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TeraVR empowers precise reconstruction of
complete 3-D neuronal morphology in the
whole brain

Yimin Wang® 2314 Qi Li%, Lijuan Liu', Zhi Zhou#, Zongcai Ruan', Lingsheng Kong?, Yaoyao Li°, Yun Wang?,
Ning Zhong®’, Renjie Chai®?10 Xiangfeng Luo?, Yike Guo'!, Michael Hawrylycz?, Qingming Luo'?,
Zhongze Gu® 3, Wei Xie® 8, Hongkui Zeng® # & Hanchuan Peng® 414

Neuron morphology is recognized as a key determinant of cell type, yet the quantitative
profiling of a mammalian neuron’s complete three-dimensional (3-D) morphology remains
arduous when the neuron has complex arborization and long projection. Whole-brain
reconstruction of neuron morphology is even more challenging as it involves processing tens
of teravoxels of imaging data. Validating such reconstructions is extremely laborious. We
develop TeraVR, an open-source virtual reality annotation system, to address these
challenges. TeraVR integrates immersive and collaborative 3-D visualization, interaction,
and hierarchical streaming of teravoxel-scale images. Using TeraVR, we have produced
precise 3-D full morphology of long-projecting neurons in whole mouse brains and developed
a collaborative workflow for highly accurate neuronal reconstruction.
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ajor international initiatives are underway to profile and

characterize cell types of the mammalian brain!2, As a

key recognized attribute of cell type since Ramon y
Cajal, high-fidelity reconstruction of neuron morphology is
gaining increased attention®=>. The basic building blocks of the
brain, neurons and glial cells, are often noted for their remarkable
three-dimensional (3-D) shapes that distinguish one cell type
from another. While such shapes are critical to understanding cell
type, function, connectivity, and development?, it is challenging
to profile these shapes precisely. Sparse labeling and high-
resolution micro-imaging of a brain cell help visualize the
appearance of the cell, yet it remains a major bottleneck how to
convert such imaging data into a digital description of mor-
phology, including the 3-D spatial locations of a cell’s parts and
their topological connections. This conversion process is often
called neuron tracing or neuron reconstruction and it has become
an essential and active area of neuroinformatics.

Two complementary reconstruction workflows exist: one for
electron microscopy (EM) images and the other for light
microscopy (LM) data’-%. EM offers nanometer resolution and
thus provides a way to reconstruct the entire surface of the shape,
but it is often constrained to relatively small brain regions. When
whole-brain scale is the focus and complete neuron morphology
is desired, LM is a more suitable imaging modality where data are
typically acquired at sub-micrometer resolution. LM reconstruc-
tion makes it possible to trace both long projections and the
terminal arborization of a brain cell. Recent extension of this
approach based on expansion microscopy can help visualize
neurons at nanometer resolution using LM approaches!.

It is widely recognized that manual and semi-automatic neu-
ron-tracing methods are crucially required to produce full
reconstructions, which can also serve as gold-standard datasets to
develop fully automatic neuron-tracing methods*!1-14. Without
loss of generality below, we define any neuron-tracing method
that has a non-negligible human labor component as manual
reconstruction, which clearly also includes many semi-automatic
methods. This paper discusses a technology that makes such LM-
oriented manual reconstruction more efficient and reliable than
existing approaches. This work was motivated by four difficulties
detailed below: (1) observability, (2) big data handling, (3)
interaction, and (4) validation.

First, a neuron can have a very complex 3-D shape that may
contain hundreds or even thousands of fiber branches, especially
in dense arbors. Such a high degree of mutual occlusion makes it
hard to see how neurite fibers wire together. The observability is
further compromised by the uneven or weak axon labeling,
relatively poor Z-resolution from imaging, and so on. Often,
neither the prevailing 2-D cross-sectional view (such as those
widely used in EM-oriented and many LM software packages)
nor the typical 3-D intensity projection methods!® are sufficient
to unambiguously delineate these complex wiring patterns,
let alone reconstruct them.

