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Abstract: The increasing popularity of water sports—surfing, in particular—has been raising attention
to its yet immature technology market. While several available solutions aim to characterise surf
session events, this can still be considered an open issue, due to the low performance, unavailability,
obtrusiveness and/or lack of validation of existing systems. In this work, we propose a novel method
for wave, paddle, sprint paddle, dive, lay, and sit events detection in the context of a surf session,
which enables its entire profiling with 88.1% accuracy for the combined detection of all events.
In particular, waves, the most important surf event, were detected with second precision with an
accuracy of 90.3%. When measuring the number of missed and misdetected wave events, out of the
entire universe of 327 annotated waves, wave detection performance achieved 97.5% precision and
94.2% recall. These findings verify the precision, validity and thoroughness of the proposed solution
in constituting a complete surf session profiling system, suitable for real-time implementation and
with market potential.

Keywords: activity recognition; gps; inertial sensors; monitoring system; smartphone;
sports performance; surf

1. Introduction

Surfing is a popular sport all over the world and can be practiced in both leisurely or competitive
ways. Minimal training and equipment makes this an appealing water sport for people to experiment
and enjoy. Surfing consists in riding a surfboard along the unbroken section (or wall) of a wave, as it
travels towards the shore. The main piece of equipment required to perform this sport is a foam and
fibreglass surfboard, where the surf practitioner is expected to stand up erect on his feet in a wave
ride [1].

Lately, the market demand for surfboards has shown an increase in volume, mainly for advanced
level surf practitioners. This market is expected to grow 12.24% during 2018–2022 [2]. Due to its
increasing popularity worldwide, new surf-related solutions have been developed in order to assist
surfers in catching the best waves. For example, surf-specific websites such as MagicSeaWeed [3] or
Windguru [4] provide weather forecast and sea conditions, constituting an essential tool for passionate
surfers. Following this trend, the analysis and extraction of performance-related measurements to
create automatic and accurate surf session profiles shall constitute an appealing and challenging
research area with high commercial potential [1], as there is, indeed, limited available information for
surf practitioners and coaches in terms of key performance analytics that are currently quite commonly
present for other sports [1,5]. Most of these sports monitoring systems generate biofeedback based on
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sensor data retrieved during the training session [5–7], and are capable of providing useful information
about the executed movements, as they are correctly or incorrectly performed [6,7]. Moreover,
in surfing, as in most sports, evolving towards more sophisticated movements or manoeuvres requires
the mentoring of a more experienced person, such as an instructor or coach; sensorisation and
movement quantification can also assist this process.

A surf session is usually constituted by four main events: paddle, stationary, wave riding and
miscellaneous events (i.e., events such as wading or duck diving that seldom occur) [8]. Wave riding is
the most important activity; however, it only typifies 3.8% of the surf session’s total time. Miscellaneous
events have a low impact in the overall session, representing only 2.2%. The major events are paddling,
accounting for 51–54% of the total session time, and stationary events, such as sitting or laying on the
board (42.5%) [9]. This distribution presents its own challenges in terms of developing surf monitoring
solutions, due to the scarcity of some activities; in particular, wave riding, the most important surfing
event, is very rare, increasing the difficulty to accurately annotate and monitor it.

