easy: each molecule which can unbind has an internal clock,
and the time until unbinding is generated as an exponentially distributed random time
in the future—when the clock exceeds this time, the reaction occurs. There is a question
of where the daughter molecules (i.e. the products of the unbinding) should be placed,
and several different methods are in use. Perhaps the simplest method is to place them
both at the same location, where the parent particle was before it unbound: this is
unphysical but straightforward and requires no new parameters (Lipkov et al. 2011).
An alternative is to propose an “unbinding distance”, σ , and place them randomly
opposite each other on a sphere of diameter σ centred around the location of the
parent particle (Andrews and Bray 2004).

On the other hand, modelling bimolecular reactions is a complicated question
with a very long history. The original method, still popular today, was devised by
Smoluchowski (1917), who incidentally was one of the originators of the physical
theory of Brownian motion, along with Albert Einstein (Marian 1924; Einstein 1956).
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Smoluchowski Doi/λ-ρ

Fig. 8 Two methods of implementing bimolecular reactions in BD. The Smoluchowski model allows
particles to react immediately when the distance between the particle centres equals the sum of the particles’
reaction radii. This radius of certain interaction is shown as a solid black circle. The Doi/λ−ρ model allows
particles to react with probability λ per unit time when the distance between the particle centres is less than
a distance ρ. This radius of probabilistic interaction is shown as a solid grey circle. Note that the particle
centres are denoted in red

Smoluchowski’s idea was a simple one: each molecule is assigned a “reaction radius”,
and two reacting particles will react immediately if they are brought close enough
together that their reaction radii overlap (see Fig. 8). This model has advantages and
disadvantages.

The advantages are that it is simple to understand and computationally and math-
ematically very straightforward. The most popular Brownian dynamics software,
Smoldyn (Andrews and Bray 2004), uses the Smoluchowski model because it is so
much faster than the alternatives. Mathematically, it is possible to write down the
expected time until a reaction between two particles, μ, as a simple function of their
reaction radii (r1, r2), their diffusion coefficients (D1, D2), and the reaction volume V :

μ = V

4π(r1 + r2)(D1 + D2)
. (47)

Equation (47) is obtained from the diffusion equation, and a derivation can be found
in Ref. Gillespie (2009a). In principle, μ−1 could be put into the CME as the rate of
a reaction, although this would be an approximation because the actual waiting time
for Brownian collisions is not exponential (Redner 2001).

The disadvantages of Smoluchowski’s approach are slightly more complicated.
Principally, the Smoluchowski model is not a particularly accurate model of how
bimolecular reactions actually happen. Reacting molecules must approach each other
in the correct orientation and with sufficient combined kinetic energy to exceed the
activation energy of the reaction; otherwise, they will simply collide without reacting
(Atkins et al. 2018). Smoluchowski does not allow for these kinds of collisions, which
can occur much more frequently than successful reactions.

The second issue is a modelling issue rather than a physical one. We have already
discussed the concept of “infinite diffusion”, which is unphysical but extremely useful
for modelling purposes. Our ideal BD model is one where an infinite diffusion coef-
ficient does not give nonsensical results. In the Smoluchowski model, the expected
time until a reaction scales as the inverse of the diffusion coefficient, and so when dif-
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fusion is infinitely fast bimolecular reactions happen infinitely quickly. It may appear
that Smoluchowski has it right here because we know from basic chemistry that if
we increase the temperature of a system (and therefore the diffusion coefficients) the
reactions will tend to occur more quickly (Atkins et al. 2018). But the reality is not
quite so simple.

A significant source of confusion arises from the fact that a generalised bimolecular
reaction rate k (such as the rate in the REs) really incorporates two distinct processes:
a diffusive process which brings two molecules together, and a reactive process which
causes them to react with some probability. Collins and Kimball go into considerable
detail on this subject in Ref. Collins and Kimball (1949), as well as Gillespie later
in Ref. Gillespie (2009a). They consider a physically plausible system in which hard
sphere particles diffuse by Brownian motion, but over very short timescales (shorter
than the time between collisions with solvent molecules) they have instantaneous
random velocities given by the Maxwell–Boltzmann distribution. In this description,
a reaction occurs when the instantaneous velocities of a very close pair of particles
combine in such a way that they collide with an energy greater than the intrinsic
activation energy of the reaction. Under these conditions, Collins and Kimball observe
that the reaction rate k satisfies:

1

k
= 1

kd
+ 1

kb
, (48)

where kd is the diffusive rate and kb is the ballistic rate. In other words, the expected
time until a reaction between a given pair of particles is the sum of the expected
time until they are brought together by diffusion and the expected time until they
subsequently collide with sufficient energy.