Second, reconstructing the full morphology of a mammalian
neuron relies on effectively managing and streaming huge whole-
brain imaging datasets. The volume of a typical mouse brain is
about 500 mm?, it is not uncommon that a neuron may have over
100-ml-long neurite fiber>. When an entire mouse brain is
imaged at sub-micrometer resolution in 3-D, the volume of the
acquired brain images often contains 20 to 30 or more teravoxels.
Only a small number of existing software packages are able to
open and analyze such big datasets!®!7. How to streamline the
unambiguous 3-D visualization and analysis of such huge datasets
presents a major informatics challenge.

Third, manual reconstruction of neurons is often laborious and
unintuitive using two-dimensional (2-D) tools to interact with 3-
D images and the 3-D geometrical representations reconstructed

from such images. Reconstructing geometrical objects from 3-D
volumetric images requires overlaying these objects onto the
imaging data in 3-D space and manipulating them in situ. Since
most current computer displays (e.g., computer screens) and data
interaction tools (e.g., computer mouse) are still restricted to 2-D,
it is usually hard to observe and manipulate higher dimensional
data via a lower dimensional interface. It is also desirable to
interact with the data directly using a smooth workflow. Appli-
cations such as Virtual Finger!8 represent progress toward this
goal, but improvement is still necessary for complex and large
neurons and also for display and interaction hardware.

Finally, it is often necessary but very expensive to involve
multiple annotators to produce gold-standard reconstructions.
Manual work is time-consuming and tedious, thus in practice
most existing studies can afford only one annotator per neuron.
To resolve any ambiguity of reconstructions, it is desired to have a
way to allow multiple annotators to visualize the same neuron
and its underlying imaging data at the same time, and collaborate
on the work. This approach requires collaborative and immersive
annotation of multi-dimensional imaging data at the whole-
brain scale.

Here we consider using virtual reality (VR) techniques. While
there have been commercial VR systems (e.g., arivisVR) and
research software 1920, it is not straightforward to use any of
these existing work to tackle the above challenges. We introduce
the TeraVR system addressing the above requirements. We
demonstrate the applicability of TeraVR to challenging cases of
whole mouse brain neuron reconstruction, achieving previously
unattainable accuracy and efficiency.

Results

TeraVR platform. We developed TeraVR (Fig. 1, Supplementary
Note 1, and Supplementary Movies 1-11), an open-source VR
software package for the visualization and annotation of
teravoxel-scale whole-brain imaging data (Fig. 1a). The software
uses the TeraFly!® module of Vaa3D (http://vaa3d.org) to manage
data input-output (I/O), thus TeraVR can streamline the data I/O
and other real-time user interaction with teravoxel-scale image
volumes, for example, an 18.4-teravoxel brain image in Fig. la. As
described below, TeraVR is much more than a simple extension
of TeraFly. Indeed, it has a number of unique features designed
for reconstruction of neuron morphology in whole-brain images,
at different levels of details and at different local regions of
interest (ROI).