Currently, most solutions base their estimations of speed, distance and movement patterns on
Global Positioning System (GPS) measurements [10–13], using them to evaluate the performance
of the surfer [5,14]. However, given the nature of this sport, and especially during manoeuvres,
short and very intense periods of activity may be inaccurately characterised when solely using GPS
data, making the estimated surf-related metrics unreliable [5,14,15]. Moreover, stronger accelerations
have been proven to negatively impact instantaneous velocity measurements provided by GPS data
alone, i.e., higher accelerations frequently compromise the GPS’ speed estimation [5,15]. This is
extremely relevant in the context of a surf session, since these solutions may not be suitable for
computing performance-related metrics with the validity and reliability that surf practitioners need.
These limitations could be mitigated by combining the use of GPS with a secondary source of data,
namely inertial sensors [6,7,10,16–18]. Indeed, Chambers et al. [6] stated that, in sport performance
analytics, speed and distance calculations are frequently performed using GPS, but sport-specific
movements are identified and characterised using inertial sensors. These sensors are widely spread and
increasing its popularity, especially for biomedical and sports applications [7,19,20], due to its small size,
low cost, low energy requirements and the fact that they are embedded in many ubiquitous devices.
Inertial measurement units (IMU) are usually composed by a triaxial accelerometer, gyroscope and
magnetometer, measuring acceleration, angular velocity and magnetic field intensity, respectively,
and are generally used to estimate position and orientation by tracking rotational and translational
movements [7,16]. Several strategies have been proposed in recent years to overcome the most common
inertial measurement-related errors (e.g., drift), usually based on sensor fusion methods which try
to compensate for each sensor’s well-known sources of error by employing sophisticated filtering
techniques, which ultimately output reliable orientation estimations [16,20].

This context motivated the development of a new algorithm for the detection and characterisation
of surf session events from intermediate to advanced level surfers, combining both IMU and GPS
data sources to achieve the most reliable outcome possible. In this sense, this manuscript presents
an extension of the work reported in [17], with an extended validation of the entire surf session
profiling algorithm, namely concerning wave detection performance, with an improved dataset
comprising approximately 7.5 h of annotated data and featuring a total of 327 waves, and an
additional contribution:

• Introduction of a novel and improved module of laying events classification, focusing in the
distinction of paddle, sprint paddle, dives, and idle laying, using frequency-domain features.

The remainder of the paper is organised as follows. Section 2 describes the prior work conducted
in this field. Section 3 describes all necessary equipment and methodology, which made this study
possible. Sections 4 and 5 report and discuss the main findings, respectively. Finally, Section 6
highlights the main conclusions of this study and points out possible directions for future work.
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2. Related Work

There are a few commercially available solutions for surf monitoring. Rip Curl Search GPS
watch [11] uses GPS signals to perform some estimations and deliver a few surf-related metrics,
such as wave count, travelled distance and wave speed. Solutions which mostly rely on GPS
data alone to perform their core estimations are hardly able to detect complex surfing movements,
such as in-wave manoeuvres, and may lack precision in the determination of the boundaries of some
events (e.g., take-off and end-ride moments). Some mobile applications have also been developed
(e.g., Surf Track [21], Dawn Patrol [22], and WavesTracker [23]), but very little information is provided
regarding their functioning, performance and system setup.

Glassy Pro is a wristband which combines GPS and inertial sensor data, namely the accelerometer
and gyroscope sensors, in order to improve detection and characterisation of surf-related events [12].
GPS data are mostly used for wave detection while inertial sensors are used to explore and detect
other events, such as paddling periods. The fact that it is intended to be a wrist-worn device has
both advantages and disadvantages. On the one hand, it is practical and mostly unobtrusive. On the
other hand, monitoring surf movements based on wrist motion may be insufficient to retrieve the
most useful information in some cases, especially during wave rides, in particular if one intends to
monitor rotations. Torso and board rotation are important metrics for wave performance analysis and
these will most likely be lost if wrist movement is the only one under analysis, due to the variety of
movements of great amplitude enabled by the shoulder joint.

Trace Up is a dedicated device designed to be placed in the nose of the surfboard. It uses GPS
and inertial sensors (gyroscope and magnetometer) to identify and analyse complex surf movements
during a session [13]. By combining several sources of data and their strategic placement on the board,
it can provide information about wave riding times, distance, speed, number of turns and turn angle
values. While this device provides a handful of useful features for surf monitoring, no performance
evaluation studies were found to validate its detections and measurements. In addition, to the best
of the authors’ knowledge, this product is no longer available for tracking surf sessions, since the
scope of the company has evolved for focusing solely in football tracking [13]. Xensr Air is another
product, very similar to the previous [24]; the device was also designed to be mounted in the surfboard,
and uses GPS and a sensor fusion approach to monitor and extract surf session metrics; however,
to best of the authors’ knowledge, this product is currently unavailable for purchase [24].