According to Collins’ and Kimball’s model (1949), the role of diffusion is to bring
reactive molecules together, whereupon they can react according to some diffusion-
independent process. In otherwords, the probability of a reaction between a sufficiently
close pair of particles (in a sufficiently short time that they cannot diffuse away again)
is not a function of the diffusion coefficient.When the diffusion coefficient is infinitely
fast the time until a reaction, 1

k , approaches
1
kb

rather than 0, and so infinite diffusion
seems not to pose a problem. Unfortunately, again, it is not so simple.

Since Collins’ and Kimball’s kd is a linear function of the diffusion coefficient
D, while kb has no D-dependence, our assumption may seem to be straightforwardly
valid. However, both D and kb are functions of temperature, via the Stokes–Einstein
relation and the Arrhenius equation, respectively (Atkins et al. 2018). It follows that
kb has an implicit D-dependence—e.g. if D is large, there is a possibility that this
may be due to the temperature being large, so kb may also be large. In biology (unlike
chemistry) this is not a serious problem, since temperature is essentially constant for
living beings. Our assumption amounts to ignoring this subtle implicit dependence,
and thereby restricting our models to biological systems. We assume that it is possible
to freely vary D without affecting the reactive component of the bimolecular reaction
rate—we can think of this as varying D by tuning the viscosity of the solvent, which
does not directly affect the reaction rate.

In this spirit, a popular alternative to the Smoluchowski model was proposed by
Doi (1976), building on the work of Teramoto and Shigesada (1967). He suggests that
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we should associate with each pair of reacting particles a reaction rate λ and a reaction
distance ρ, thenwe assume again that waiting times between reactions are exponential,
so that two particles will react in a short time-step �t with a probability λ�t if they
are separated by a distance less than ρ. In other words, if two particles are sufficiently
close they react with a rate λ; otherwise, they do not react (see Fig. 8). In practice, at
each time-step�t particle positions are updated according to Eq. (45) (typicallyminus
the force term), whereupon the distances between each pair of potentially reacting par-
ticles are calculated. For each pair, if this distance is less than the ρ associated with
the reaction, then the reaction occurs with probability λ�t , the particles are removed
from the system, and the product particles (if there are any) are put in their place.

Doi’s model, which has come to be known as the λ − ρ model (Erban and Chap-
man 2009), is actually a generalisation of the Smoluchowski model, which would
have λ = ∞ and ρ equal to the sum of the reactants’ reaction radii (Agbanusi and
Isaacson 2014). Overall, the λ − ρ model seems to be an optimal trade-off between
model simplicity and physical accuracy. The process we want to model explicitly (dif-
fusion) is modelled explicitly, while more complex processes (reactant orientation,
kinetic energy, etc.) are lumped into the rate λ. The main disadvantage is that we
are assuming exponential waiting times between reactions, but this cannot really be
helped without going into significantly more modelling detail and thereby incurring a
significantly higher computational cost.

We have seen how the λ − ρ model was obtained from a purely Newtonian molec-
ular dynamics model by making a variety of assumptions and simplifications, so that
unlike the RDME, λ − ρ is a bottom-up model. This provides a certain guarantee
about physical accuracy, and so λ − ρ is frequently used as a “ground truth” model.
However, there is still the question of how λ − ρ fits in with the simpler models on
the complexity scale: the CME, the RDEs and the REs. We therefore now analyse the
limiting behaviour of λ − ρ in the limits of fast diffusion and high concentrations

3.1 The Limit of Fast Diffusion

To analyse the limit of fast diffusion, we assume that diffusion coefficients can be
varied independently of the λ’s and ρ’s. We particularly focus our attention on the
limiting case where all diffusion coefficients tend to infinity (the “reaction-limited”
case) and particles cannot simply diffuse out of the reaction volume. (Wewould say that
the boundaries of the volume are “reflective”.) In this case, the position of a particle at
a time t+�t is a uniform random variable independent of its position at time t . To see
this, note that the updated position of a particle conditioned on its previous positionwill
be a Gaussian random variable with large variance; the boundary conditions cause this
distribution to approximate a uniform distribution, and the approximation improves
as the variance grows.