To use TeraVR, a user wears a VR headset (bottom right
of Fig. la) and works within a virtual space defined for the
brain image along with the neuron reconstruction and other
location references on the image. TeraVR generates synchronized
real-time rendering streams for both left and right eyes (bottom
left of Fig. 1a), which simulate how a person perceives real-world
objects and thus forms stereo vision. In this way, TeraVR
facilitates efficient immersive observation and annotation (Fig. 1b
and Supplementary Movie 12) of very large-scale multi-dimen-
sional imaging data, which can have multiple channels or from
different imaging modalities (Supplementary Fig. 1). With the
accurate pinpointing capability in TeraVR (Supplementary Fig. 2),
in real time a user can precisely and efficiently load the data of a
desired high-resolution ROI to see detailed 3-D morphological
structures (Supplementary Fig. 2c). For a neuroanatomist, the
immersive 3-D environment of TeraVR enables a user to observe
and infer the complex 3-D trajectories of neurites much
more easily. The data handling of TeraVR has been engineered
to be scalable so that the large amount of volumetric data is no
longer a barrier. In addition, a comprehensive set of assisting
functions such as convenient contrast and display modes
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Fig. 1 The overall scheme of TeraVR. a TeraVR is applicable to very challenging visualization and reconstruction scenarios such as complicated branching,
weak signals, and overlapping neurites. With TeraVR, a user is able to combine stereoviews to observe the complex 3-D neurite patterns easily and
perform the reconstruction effectively. Combining such visualization and data-exploration functions with terabyte-scale imaging data (e.g., whole-brain
scale) management and streaming capability enables reconstruction of complex neuronal morphology at an optimized accuracy and efficiency. b A mixed
reality visualization that demonstrates the use of TeraVR. Immersed in a virtual environment, the user manipulates the imaging data with TeraVR in a way
similar to manipulating a physical object. € Multiple densely packed neurons (one in a different color) from an image with high, noisy background intensity
level were reconstructed using TeraVR. d Real-time collaboration is demonstrated by showing views from all participating annotators. Each annotator logs
onto the cloud and adopts a unique color for both annotation and an avatar representing the user’s real-time location. The left subpanel shows the view for
annotator A (blue), in which two avatars of co-annotator B (purple) and C (yellow) are seen. Annotation results are instantly shared among them. The
upper right subpanel: annotator B examined a partially traced segment by co-annotator C, only to identify more branches after turning up the contrast and

having a close-up view of the segment (without affecting the views of other annotators); bottom right subpanel: the view of annotator C

adjusting, whole-brain-wide orientation and navigation, adding/
editing/removing of 3-D geometrical objects, automatic tract-
signal alignment, and so on, have all been made available in
TeraVR in an ergonomic way. Many of the typical usages of
TeraVR can be found in the Supplementary Movies 1-12.

The whole-brain imaging data typically contains complicated
branching patterns, weak and discontinuous axon signals,
overlapping neurites, and so on (middle of Fig. la). A user
employs TeraVR to gain unambiguous understanding on a
considerable number of such challenging regions that are
otherwise very hard, if not impossible, to distinguish confidently
using any existing non-immersive visualization tools. TeraVR
provides comprehensive tools for neuron reconstruction. In
addition to single neurons, TeraVR was also used to reconstruct
multiple densely packed neurons in very noisy images (Fig. 1c).
TeraVR also allows multiple annotators working on the same
dataset collaboratively using a cloud-based data server (Fig. 1d),
in a way similar to Google Docs, to combine multiple users’ input
together efficiently.

Efficient tracing using TeraVR. We tested TeraVR in challen-
ging situations for conventional non-VR approaches due to