Besides commercially available solutions, some research studies also aim at surf monitoring
and/or performance analysis. Madureira et al. [10] proposed an algorithm for wave detection which
compared the use of GPS sensor alone against its combination with inertial sensors data, placing a
smartphone on the upper back of the surfer. The results indicate that wave detection is more accurate
when the algorithm uses both data sources (inertial and positioning sensors). This finding is consistent
with that of our previous work [17], which tested this premise under more demanding circumstances
and with a significantly bigger dataset. The addition of inertial sensors also improved their definition
of wave boundaries. Moreover, false positives were more frequent when using only speed estimation
from GPS as a feature [10].

In another study, Hoettinger et al. [25] proposed a machine learning approach for activity
recognition in surf sessions using inertial data from a device placed on the surfer’s chest, inside a
waterproof case, under the wetsuit. The goal of this work was to correctly identify specific events of a
surf session, namely differentiating between wave and non-wave events, using two different machine
learning techniques. The results show that both techniques could be suitable to fulfil this purpose,
with only seven waves incorrectly classified from a total of 214 annotated waves [25].
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3. Material and Methods

3.1. Data Collection and Annotation

The first and one of the most challenging steps within this study was related to the data collection
process. For this purpose, two Android applications and a video camera were used. The video camera
was placed on the beach at the spot which enabled the clearest view of the surfing area to record
the whole surf session, constituting the ground truth of all validated events in this study. A simple
Android data collection application was created to record data from the inertial sensors—accelerometer,
gyroscope and magnetometer—and GPS, sampled at 100 Hz and 1 Hz, respectively. Another Android
application was created and used to assist a real-time annotation of relevant events, by featuring
three buttons, which defined the following moments: in/out of water, paddling and wave riding
periods. This application was handled by a third person (usually a researcher) providing assistance
to the real-time data annotation from the beach. This process was planned to facilitate the posterior
offline annotation, especially in cases when the surfer cannot be spotted on camera while performing
a relevant activity. For each new data collection, both Android applications were initiated at the
same time, with the start moment (when the Start button is pressed) recorded by the video camera.
This protocol enabled posterior data synchronisation between all recording devices.

In every data collection session, a Samsung Galaxy A3 (2017) smartphone, with the data recording
application installed, was placed vertically between the shoulder blades of the volunteer surfer,
inside a waterproof case under the wetsuit. Figure 1 illustrates the positioning and configuration of
the smartphone device.

Figure 1. Smartphone positioning in the surfer’s upper torso, with sensor frame’s representation.

Especially in surf, capturing data using sensors can be challenging, as surfers are often not
too keen on using electronic devices at sea due to its inherent risks and/or the fact that device’s
positioning can be uncomfortable, affecting performance itself [10]. Thus, the proposed smartphone
positioning was derived from a set of 15 interviews conducted with experienced surfers. This site was
considered the most adequate on-body location to place the device since it should not particularly
disturb surf-related movements. Using a smartwatch as the sensing device was also considered;
however, during the conducted interviews, some surfers also referred that they were not fond and did
not use these devices because they hinder paddling movements. Moreover, placing the sensing device
in the upper torso would enable the tracking of in-wave rotations and torsion, which can hardly be
accurately monitored based on wrist sensorisation due to the amplitude of movements enabled by the
wrist–elbow–shoulder joints.