Now, consider a reaction of the form A+ B → ∅, with rate λ and reaction distance
ρ. The symbol ∅ denotes that we are not interested in the products of the reaction. The
probability that a reaction occurs between a given pair of A and B molecules in a time
period [t, t + �t) is given by:
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P(reaction in [t, t + �t)) = K (ρ, [t, t + �t))λ�t, (49)

where K (ρ, [t, t+�t)) represents the exact proportion of the time interval [t, t+�t)
for which the given pairs are within a distance ρ of each other. Typically, K not only
is unknown, but also is itself a random variable, so that reactions in the λ − ρ model
are doubly stochastic processes. In the limiting case where D → ∞, K becomes
a known random variable. At any given time point in [t, t + �t), each molecule is
uniformly distributed, so that the probability of any pair being within ρ of each other is

some constant c. The constant c is approximately equal to 4πρ3

3V , the proportion of the
total volume occupied by a sphere of radius ρ; c is not exactly equal to this quantity
because of boundary effects: if one particle is close to a boundary, there will be less
space around it for a second particle to react in. However, these kinds of effects are
typically numerically very small, and the approximation is usually excellent.

At any given time point in [t, t + �t), then, the event “A and B are within ρ of
each other” is governed by a Bernoulli(c) random variable, say C . If we consider N
equally spaced time points in [t, t + �t), then we can approximate:

K ≈ 1

�t

N∑
i=1

Ci
�t

N
= 1

N

N∑
i=1

Ci , (50)

where Ci are independent Bernoulli(c) random variables. The approximation con-
verges to equality in the limit N → ∞, so by the law of large numbers, we have that
K (ρ, [t, t + �t)) = c, so that

P(reaction in [t, t + �t)) = cλ�t. (51)

This highlights the remarkable mathematical effects of allowing the limit D → ∞:
an unknown random variable K is converted into a known constant c. From Eq. (51)
we can derive an evolution equation for P(nA, nB, t), the probability that there are
nA molecules of A and nB molecules of B at time t . We choose �t sufficiently small
that at most one reaction can happen in the time period [t, t + �t), and we observe
that the probability of a reaction happening given that we have nA, nB molecules of
A, B, respectively, is cλ�tnAnB [since Eq. (51) gives the probability that any given
pair will react, and there are nAnB pairs]. The evolution equation is:

P(nA, nB , t + �t) = P(nA + 1, nB + 1, t)(nA + 1)(nB + 1)cλ�t

+ P(nA, nB , t)(1 − nAnBcλ�t), (52)

which in the limit �t → 0 becomes:

d

dt
P(nA, nB , t)

= λc [(nA + 1)(nB + 1)P(nA + 1, nB + 1, t) − nAnB P(nA, nB, t)] . (53)
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Fig. 9 The region (orange)
within a reaction distance ρ of a
central subvolume (green). The
volume is subdivided into
microscopic subvolumes, with
side length substantially smaller
than ρ ρ

This equation is precisely the CME for the system A+ B
k−→ ∅, where k = λcV . The

CMEs for other types of mass action reactions can be derived in an analogous way,
and the same will hold true. It follows that the CME exactly describes the evolution
of molecule numbers in λ − ρ in the limit of fast diffusion coefficients.

The CME has also been derived by Gillespie as the exact description for a system
of uniformly distributed molecules which have instantaneous velocities given by the
Maxwell–Boltzmann distribution and which react if they collide with sufficient com-
bined velocity (Gillespie 1992). There is question with this derivation as to whether it
is possible for a particle to be uniformly distributed in space at all times and also to have
a finite velocity and specific location. The issue is that if, say, a pair of particles collide
and fail to react, then they are necessarily close together and so much more likely
to react than any other pair in the next short time interval. This violates the assump-
tion of uniform distributions and also the principle of mass action. It is our belief
that the CME can be considered correct if and only if there is a genuine separation of
timescales between particles’ motion (i.e. diffusion) and their reaction rates—whether
we think of this as “infinite diffusion” or as “reaction-limited” dynamics is essentially
a semantic question.

3.2 The Limit of High Concentrations

We next study the behaviour of BD when the concentration of molecules is very high.
We will consider a reaction of the form A + A → ∅ with rate λ and reaction distance
ρ, though the arguments can be developed analogously for other reaction types. We
consider a small subvolume�V with a diameter substantially smaller than the reaction
distance ρ. This set-up is shown in Fig. 9. A particular subvolume is shown in green,
a circle with radius ρ is drawn around it (orange), such that any molecule within this
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circle can react with any molecule in the green subvolume with rate λ. The dotted
squares denote subvolumes of size �V .