densely labeled and weakly imaged neurites. Such non-VR
approaches include many visualization and annotation func-
tions already existing in Vaa3D and TeraFly, as well as in other
software packages such as Image]/Fiji (https://fiji.sc/) and Neu-
rolucida (MBF Bioscience). First, for a strongly punctuated and
highly intermingled axon cluster (Fig. 2a), five independent
annotators reduced the time in tracing by 50-80% when they
used TeraVR compared to TeraFly, the most efficient non-VR
approach we found for these testing cases (Fig. 2b). Second, for
exceedingly weak neurite signals (Fig. 2c), with TeraVR these
annotators could consistently generate a neurite tract (bounded
by branching points and/or terminal points) within 50 s, about 10
times faster than the non-VR approach (Fig. 2d). For these weak
signals, even when sometimes annotators needed to adjust the
contrast in the visualization in both TeraVR and non-VR
approaches, it was much easier for the annotators to use Ter-
aVR than the non-VR method to find the right angle of obser-
vation and to add annotations on top of the signals. TeraVR
reduced 60-80% of labor when measured with alternative metrics
such as the number of strokes to complete a neurite tract in
d-rawing (Fig. 2d). We also examined the speed of annotation
done for the nine tracts in Fig. 2a, ¢ and observed that TeraVR
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Fig. 2 Efficiency of TeraVR. a A complex three-dimensional (3-D) image volume with a number of intermingled, broken, strongly punctuated axon tracts
t,~t.. b Time spent to generate the five tracts in a, each of which was produced by five independent annotators; the “non-virtual reality (VR)" results
showed were obtained using TeraFly (same below in this figure); error bar: SD. ¢ A 3-D image volume with weak signal and strong noise, and the respective
TeraVR reconstructions of barely visible neurite tracts t; ~ t.. d Time and the number of operations needed to produce the tracts in €. Gray bar: unavailable
results (time/number of strokes) for non-VR approach. e Average time of 5 annotators to generate 109 tracts, which were hard to reconstruct. For non-VR,
the average was calculated among the sub-group of annotators who succeeded in reconstructing the tract. f The give-up rate of non-VR for each tract in
e; an annotator was allowed to give up the attempt after trying 300 s; the give-up rate for each tract was defined as (#failed attempts)/(#all attempts).
Arrows in e, f: the cases where no non-VR attempt was able to produce the respective neurite tracts

was much faster than the non-VR approaches (Supplementary
Fig. 3) in all test cases. Third, for 109 dense or weak tracts, with
TeraVR these annotators rarely needed more than 50s to
reconstruct any of such difficult tracts, while the non-VR
approach normally needed about 10 times of effort for the
same task (Fig. 2e). In 37.6% of tracts in this testing set, at least
one annotator was not able to use the non-VR approach to
reconstruct (Fig. 2f), while none of these annotators had trouble
to accomplish the goal when TeraVR was used. Finally, in the
majority of cases we found that five annotators were able to use
TeraVR independently to generate mutually much more con-
sistent reconstructions than using the non-VR approaches
(Supplementary Fig. 4).

Brain-wide neuron reconstruction using TeraVR. A neuron
may contain thousands or more neurite tracts, each of which is
bounded by a pair of critical points, for example, branching
points, axonal or dendritic terminals, or the cell body (soma).
Neurites are organized into local dendritic arbors, local axonal

arbors, long-projecting axon fibers, and distal axonal arbors.
While some structures such as the major dendritic branches may
be reconstructed using non-VR approaches, many other chal-
lenging cases (e.g., Fig. 2) will require the VR module in TeraVR
for faithful and efficient reconstruction. Therefore, in TeraVR we
designed a smooth switch between the VR mode and the non-VR
mode to allow an annotator to choose a suitable mode to observe
the imaging data and reconstruct neurites for different areas in a
big imaging dataset.

This technology allowed us to reconstruct complete 3-D
morphology of neurons from the whole mouse brain, each of
which was repeatedly curated by four to five annotators to ensure
accuracy. To better understand the usability of TeraVR, we
trained 15 annotators to independently produce complete
reconstructions for different types of neurons. During the
process, an annotator can flexibly switch between either VR
or non-VR mode, depending on the characteristics of the
encountered imaging signals. We analyzed under which situations
these annotators would switch between VR and non-VR modes
to understand the strength of the VR mode (Fig. 3 and
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Fig. 3 Complete reconstruction of neurons at whole-brain scale using TeraVR. a A thalamic cell reconstructed using TeraVR. Upper left: a complete