Thirteen different surfers participated voluntarily in a combined total of 17 data collection sessions,
after giving their explicit informed consent for the collection of all required data, including video.
The recruited surfers had different background and expertise, ranging from intermediate to advanced
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levels. All sessions were annotated with frame precision using Kinovea software [26], with the
recorded videos used as the ground truth, and cross-checked with the real-time annotations. In the
ideal scenario, all surf related events should be annotated; however, not all videos were equally
appropriate in maintaining a clear view of the surfers’ activities, for example due to sea waves and
agitation, which can obstruct their direct observation. This is quite frequent in sessions that occurred
with rough sea or bad weather conditions, with implications in the annotation of the events of interest.
Therefore, we opted for only annotating periods in which the annotator was completely certain about
the on-going event. Fortunately, this issue had less impact in the annotation of waves, since riding
a wave implies sliding its wall, usually at a greater height than the occlusion causers. Some of the
data collections also took place with two participants at once, while using only one video camera,
which limited the total on-camera time of each surfer. Moments when the surfer was off camera sight
were not annotated, and, therefore, not considered for comparison in the validation stage.

Given the importance of not missing any wave period, the annotation application was used to
assist the process of wave annotation, not only by making this process faster and effective but also by
guaranteeing that, even if, for some reason, a wave period were not recorded on camera, it would not be
totally lost, even though its limits were annotated with less precision. Table 1 describes the two datasets
in which data were split with respect to annotation process. The Waves dataset was only annotated
for wave riding periods from all collected surf sessions, while the All events dataset is composed by a
smaller subset of surf sessions that were annotated for all surf events, including paddling (sprint and
regular), stationary moments, duck diving and wave riding periods.

Table 1. Datasets description.

Waves Dataset All Events Dataset

No. sessions 17 13
No. users 13 9
Average session duration 1h18 1h19
% Annotated session time 5% 44%
No. waves 327 269
Average wave duration 8.97 s 8.67 s

3.2. Events Detection

Three of the sessions were recorded with a previous version of the data collection application
sampling inertial sensors’ data at 50 Hz, instead of 100 Hz. This sampling frequency was found to be
enough to be used by the proposed algorithm; therefore, data from all the remaining sessions were
under-sampled by a factor of 2 (to 50 Hz).

A sensor fusion approach based on the combination of accelerometer, gyroscope and
magnetometer sensor readings was used to overcome several individual sensor limitations.
The gradient descent based orientation filter authored by Madgwick et al. [16] was used to fulfil this
purpose. This approach has been widely employed and recognised among the research community
and is frequently used in low processing power devices, associated with accurate results [27]. The use
of a sensor fusion strategy based on gravity and magnetic field directions enabled the creation of a
relative local frame of reference, the North–East–Down (NED) frame, with the Down axis being defined
by the measured gravity direction provided by the accelerometer; the North axis being defined by the
measured Earth magnetic field direction provided by the magnetometer; and the East axis being defined
as perpendicular to the previous, following the right hand rule. This orientation filter uses quaternions
for storing and representing orientation changes, and accelerometer and magnetometer data in
an analytically derived and optimised gradient descent algorithm to compute the direction of the
gyroscope measurement error as a quaternion derivative [16]. The filter output quaternion represents
an optimised and more robust estimation of the actual orientation. Unlike Euler angles representation,
quaternions do not suffer from gimbal lock and can be used to express an orientation/rotation both in
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the relative NED frame or in the device’s own inertial frame. This sensor fusion strategy enabled a
more accurate dissociation between linear and gravitational components of the accelerometer readings,
by using a better estimation of device’s current orientation. Linear acceleration components were
estimated by projecting the NED frame fixed gravity vector onto the device’s own frame and then
subtracting it from the current accelerometer reading. Gravity, linear acceleration and orientation
signals constituted the basis for the detection of all surf-related events, as Figure 2 illustrates.

Figure 2. Flow of operations of the core event-detection algorithm, evidencing the two different
implementations of the laying activity detection block.