Since the concentration of molecules is very high everywhere, as long as the diffu-
sion coefficient is nonzero, the expected concentration of molecules is locally constant
inside the reaction distance and the variance is negligible. We define φ as the local
expected concentration, so that the average number of molecules per subvolume is
φ�V .

Wenowconsider the expected change inmolecule numbers in the central subvolume
in a short time�t . Temporarily ignoring diffusion, themolecule number can change for
two reasons: (1) two molecules in the central subvolume (green) react with each other
and (2) a molecule in the central subvolume reacts with a molecule outside the central
subvolume (orange). The expected change in molecule number due to (1) is − 2λ�t
times the number of pairs in the central subvolume, i.e.− 2λ�t φ�V (φ�V−1)

2 . Note that
the initial 2 comes from the fact that a single reaction reduces the molecule number
by 2. The change in molecule number due to (2) is − λ�tφ�V times the number
of molecules outside the central subvolume but inside the reaction radius (orange),
i.e. − λ�tφ�Vφ (V3(ρ) − �V ), where V3(r) = 4πr3

3 is the volume of a sphere with
radius r . The overall expected change is then given by adding the contributions from
(1) and (2):

− λ�tφ�V [φV3(ρ) − 1] ≈ − λV3(ρ)φ2�V�t, (54)

where the approximation arises from assuming the concentrations are sufficiently high
that φ � 1

V3(ρ)
.

In the reaction–diffusion equations, the rate of change of concentrations due to the
reaction A+ A → ∅ at a point x is given by−2kφ(x)2, where k is the reaction rate and
φ(x) is the local concentration near x . It follows that the expected change in molecule
numbers in a small volume �V around x in a short time �t is given by:

− 2kφ(x)2�V�t. (55)

It follows that the RDEs exactly describe the reactive behaviour of BD with high
concentrations, if we choose k = λV3(ρ)

2 . The corresponding fact that the diffusion
equation correctly describes Brownian diffusion is extremely well established (Gille-
spie and Seitaridou 2012), and we will not go into the subject here.

We note that our justification of the RDEs here implies that a molecule is unlikely
to react with another molecule in the same subvolume and is much more likely to react
with another molecule in a different, nearby subvolume. This makes intuitive sense
when �V is very small, but nonetheless runs counter to the usual intuition behind the
RDEs. This idea is also the basis for the derivation of the CRDME (Isaacson 2013).

Overall, we have seen that the λ−ρ implementation of BD is obtained fromMD in
a relatively rigorous manner (Erban 2014), by systematically simplifying out various
effects like water and inertia. Subsequently, we found that, like the RDME, λ − ρ can
be thought of as a “parent model” of the CME, the RDEs and the REs. The relationship
between all of these models is shown in Fig. 10. Just as with the RDME, if we use
both λ−ρ and the RDEs (for example) to model the same system, and the system has
parameters such that we expect the RDEs to be correct, then the two models will give
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Fig. 10 How the λ−ρ BDmodel fits into the scale of model complexity shown in Fig. 1. It is the midpoint
of complexity between MD and the REs

identical predictions. This clearly demonstrates BD’s place in the complexity scale
(Fig. 1), and as a model with a sound microphysical basis and clear connections to
other mainstream models, it is easy to see why BD is such a popular technique. It
appears, then, that BD and the RDME have a lot in common: in the next section, we
briefly assess the extent to which the two can be said to agree.

4 Does the Reaction–Diffusion Master Equation Agree with Brownian
Dynamics?

The λ−ρ model has a lot in commonwith the RDME. Both models consider diffusing
point-particles which can react with a fixed probability only if they are sufficiently
close together. The rate λ is analogous to the scaled bimolecular rate kM

V , and the
subvolume size V

M is analogous to the sphere of radius ρ around the Brownian particle.
The biggest difference is that the RDME discretises space, but keeps time continuous
(reactions can occur at any time, but only in fixed subvolumes),whereas almost allλ−ρ

simulators discretise time and keep space continuous. (Reactions can occur anywhere,
but only at time-steps of pre-specified length.) The exception is the already-mentioned
CRDME (Isaacson 2013), which can be thought of as a discrete-space continuous-time
λ − ρ simulator.