reconstruction of the neuron color-coded using “GM" (Generation Method) and “SNR" (signal-to-noise-ratio) schemes; in “GM,"” magenta and green colors
stand for neurites reconstructed using virtual reality (VR) and non-VR, respectively; in “SNR,” blue, sky blue, yellow, and red colors indicate neurites with
high, mid, low, and very low SNR, respectively; two close-up views of local dendrites and remote axons are also shown in the right and the bottom. b For a
set of 44 completely reconstructed thalamic neurons (33 from brain no. 17302, 11 from brain no. 17545), the correlation between the portion of a neuron
traced using the VR mode of TeraVR and the portion of this neuron that has very low SNR (VLSNR). ¢ For a set of 73 completely reconstructed neurons in
caudate putamen (58 from brain no. 17302 and 15 from brain no. 17545), the correlation between the portion of a neuron traced using the VR mode of
TeraVR and the portion of this neuron that has very low SNR (VLSNR). d The use of VR mode in reconstruction of BASNR (below average SNR) regions in
each of the 117 neurons. e Whole-brain plot of 33 thalamic neurons reconstructed from brain no. 17302; gray: maximal intensity projection of this brain

image; color code: each neuron in a randomly assigned color

Supplementary Fig. 5). VR was used mostly in densely arbored
areas such as axonal arbors and sometimes also in local dendrites
(Fig. 3a and Supplementary Fig. 5a-c). The areas done by VR
often have low or very low signal-to-noise-ratio (SNR) (Fig. 3a,
Supplementary Fig. 5, and Methods). For 44 thalamic neurons in
two mouse brains, the percentage of very low SNR regions
correlated linearly with the VR portion of neurons (Fig. 3b).
Linear correlation was also observed in analyzing 73 neurons in
caudate putamen in the two brains (Fig. 3c). For all these 117
neurons together, over 90% of VR usage was dedicated to the
reconstruction of neurites in the below average SNR regions
(Fig. 3d).

TeraVR helps improve existing neuron reconstructions. We
further investigated whether reconstructions of similar accuracy
could have been produced using other commonly used tools. We
used TeraVR to recheck the reconstruction of neurons with very
complex morphology, such as the cortico-cortical neurons,
initially generated by annotators who had a lot of experience
in using a popular reconstruction tool called Neurolucida

(Neurolucida 360 or NL360). Since NL360 does not have com-
parable capability to handle big data IO streaming, the annotators
needed to load a portion of the imaging data at a time to
reconstruct neurons, at a much slower pace. More importantly,
upon rechecking in TeraVR we found imperfectness of these
NL360-based reconstructions (Fig. 4a—c). The under-tracing of
missing neurites was most notable, and the topology errors and
over-tracing were common (Fig. 4a-d) even for the cells traced
from overall clearly labeled brains. In some cases, more than 40%
of neurites of a neuron were found to be missing (Fig. 4c, d and
Supplementary Fig. 6a). Notably, a missing axonal branch at the
proximal part of an axon was often seen, which indicated missing
a long projection and the corresponding whole distal targeting
axonal cluster (Fig. 4a, c). Also, annotators could choose to
proceed along a wrong direction when a confusing branching
region was encountered, which would lead to more severe
reconstruction errors (Supplementary Fig. 6). These indicate the
limitation of conventional tools for accurately observing neuronal
structures in certain special situations such as dense neurites,
axonal collaterals in dendrosomatic regions, where signals
become obscure (e.g., long axonal collaterals extending along pia,
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Fig. 4 The use of TeraVR in validating, correcting, and extending complex neuron reconstructions produced with Neurolucida. a-c Three examples of
reconstructed neurons overlaid on the whole-mouse brain imaging data, from three different brains (brain no. 236174, 17545, 17300), respectively. Green:
initial reconstructions produced using Neurolucida; magenta: recovered missing portion of reconstructions using TeraVR. d The length of neuron

reconstructions produced for a-c, respectively

Fig. 4¢). Detailed examination of the ending points of three failure
cases of NL360 (Supplementary Fig. 7) shows that the conven-
tional 2-D annotation of single z-planes is not only too time-
consuming but also fails to convey sufficient information to infer
the continuity of neurites that is intuitively visible in TeraVR. The
conventional 3-D maximum intensity projection method also
fails for the cases because of weak signals and strong occlusion
(Supplementary Fig. 7). This observed limitation is common
for the non-VR approaches, such as Vaa3D-TeraFly and Neu-
rolucida, compared to TeraVR. A careful examination of 17
complex neurons from three whole brains indicated that TeraVR
extended 10-103% of the overall lengths of reconstructions from
these neurons (Supplementary Table 1). We also carefully
examined several other VR software packages and did not find
any one that had comparable functions as TeraVR (Supplemen-
tary Tables 2 and 3).