The data stream segmentation strategy took into account that the complex activities under analysis
usually take several seconds; thus, windows of length in the order of seconds should be a proper fit
for the problem in hands. Moreover, near real-time response was demanded. As such, the proposed
algorithm splits the data stream into fixed-length windows of 1 s with 50% overlap, i.e., the algorithm
returns a new activity prediction every 0.5 s, based on the samples from the previous second. Each of
these windows was processed until a decision was obtained, being the respective label assigned. Thus,
a decision on the activity that is currently being performed is obtained every half second. However,
events were only processed after the detection of their end, so that post-processing verifications could
be performed. The following subsections detail the necessary steps and processing involved in each
block for detecting these activities, in accordance with the flow depicted in Figure 2.

3.2.1. Waves

In [17], Gomes et al. investigated the pros and cons of using different sensors for wave detection,
finally concluding that the combination of both GPS and IMU sensor data was the overall better
approach. This approach was, therefore, selected for the subsequent work reflected in this manuscript.
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As such, wave detection was based on the establishment of intelligible criteria, directly derived
from the observation of wave events. These criteria were sequentially implemented as rules which
define a wave period (if verified), and can be summarised as follows:

• Take-off can only occur following a laying stance or a transition period (class other).
• Take-off involves a fast increase of the surfer’s speed.
• Wave riding implies maintaining high speed and strong acceleration.

These criteria were verified by implementing a threshold-based approach taking acceleration and
speed derived features as input, computed from each new time-window arriving to the wave detection
block. Surfers’ in-wave acceleration status was estimated based on the magnitude of linear acceleration
in Y and Z axes in the sensor frame; translation speed was estimated based on GPS measurements.
Thresholds were mostly empirically defined, fixed and tuned to optimise the trade-off between correctly
detecting as many waves as possible and setting the most accurate take-off/end-ride moments.

A post-processing layer of wave characterisation was also implemented to receive each detected
wave, refine the definition of the end-ride moment and proceed to the extraction of basic wave-related
statistics (e.g., duration and average speed). Refining the end-of-wave limit is an important processing
step, due to the range of possibilities of exiting the wave (e.g., kick out, nose dive, and uncontrolled
wipe out), which frequently lead to the detection of unexpected wave limits. Each wave period was,
therefore, restrained: its last moment should correspond to the last occurrence of a linear acceleration
measurement above 90% of the mean in-wave acceleration. The refined wave period was then
validated if it lasted more than 3 s, with peaks of linear acceleration and speed in accordance with the
defined thresholds.

3.2.2. Stances

Non-wave time-windows were fed to the stance detection block. This layer should identify periods
when the surfer is laying vs. sitting on the surfboard, based on the distribution of the acceleration of
the gravity component in the sensor frame’s axis. This means that measurements of nearly 9.8 m/s2 in
Y- or Z-axis led to the direct classification of sitting or laying stances, respectively.

The same block is responsible for the attribution of the label other, a rejection class assigned when
none of the criteria that describe a known activity are verified. These moments frequently correspond
to transition periods between known activities, and are mostly short, ambiguous or irrelevant; as such,
this class is not associated to any ground truth labels, i.e., it was not annotated.

3.2.3. Laying Activities

Several events can occur during laying periods, which are relevant to identify and
characterise, namely paddle, sprint paddle, dives, and idle laying (with no substantial movement).
The characterisation of such events was separately performed in an individual block, with two different
implementations (based on time- or frequency-domain features), compared in the scope of this work.

Time-Domain Features

The first implementation corresponds to the paddle detection algorithm detailed in [17], in which,
upon finishing a laying event, data would proceed to a next block responsible for determining if paddle
occurred in that timeframe. The acceleration of gravity measured in the X-axis was considered the
most appropriate signal to support this identification. Maximum and minimum peaks were detected
in this signal, and their timelapse was measured to perform an estimation of signal periodicity. If the
signal was considered sufficiently periodic, a paddle label was assigned.

This version of the laying activity detection block solely uses time-domain features to base its
predictions, and is confined to a binary decision (paddling vs. not paddling) whenever data from a new
laying period arrive. Moreover, this method assesses the entire laying window, without employing any
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segmentation technique, at the expense of an expected loss of performance whenever several different
activities occurred in the same laying window. This motivated the exploitation of frequency-domain
features to solve the problem of laying activities characterisation.