It might then be surprising to learn that there is no established connection between
the RDME and λ − ρ. Given a particular implementation of the λ − ρ model for a
particular system, it is typically possible to find values of M and reaction rates such
that the RDMEagrees by somemetric, but if some aspect of the system (e.g. a diffusion
coefficient) is changed even slightly, the optimal RDMEparameters will typically have
to be found again. This fact was demonstrated neatly in Ref. Smith et al. (2016). An
analytical approximation to the mean molecule numbers in the RDME was obtained,
which is a function of both M and the diffusion coefficient D. For any fixed choice
of M , it was shown that this function agrees with λ − ρ only for a specific choice
of D. Correspondingly, for any fixed value of D, only a specific choice of M gives
reasonable agreement with λ − ρ.

To help understand this issue better, we performed simulations of the system studied
in Ref. Smith et al. (2016) using both the RDME and λ − ρ. The system is straight-
forward and consists of a single species A and two reactions:
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Fig. 11 Comparison of RDME with λ−ρ BD for the system (56), showing the dependence of the average
number of A molecules, E[nA], as a function of diffusion coefficient, DA . a BD corresponds to λ − ρ with
spherical particles. b BD corresponds to λ− ρ with cubic particles. Error bars are the standard deviation of
10 independent SSA simulations. Parameter values are k1 = 1000, k2 = 30, ρ = 0.1, λ = 1900, V = 1.
Simulations are performed in two spatial dimensions

∅ k1−→ A, A + A
k2−→ ∅, (56)

where ∅ denotes that we are not interested in the species involved. The first reaction
is assumed to occur at uniformly distributed points in space: it could represent tran-
scription of a protein A where we do not explicitly model mRNA or ribosomes. We
simulated system (56) using the RDME with a variety of values of M ranging from
1 to 25, and for a variety of diffusion coefficients DA ranging from 10−1 to 103. In
Fig. 11a we plot the mean number of A molecules nA as a function of DA for each
choice of M : the results are quite remarkable.

For each value of M (except M = 1) we find that the mean molecule number
decreases with diffusion. When diffusion is fast, all RDME simulations agree—this
should not surprise us, since we have already proved that they will all converge to the
same model (the CME) in this limit. But when diffusion is slow, the RDME for each
value of M appears to converge to a different limit: when M = 1, the limit appears to
be around 4, but when M = 16 it appears to be around 9. The implication is that the
RDME appears to be very sensitive to the choice of M , at least when diffusion is not
fast (and when diffusion is fast you may as well use the CME).

Smith et al. (2016) cannot be said to be the first time an effect of this kind was
noticed. It is well known (and we have already observed) that bimolecular reactions
tend not to happen in the RDME when M is “too large”, which would naturally lead
to changes in mean concentration as M grows (Isaacson 2013). But this is not quite
the same effect as the one shown in Fig. 11a. Bimolecular reactions are happening for
every choice of M , they are just happening at slightly different effective rates, with the
result that every M behaves differently (not just the “too large” ones). The standard
solution—to choose M not “too large”—does not appear to be very helpful here.

This slightly more subtle effect was observed by Erban and Chapman [who were
also investigating system (56)], and they devised an ingenious solution (Erban and
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Chapman 2009). They suggested that the value of the bimolecular reaction rate, k2,
should be modified in a manner that depends on M , and derived a formula for this
modification. If M = 1, k2 should be left as it is; if M = 4, k2 should be reduced
slightly; and if M = 25, k2 should be reduced significantly. The result is a rescaled
RDME whose results do not depend on M . In our Fig. 11a, this would lead to every
RDMEcurve looking identical to the orange (M = 1) curve, i.e. there is no dependence
on M or DA. This appears to solve the problem: we can now freely vary M (up to
a point, remember if M is “too large” bimolecular reactions will simply not happen)
without worrying about the choice of M impacting on our results.

There is a possibility, however, that negates the neat solution ofErban andChapman:
What if the mean molecule numbers depend on DA for a good (i.e. physical) reason?
If the choice of DA actually affects system (56) in a significant way, and we modify
the RDME so that it always agrees with a model which does not depend on DA (the
CME), then surely we are incorrectly modelling the system. There is a simple way to
check whether the DA-dependence is a real effect or an artefact of the RDME, and
that is to simulate it with λ − ρ.