Collaborative annotation of TeraVR. In contrast to 2-D display
devices in front of which multiple people may view the same
visualization simultaneously, currently one 3-D VR headset can
only be worn by one person at a time; therefore, an annotator
may not communicate easily with others once this person is
working in the VR environment. To overcome this limitation, in
TeraVR we developed a collaboration mode with which multiple
users can join the same session to reconstruct the same neuron at
the same time, similar to the co-editing feature of Google Docs.
Specifically, in TeraVR we implemented a cloud-based server-
client infrastructure, with which the annotation data of individual
annotators are streamed to the server in real time and merged
with the data produced by other collaborating annotators. Users
are able to see all annotations produced by others in real time and
perform certain further annotations. We assembled a geo-
graphically remote team of annotators in Nanjing (China),

Shanghai (China), and Seattle (USA) to use this collaboration
mode to simultaneously reconstruct complicated 3-D neuron
morphology from the whole-brain imaging dataset (Figs. 1d
and 5). Three annotators, each from a different city, were able to
co-reconstruct in real-time dendritic and axonal structures
around the soma of a neuron (Fig. 5a-c) with only 20% of time
compared to one single annotator (Fig. 5e). A Sholl analysis?!
indicated that the TeraVR reconstructions produced by different
combinations of annotators had consistent topology (Fig. 5d). A
length analysis indicated that the difference of neuron lengths
generated by such combinations of annotators was also small, at
only 0.77% of the average total length of the reconstruction
(Fig. 5e). A spatial distance analysis indicated that the average
lateral apartness of these reconstructions was about 3.5 voxels,
which was 0.05% of the longitudinal span of the neuron (Fig. 5f).
This study indicates the power of TeraVR’s collaborative
approach for remote annotation.

Artificial intelligence enhanced TeraVR. We developed TeraVR
as an open system, which can be augmented by a number of other
programs without compromising its modularity. In particular, we
enhanced TeraVR using several artificial intelligence (AI) tech-
niques to further improve the efficiency of annotators. First, for
the imaging data, we trained a deep-learning model, U-Net?2,
based on high-quality reconstructions produced using TeraVR;
then in TeraVR we allowed a user to quickly invoke the trained
U-Net to separate neurite signal from background (Supplemen-
tary Fig. 8a, b). We streamed the U-Net-filtered images in real
time to TeraVR as an option that a user could choose. This U-Net
model could also be iteratively refined based on user’s feedback;
thus, it could be adapted to different brain images when needed.
Second, for neuron reconstructions, in TeraVR we implemented a
data-filtering model to detect various outlier structures, such as
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branches that had sharp turns (e.g., turning angle >90° or 135° or
other user-specified values), and then generate alerts to allow
users to immediately focus on the structures that might be traced
with errors (Supplementary Fig. 8¢, d).

Discussion
TeraVR offers an immersive, intuitive, and realistic experience for
exploring brain imaging data, similar to the mixed reality visua-
lization shown in Fig. 1b and Supplementary Movie 12, where
real and virtual contents were synthetically put together to
demonstrate the user experience of TeraVR. While VR has not
been widely used in biology, it is useful for biological problems,
especially due to the intrinsic multi-dimensional nature of many
biological datasets, and has the potential to be integrated as the
next standard protocol. TeraVR is among the first demonstration
of such utility with great potential. While immersive VR visua-
lization of biological surface objects and sometimes also imaging
data were shown in applications such as biological education and
data analyses (Supplementary Table 2), there is little existing
work on developing open-source VR software packages for very
complicated and teravoxel-scale imaging datasets such as the
whole-brain imagery as we have introduced here. We expect that
TeraVR can also be used to analyze other massive-scale datasets,
especially those produced using fast or high-resolution micro-
scopy methods, such as the light-sheet microscopy?>-2°, expan-
sion microscopy2%, and recent nanoscale lattice microscopy!?.
We chose to focus on applying TeraVR to the whole-brain
single-neuron reconstruction challenge for two major reasons.
First, currently no other alternative tools are able to reconstruct
the fine, distal arborizations of neurons unambiguously in this
way. Second, there has been little previous work on streamlining