Frequency-Domain Features

As previously stated, by observing the X, Y, and Z gravity acceleration signals derived from sensor
fusion, one can verify that these signals, particularly the X and Y axes, are quite periodic in nature
during paddle periods, with an almost sinusoidal behaviour, with distinct regular peaks and valleys
(see Figure 3 for examples of paddling periods). The X-axis presents the signal with higher magnitudes,
whereas the Y-axis shows a less intense variation, but with approximately twice the number of peaks
and valleys than the X-axis signal, when considering the same time frame. For inactive laying periods,
these signals tend to be much lower in magnitude, with no detectable periodicity.

Figure 3. Segment of surf session, evidencing paddle periods and dive moments: (Top) the X and
Y components of gravitic acceleration, with background color as the output of the laying events
classification block; (Middle) the obtained spectrogram for the gravitic acceleration in the X-axis;
and (Bottom) the obtained spectrogram for the gravitic acceleration in the Y-axis. Note the high energy
content for low frequencies during paddling in the X-axis, and the peaks in low frequencies in the
Y-axis during dives.

Considering the positioning and orientation of the smartphone during data collection, it is likely
that this periodicity arises from the paddling movements performed by the surfers, which translate
into a steady “wobble” of the torso-surfboard complex, where each valley corresponds to a left arm
paddle and each peak to a right arm paddle.

As such, the characteristic periodicity of these signals was exploited to further segment and classify
laying periods in one of four classes (paddle, sprint paddle, dives, and laying still), by performing
spectrographic analysis. Since the collected IMU signals were not completely evenly time sampled,
and to avoid performing linear interpolation for sampling frequency normalisation, Lomb-Scargle
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periodograms were calculated for successive windows. The Lomb-Scargle periodogram algorithm
allows the calculation of frequency content of unevenly time sampled signals [28].

Each of the identified laying periods was subdivided into 2 s windows, with 1 s overlap: since the
average paddling frequency was around 0.5 Hz (one arm paddle per second), at least 2 s data were
necessary to identify a full paddle period (left and right arm). The Lomb-Scargle periodogram of
the X and Y gravity acceleration signals of each window was calculated to create a spectrogram of
these signals during the identified laying period, considering evenly spaced out frequencies from 0 to
5 Hz. The frequency component with highest magnitude was identified for each 2 s window, for both
acceleration axes. Each of these 2 s windows was then classified as one of the following:

• Paddle

Paddle is present when the gravity acceleration component in the X-axis has a high energy
content in low frequencies (usually under 1 Hz), with the X-axis being of higher energy than
the Y-axis. Examples of paddle periods and corresponding spectrogram can be seen in Figure 3,
in dark blue.

• Dives

Dives can be identified based on their characteristic “dip” in the Y component of gravitic
acceleration, corresponding to the downward movement of the surfer while diving. In the
frequency domain, this translates into a peak in the maximum magnitude of the Y-axis signal in
low frequencies, larger than the X-axis. Several dive moments can be seen in Figure 3, in light blue.

• Sprint Paddle

If paddle periods were identified, they were further processed to identify sprint paddle,
an activity characterised by an increase in paddling frequency and magnitude of linear
acceleration in the Y and Z axes, as a surfer approaches the cusp of a wave. If a paddle window
had its highest energy content in a higher frequency, and high enough YZ linear acceleration
(that corresponds to the acceleration felt when on a wave’s cusp), it was classified as sprint paddle.

• Laying still

Any other remaining windows that were not classified as paddle, sprint paddle, or dives, were set
by default as regular laying periods, with no associated events or activities.