The solid burgundy line in Fig. 11a corresponds to an average of λ−ρ simulations,
with λ and ρ chosen to agree with the CMEwhen DA is large. (This is always possible,
as described inSect. 3.1.)Wefind the sameeffect: themeanmolecule number decreases
with DA, implying that this change is not an RDME artefact, but a real effect which
is important to model correctly. This brings us back to our original problem: Which
value of M should we pick? The surprising implication of Fig. 11a is that there is
no definitive value of M . If DA is large, any value of M will agree with λ − ρ. In
the range 101 < DA < 102, it appears that M = 9 gives the best agreement, but for
100 < DA < 101, the choice of M = 16 is optimal. As DA gets lower, the optimal
value of M gets larger. This leads us to one of the main results of Smith et al. (2016):
for any choice of M (say, M = 9), only a subset of values of DA are accurately
modelled by the RDME (DA > 101), and for any choice of DA (say, DA = 2), only
a particular value of M will be optimal (M = 16).

Optimally choosing M in the RDME is a difficult task, and several authors have
proposed methods to solve the problem based on physical arguments (Bernstein 2005;
Isaacson and Peskin 2006; Bayati et al. 2011; Kang et al. 2012). The most common
approach is to choose M such that the diffusive timescale is substantially shorter than
the reactive timescale, i.e. in a given short time-step�t , amolecule ismuchmore likely
to diffuse into a new subvolume than it is to react (Bernstein 2005; Isaacson and Peskin
2006; Bayati et al. 2011). This will guarantee that each subvolume is well mixed, and
so a CME-like description can be said to be appropriate on the subvolume scale. In the
case shown in Fig. 11a, the rate of diffusion between two neighbouring subvolumes
is DA

h2
, for lattice spacing h; since we are considering a two-dimensional volume, we

have that h2 = V
M and that a molecule can diffuse in four different directions, so that

the probability that a given molecule diffuses in �t is 4DAM�t
V . Similarly, the rate

of a bimolecular reaction in any given subvolume i is k2M
V n(i)

A (n(i)
A − 1), where n(i)

A
represents the number of molecules of A in subvolume i . The probability that a given
molecule is involved in this bimolecular reaction in time-step�t is then approximately
given by k2M

V E[n(i)
A ]�t , and noting that by spatial uniformitywe haveE[n(i)

A ] = E[nA]
M ,
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we get a final probability of k2
V E[nA]�t . Overall, then, we require M � k2E[nA]

4DA
. In

the case where DA = 1, and taking E[nA] ≈ 4 (since this is all we can say from
the REs), we find the requirement M � 30, clearly at odds with Fig. 11a in which
M = 16 is optimal. However, more importantly, since Fig. 11a shows there is a single
value of M which agrees with BD, one-sided bounds could never give sufficiently
useful information to ensure agreement between BD and RDME. We conclude that
only an estimate of the actual value of M (or very tight two-sided bounds on M) could
potentially work here; however, it currently seems doubtful that such an estimate could
be derived in general.

Again, we see the uneasy relationship between the RDME and λ − ρ, which both
model the same kinds of systems at roughly the same level of complexity and yet never
seem to agree definitively about anything. Why is this? A superficially convincing
argument is to do with shape: because λ − ρ uses the usual L2 distance metric, a
molecule can react with any other molecule within a spherical region around it, but
the RDME typically uses cubic subvolumes, so a molecule can react only with other
molecules within a cubic region. Could it be that the difference between spheres and
cubes is the driver of disparity between the RDME and λ − ρ? There is a simple way
to check. The λ − ρ model can equally be defined to use other distance metrics, such
as the one which leads to cubic reaction regions around molecules (Opplestrup et al.
2006). A metric of this kind was used to generate the data plotted in Fig. 11b, which
compares the “cubic” λ − ρ with the same RDME simulations as in Fig. 11a. Exactly
the same effect is observed as in Fig. 11a: the optimal M for agreement with λ − ρ

changes as DA changes.
If it is not shape related, why then is there this discrepancy between RDME and

λ − ρ? This is a relatively open question, but the most convincing argument is that
modelling bimolecular reactions accurately requires fine-grained spatial resolution,
something which λ − ρ clearly has, and the RDME clearly does not. As evidence for
this, consider that the CRDME is a modification of the RDME allowing it to have
fine-grained spatial resolution and is proven to be able to approximate λ − ρ to any
given degree of accuracy (Isaacson 2013).