the large-scale data production of the complete single-neuron
morphology at high precision and also at whole-brain scale.
TeraVR has been a crucial tool to help several teams reconstruct
precisely hundreds of full morphologies, with various image
qualities, not only for single neurons but also for multiple densely
packed neurons in very noisy images. These reconstructions have
been released to the public databases, for example, NeuroMorpho.
Org and the BRAIN Initiative Cell Census Network initiative (see
Data availability).

Two additional aspects of TeraVR make this software package
unique: the collaboration mode and the integration of the Al
methods. TeraVR users can readily work together remotely and
curate each other’s reconstructions. Such real-time ensemble
annotation greatly improves the consistency, robustness, accu-
racy, speed, and actual fun of neuron reconstruction. With the
further help of machine learning-based data analysis modules in
both image and reconstruction domains, TeraVR will allow
effective crowdsourcing and production of large-scale gold-stan-
dard reconstructions, which in addition to its inherent value will
further help the automation of neuron reconstruction and sys-
tematic studies of neuron morphometry.

Integration of AI components in TeraVR can be implemented
in a number of ways in addition to those examples shown in
Results. A straightforward approach will be bundling existing
intelligent tracing algorithms, such as the deep-learning-based
DeepNeuron package?’ or the reinforcement learning-based
SmartTracing method?3, in TeraVR to accelerate neuron recon-
struction. AI could also be used in the TeraVR-based recon-
struction workflow to check and ensure the integrity of the data
repeatedly, using either cross-validation or even a generative
adversarial networks model?®. Since obviously TeraVR is useful
not only for neuron reconstruction but also for a wide range of
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image datasets, especially in the context of Big Data, the
integration of AI could also include artificial scene modeling for
the virtual 3-D environment, Al-based data fetching for even
faster data 1/O, and so on. These technologies could extend the
applications of TeraVR well beyond neuroscience to other
domains like education, gaming, and medical applications (e.g.,
telesurgery).

Methods

Data preparation. Tnnt1-IRES2-CreERT2;Ai82;Ai140 (brain ID nos. 17302 and
17545), Gnb4-IRES2-CreERT2;Ai139 (no. 236174), and PlxndI-CreER;Ai82;Ai140
(no. 17300) mice were used in fMOST3? imaging to produce raw image stacks,
which were further converted into the TeraFly format using Vaa3D’s module
TeraConverter. All experiments related to the use of mice followed NIH guidelines,
and received approval from the Institutional Animal Care and Use Committee.

TeraVR visualization. TeraVR provides an immersive VR environment and true
3-D experience for interactive neuronal image visualization and annotation. A VR
device, for example, the HTC Vive (https://www.vive.com/us/), typically has a
wearable headset (also known as head-mounted device) with two independent
monitors. The left monitor is exclusively viewed by the left eye, and the right
monitor by the right eye. TeraVR produces and feeds two slightly different ren-
dering streams for left and right monitors, which are viewed by the user simul-
taneously to create a realistic stereo visualization. We used the ray-casting
technique to render neuronal volume images. To allow the user to observe the data
inside the image volume, TeraVR adds a clipping plane orthogonal to the view
direction to the typically used cube-model texture mapping to form a closed
surface.

