Skip to main content
. 2019 Jul 19;8(7):1055. doi: 10.3390/jcm8071055

Table 1.

Details of the EEGNet architecture.

Layer Layer Type Filters Size Parameters Output Dimension Activation Mode
1 Input (C, T)
Reshape (1, C, T)
Conv2D F (1,64) 64*F (F, C, T) Linear same
BatchNorm 2*F (F, 1, T)
DepthwiseConv2D F (C,1) C*F (F, 1, T) Linear valid
BatchNorm (F, 1, T)
Activation (F, 1, T) ELU
SpatialDropout2D (F, 1, T)
2 SeparableConv2D F (1,8) 8F+F2 (F, 1, T) Linear same
BatchNorm 2*F (F, 1, T)
Activation (F, 1, T) ELU
AveragePool2D (1,4) (F, 1, T//4)
SpatialDropout2D (F, 1, T//4)
3 SeparableConv2D 2*F (1,8) 2F8+(2F)2 (2*F, 1, T//4) Linear same
BatchNorm 2*F (2*F, 1, T//4)
Activation (2*F, 1, T//4) ELU
AveragePool2D (1,4) (2*F, 1, T//16)
SpatialDropout2D (2*F, 1, T//16)
4 Flatten (2*F, 1, T//16)
Dense N Softmax

C = number of channels, T = number of time points, F = number of filters and N = number of classes.