After the identification of the aforementioned events during a laying period, with each 2 s window
being classified as laying, paddle, sprint paddle, or duck dive, these windows were further processed
to remove outlier classifications, such as windows that are embedded in periods of one activity and
are classified as another. This is performed by comparing each window to its neighbouring windows
and determining if it is an isolated instance of a given classification: in these cases, the attributed event
to that window is set to correspond to its neighbouring events, thus leading to an overall smoother
classification of activities.

4. Results

4.1. All Events’ Detection Performance

The evaluation of the algorithm’s performance concerning the detection of all surf session events
was conducted by taking the All events dataset and computing the confusion matrix. To this end,
samples were taken in periods of 1 s, and attributed their respective prediction and ground truth
labels, derived from the aforementioned thorough annotation process. According to the described
methodology, two confusion matrices were computed, each considering a different version of the
laying activities profiling algorithm.
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Table 2 exhibits the confusion matrix for the five-label output algorithm, solely based on time
domain features. Since, in this case, we only aimed to distinguish paddle from still laying, and not
dive or sprint paddle, these activities were considered to belong to class paddle for ground truth
purposes. In our previous work [17], we presented the confusion matrix of the activities detected
based on time-domain features grouped by stance detection, i.e., the paddle activity comprised both
paddle and lay activities’ data, since the All events dataset was small, with low representativeness of
still laying activities. In this work, since the dataset was increased, Table 2 discriminates the results in
paddle and lay activities, according to the actual label attribution by the algorithm. It is clear that the
number of annotated laying samples is still reduced compared to the number of annotated paddle
instances. This aspect is considered in the discussion of the results in the next section. As one can infer
from the confusion matrix, an overall accuracy of 87.5% was achieved for the detection of all activities
of interest using only features from the time domain.

Table 2. Confusion matrix (%) for the detection of all events based on time-domain features alone.
Rows: true labels; Columns: predicted labels.

Paddle Wave Sit/Wait Lay Other No. Annotated Seconds *

Paddle 87.94 0.45 0.65 5.15 5.81 12,867
Wave 1.25 89.23 1.03 0.22 8.27 2238

Sit/wait 2.06 0.00 94.57 0.65 2.72 10,924
Lay 91.09 2.01 1.72 3.74 1.44 1044

* Percentage of annotated data: 44%.

Table 3 presents the results of the newly proposed algorithm, which bases its characterisation
of the laying activities on frequency-domain features. This version of the algorithm predicts more
activities than the previous; in total, it considers seven different output labels, four of which consisting
of activities that occur while the surfer is laying on the surfboard. Overall, in this case, an accuracy of
88.1% was attained for the classification of all activities.

Table 3. Confusion matrix (%) for the detection of all events based on time-domain (waves and stances)
and frequency-domain (laying activities) features. Rows: true labels; Columns: predicted labels.

Paddle S. Paddle Wave Sit/Wait Lay Dive Other No. Annotated Seconds *

Paddle 85.56 1.19 0.11 0.70 4.53 2.73 5.18 12,272
S. Paddle 10.84 41.77 26.10 0.00 8.43 2.01 10.84 249

Wave 0.31 0.04 90.30 0.94 0.27 0.45 7.69 2238
Sit/wait 0.58 0.00 0.00 94.98 1.31 0.82 2.31 10,924

Lay 21.65 0.10 2.01 1.72 63.98 8.24 2.30 1044
Dive 21.68 1.73 0.87 0.29 8.67 49.71 17.05 346

* Percentage of annotated dataset: 44%.

4.2. Wave Detection Performance

Wave riding is the most important event in the context of a surf session. As such, wave detection
performance was separately studied from the remaining events, with as much evidence as possible,
considering all acquired data of the Waves dataset. Table 4 presents the results of this validation using
two metrics: precision, which weights the amount of correct detected waves in the entire universe of
detected waves, and recall, a measure of the amount of annotated waves that were indeed detected.

The cases when the algorithm detected a wave during a period in which the surfer is not visible in
the ground truth videos were also quantified, as presented in the last column of Table 4. These events
were not considered for computation of the performance metrics.
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Table 4. Wave detection performance overview.