5 Discussion

In this review, we have concerned ourselves with two stochastic reaction–diffusion
models: the RDME and the λ − ρ implementation of BD. These two models are very
similar in complexity, and they bothmodel the same kinds of processes at similar levels
of detail. Indeed, we have seen that they both converge to the CME in the limit of
fast diffusion, they both converge to the RDEs in the limit of high concentrations, and
they both converge to the REs when both of these limits are applied simultaneously.
And yet despite this, there appears to be no direct relationship between the RDME
and λ − ρ, and they typically do not agree numerically.

Since λ − ρ is derived in a semi-rigorous manner from an even more fundamental
model, it may appear that there is no reason to use the RDME at all and that when λ−ρ

andRDMEdisagree, it is because the RDME is simplywrong. This is not quite correct.
As we have seen, λ − ρ and the RDME were developed to model the same kinds of
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systems, but they have completely different historical origins. The RDME is obtained
by starting from a simple model (the REs) and working backwards, adding in stochas-
ticity and diffusion—it is therefore a top-down model. λ − ρ is obtained by starting
from a complex model (MD) and working forwards, removing water molecules, and
steric, electrostatic and hydrodynamic interactions—it is a bottom-up model. Rem-
nants of these origins can still be seen in the RDME (the reaction rate k from the REs)
and λ−ρ (the reaction distance ρ, which is akin to a van der Waals radius fromMD).

In an ideal world, where computers were infinitely fast, it may be tempting to use
MDfor all chemical kinetics problems, but thismaynot bewise. Inmany cases, particu-
larly in biology,wedonot knowall the chemical species involved in a particular system,
nor do we know exactly how many molecules of each species there might be, nor the
details of the reactions between them. There are a lot of parameters in MD, and conse-
quently, a lot of possible ways to get the model wrong. On the other hand, RE models
are very popular, because for each reaction there is only one parameter (the reaction
rate k), which can be relatively easily estimated from experimental data. It is hard to get
the model wrong, and more likely the issue will be that the model does not incorporate
some significant effect (e.g. diffusion). It is easy to turn a RE model into a RDME
model: the only choice that needs to be made is the number of subvolumes, M . It is
hard to turn a REmodel into a λ−ρ model, because for each bimolecular reaction there
are two parameters to choose (λ and ρ), and it is not clear how any particular choice
of these parameters will relate to the k’s from the REs unless diffusion is very fast.

In many practical cases, the RDME model requires the fewest assumptions, and
so will typically be the least wrong model. We have seen that the RDME can give
very different numerical predictions depending on the choice of M , but typically all
choices of M will agree qualitatively, and if numerical precision is not paramount the
RDME may be the best choice. In short, a good rule of thumb is this: if you know a
lot about the details of your system (e.g. molecular sizes), use λ − ρ; otherwise, use
the RDME.

A further typical advantage of the RDME over BD, which we have not touched
upon in this review, is computational speed (Erban et al. 2007). By virtue of its spatial
discretisation, the RDME typically models fewer distinct quantities than BD and will
tend to be substantially faster when molecule numbers are large and subvolumes are
not too small. On the other hand, BDwill perform better if RDME subvolumes contain
very few molecules on average. In some cases, different models may be appropriate
in different regions of the cell, and so a hybrid of BD and RDME may be the optimal
model (Flegg et al. 2014). Alternatively, significant speed boosts can be achieved in
BD using the Green’s function reaction dynamics (GFRD) approach which models
Brownian diffusion in a statistically exact manner analogous to the SSA for the CME
(van Zon and ten Wolde 2005; Takahashi et al. 2010). The rationale behind GFRD is
that if a molecule is far from other molecules there is no point in simulating its entire
trajectory of positions with a fixed small time-step, and it is more efficient to sample
new times from the first passage time distribution of the time taken for it to reach a
pre-specified displacement from its origin. The speed boost of GFRD relies on the
assumption that this sampled time-step will be longer on average than the equivalent
time-step in standard BD simulations, which is typically true for dilute systems but
not when concentrations are high, making GFRD a poor choice for realistic whole-cell

123



3002 S. Smith, R. Grima

? ?
?

? ?
?

? ?
?

? ?
?

? ?
?

? ?
?

? ?
?

? ?
?

? ?
?

? ?
?

? ?
?

? ?
?

? ?
?

? ?
?

? ?
?

? ?
?

? ?
?

? ?
?

? ?
?

? ?
?

? ?
?

? ?
?

? ?
?

? ?
?

? ?
?

? ?
?

? ?
?

? ?
?

? ?
?

? ?
?

? ?
?

? ?
?