Collaboration mode. TeraVR allows multiple annotators to work collaboratively
during reconstruction. To enable the collaboration mode, a collaboration server is
deployed on the cloud or in the intranet. The server receives messages from each
connected annotator, and broadcasts to the others. An annotator joins a colla-
boration session by specifying the username and the IP/port of the collaboration
server. Once connected, the annotator’s real-time working location in an image will
be represented by an avatar, which is visible to all the other annotators. The
annotator is also assigned a unique color, which is used as both the avatar’s color
and the annotation’s color. When the annotator edits the reconstruction, for
example, adding/deleting a neurite or a marker, the operation is converted to a
globally understandable command, which is sent to the server. The server main-
tains a queue of commands and dispatches them in sequence to all the connected
annotators. In this way, the reconstruction result is synchronized among all the
annotators. It needs to be noted that as participating annotators might have dif-
ferent levels of knowledge of the data when they conducted the multi-party col-
laboration in Fig. 5b, ¢, there could be fluctuation of time reduction shown in
Fig. 5e: in some situations there would be extra time-saving, while at different times
there could be a slowdown to resolve conflicts.

Mixed reality video making. To generate a mixed reality demonstration (Fig. 1b)
that shows how TeraVR works, we first setup a physical camera to capture the
movement of the annotator. A green screen was used to help remove the back-
ground. Meanwhile, an additional virtual camera was placed at the location of the
physical camera (rather than being mounted on the VR headset) to generate a
rendering stream of TeraVR from a third-person view. Importantly, the physical
and the virtual cameras had exactly the same settings, including position, orien-
tation, focus, and so, so that the real video stream was directly superimposed over
the virtual one. These two cameras were started after TeraVR was launched. The
mixed reality video was produced by synthesizing these two video streams.

Profiling the image quality of a neuron. To evaluate how hard to reconstruct a
neuron, we profiled the underlying image quality for a neuron. We first decom-
posed a neuron structure into a set of segments, each being bounded by a pair of
critical points (branch points, terminal points, or the soma). The foreground (F),
background (B), and critical background (B, were extracted for each segment: F
was defined as the area enclosed within the radius of reconstructed neurite seg-
ment, B was defined as the bounding box of the segment excluding F, and B, was
defined the 20% brightest voxels within B. We then calculated the SNR for a neurite
segment as SNR = ﬁ, where ¢ is a small positive number and F and B
average intensities for the image voxels in foreground and critical background,
respectively. Four SNR ranges were defined based on annotators’ consensus opi-
nions: very low for SNR € (—eo, 1.0] (the neurite signal was either very weak or
very noisy), low for SNR € (1.0, 1.2] (the signal was still in low quality), mid for
SNR € (1.2, 1.4], and high for SNR values € (1.4, ) (strong signals, which are
clear and easy to trace). The overall image SNR of a neuron was calculated as the
segment-wise average SNR weighted by the length of each segment.

.« were the

Computer configuration. TeraVR was implemented and evaluated on computers
with Intel Core i7-7700 CPU @ 3.60 GHz, 64 GB memory, NVIDIA GeForce GTX
1070 GPU, Windows 10 64-bit edition, and HTC Vive as the VR device.

Compatibility. TeraVR can be used to explore multi-dimensional, multi-channel
image data, as long as the data format is supported by Vaa3D. For very large-scale
images (e.g., those with 100+ billion voxels), it is recommended to organize the

data in the Vaa3D-TeraFly format for smooth performance.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

Whole-brain test imaging data is available upon request due to their large sizes. The
neuron reconstructions released are deposited to public databases, such as NeuroMorpho
at http://neuromorpho.org/dableFiles/allen%20cell%20types/released_annotations.tar.gz.

Code availability

TeraVR is released Open Source, as part of Vaa3D (e.g. https:/github.com/Vaa3D/
release/releases/download/v3.597/vaa3d_teravr.zip). A user guide for TeraVR is provided
in Supplementary Note 1.
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