Skip to main content
. 2019 Jul 17;20(14):3511. doi: 10.3390/ijms20143511

Table 3.

Performance comparison of different methods on Yeast dataset.

Author Model ACC (%) PE (%) SN (%) MCC (%)
Guos’ work [34] ACC 89.33 ± 2.67 88.87 ± 6.16 89.93 ± 3.68 N/A
AC 87.36 ± 1.38 87.82 ± 4.33 87.30 ± 4.68 N/A
You et al.’s work [17] PCA-EELM 87.00 ± 0.29 87.59 ± 0.32 86.15 ± 0.43 77.36 ± 0.44
Yang et al.’s work [31] Cod1 75.08 ± 1.13 74.75 ± 1.23 75.81 ± 1.20 N/A
Cod2 80.04 ± 1.06 82.17 ± 1.35 76.77 ± 0.69 N/A
Cod3 80.41 ± 0.47 81.86 ± 0.99 78.14 ± 0.90 N/A
Cod4 86.15 ± 1.17 90.24 ± 1.34 81.03 ± 1.74 N/A
Zhou et al.’s work [32] SVM + LD 88.56 ± 0.33 89.50 ± 0.60 87.37 ± 0.22 77.15 ± 0.68
Wang et al.’s work [36] PCVM + ZM 94.48 ± 1.2 93.92 ± 2.4 95.13 ± 2.0 89.58 ± 2.2
Our method SVM + PSSM 86.99 ± 0.43 88.05 ± 0.88 85.62 ± 1.23 77.36 ± 0.64
RF + PSSM 92.12 ± 0.54 94.20 ± 0.78 89.76 ± 0.96 85.46 ± 0.92

ACC: Auto Cross Covariance; AC: Auto Covariance; PCA-EELM: Principal component analysis-ensemble extreme learning machine; LD: Local description; PCVM + ZM: Probabilistic Classification Vector Machines+ Zernike Moments.