Independent cells Tissue-bound cells

(b)(a)

(d)(c)

(f)(e)
Time(s)

0 2 4 6 8 10

M
ol

ec
ul

es
/c

el
l

0

20

40

60

80

Time(s)
0 2 4 6 8 10

M
ol

ec
ul

es
/c

el
l

0

20

40

60

80

Time(s)
0 2 4 6 8 10

M
ol

ec
ul

es
/c

el
l

0

20

40

60

80

Time(s)
0 2 4 6 8 10

M
ol

ec
ul

es
/c

el
l

0

20

40

60

80

Fig. 12 Effect of molecular transport on tissue heterogeneity. a A population of unconnected cells, with
no intercellular transport. b A tissue of cells, with transport between neighbouring cells. c Simulations of
a noisy system in unconnected cells: the cell concentrations are very heterogeneous. d Simulations of the
same system in a connected tissue: the heterogeneity is significantly reduced. e Simulations of a less noisy
system in unconnected cells: the cell concentrations are quite homogeneous. f Simulations of the same
system in a connected tissue: the heterogeneity is increased

modelling. Furthermore, GFRD algorithms have only been derived for Smoluchowski
reaction kinetics, and not the λ − ρ kinetics for which we have argued in this review.

An alternative use of the RDME has recently been proposed, which eliminates the
concerns about the choice of M (Twycross et al. 2010; Smith et al. 2016; Smith and
Grima 2018). The idea is to consider each subvolume of the RDME as a cell in a
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tissue, and “hopping” events correspond to transport (active or passive) of molecules
between adjoining cells. In this description, M simply refers to the number of cells
in the tissue, and so is no longer an undetermined parameter. An interesting and
counter-intuitive result was derived in Ref. Smith and Grima (2018) by thinking along
these lines, and generalising a related result originally derived in Ref. Erdmann et al.
(2009) for single-celled organisms. It was discovered that transport between cells (the
analogue of diffusion in the classic RDME) has a non-trivial relationship with the
heterogeneity of the tissue, i.e. the tendency for different cells in the tissue to have
different concentrations. If a system has large fluctuations in concentration in a single-
cell (i.e. if it is very noisy), molecular transport will tend to make the tissue more
homogeneous, but if a system has small fluctuations (i.e. if it is not very noisy) then
transport will tend to make the tissue more heterogeneous. This result is completely
generic, though a similar result was shown byErdmann et al. for a specific gene system.
The basic principles of this are shown in Fig. 12. The idea of rationalising the RDME
in this way is still in its infancy, but it is certainly promising: it could have significant
usage in the modelling of cancer, which can develop stochastically in individual cells
in a tissue (Gupta et al. 2011). A similar idea has also been used to model single
cells by treating each physical compartment of the cell (nucleus, cytosol, etc.) as a
separate subvolume of the RDME (Isaacson and Peskin 2006; Sturrock et al. 2013;
Winkelmann and Schutte 2016).

We will conclude this discussion with a summary of the main open questions we
have encountered in our review of the stochastic reaction–diffusion field:

• Is there a simple way to calculate RDME hopping rates for oddly shaped subvol-
umes?

• Can we find RDME rate functions which converge to specific non-elementary
functions (e.g. Michaelis–Menten) when diffusion is fast?

• How can we modify the RDME to incorporate hydrodynamic interactions?
• How can we unify the variety of different modifications to the diffusion coefficient
to account for macromolecular crowding?

• How can we incorporate hydrodynamic interactions into BD simulations without
incurring a huge computational cost?

• How effective is the RDME as a model of tissue dynamics?

Answering these questions will significantly advance the field and increase our
ability to model larger and larger systems in reasonable time. If we were to select a
problem which, to our mind, is the most significant obstacle for the field, it would
be the issue of hydrodynamic interactions. Until we find a computationally efficient
method to incorporate hydrodynamic effects into BD (or RDME) simulations, the
fundamental physical validity of our simulations will potentially be in doubt.

Nonetheless, no matter which model is used, the RDME and BD are guaranteed to
provide insight into the link betweenmicroscopic chemistry andmacroscopic biology.
As it gets computationally practical to simulate systems on increasingly large scales,
the RDME and BD are likely to be the models which take us beyond the state of the art
in whole-cell modelling (Karr et al. 2012) to provide the first single-molecule detailed
whole-cell simulations and thereby allow us to visualise the macroscopic in terms of
the microscopic for the first time.
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