Total No. Waves Precision Recall % Detected Waves Not Caught on Video

327 97.47% 94.19% 4.43%

5. Discussion

Direct comparison of the five-label output event detection algorithm with the preliminary results
reported in [17] demands the recomputation of the confusion matrix presented in Table 2 to solely
feature a total of four labels instead of five, by fusing paddle and lay instances. From this rearrangement,
an overall event detection accuracy of 93% was achieved using the All events dataset described in Table 1.
This value is just slightly inferior to that reported in [17]—95%, computed from the analysis of only
three surf sessions—which proves the coherence and robustness of the algorithm itself. However,
in this work, the confusion matrix presented in Table 2 discriminates paddle from still lay detections,
in accordance with the labels returned by this version of the algorithm (see Figure 2). When considering
this extra activity, the performance in terms of accuracy drops to 87.5%, due to the frequent confusion
of still laying with paddle. This problem can relate with the difficulty to annotate lay samples using
video ground truth (e.g., situations when the surfer is too far away), but we believe it is mostly inherent
to the nature of the algorithm itself: since there are no segmentation operations implemented over the
laying periods arriving to the laying activity detection block, each period is simply assigned a single
label, even if it featured more than one activity. This means that a sequence such as paddle–lay–paddle
would be simply labelled as paddle, if the periodicity threshold was surpassed, or lay, if it was not.
This fact affects lay detection performance in particular, because lay events are scarce (as the low
number of annotated lay samples in Table 2 indicates) and frequently occur between paddling periods,
which means that the surfer’s stance does not change, and, thus, the entire period will be assigned a
single label—usually paddle because it was the most frequent activity in such periods. This problem
revealed the importance of further segmenting laying periods.

Thus, the new version of the laying activities detection block started by implementing a
segmentation method, splitting the laying period. Then, frequency-domain features were extracted and
used to distinguish four types of laying activities. This flow of operations was expected to neutralise
the problem identified and discussed in the previous paragraph, while increasing overall activity
classification robustness. An accuracy of 88.1% was finally attained for the detection of all seven events.
This means that a slightly superior performance was achieved for the classification of a higher number
of activities, leading to a better description of the entire surf session. Laying activities are still the
hardest to distinguish, with lay and dive instances frequently confused with paddle by the algorithm.
The impact of this situation is, however, diminished if we take into consideration the low number of
annotated lay and dive instances, which constitute a total of roughly 23 min (only 5% of all annotated
data). The most frequent confusion occurs between sprint paddle and waves, which is expected due to
the ambiguity of the annotation process in defining the boundaries of these activities. The algorithm
was also optimised not to miss any wave data, as described in [17], thus the inclusion of the latest
moments of sprint paddle in wave periods segmentation was likely by design. Therefore, despite the
higher complexity and computational load associated to the extraction of frequency-domain features
(compared with the time-domain approach), these were deemed more suitable to describe and model
the problem of laying activities’ distinction.

Regarding wave detection performance alone, one can highlight the achievement of 90.3%
accuracy of wave detection with second precision, considering the annotated times as ground truth.
Then, due to the importance of not missing any waves while still minimising false detections, the whole
universe of wave events (327) was taken to compute precision and recall of wave detections, with values
of 97.47% and 94.19%, respectively. This outcome was also coherent with the preliminary results
reported in [17] based on a much smaller dataset (in this work, the number of annotated waves
increased to more than double), reporting the same precision and just slightly inferior recall.
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These results shall stand as evidence of the appropriate performance and robustness of the
algorithm. Moreover, it is important to highlight its user-independent nature, the span of conditions
under which data collections took place (namely, different sea and weather conditions), and its near
real-time event classification, which simultaneously increased the complexity of this work while
making its outcome more appealing for usage in a real-world scenario. Besides our previous work [17],
no other studies were found for comparison when it comes to the classification of all events in a
surf session.

Challenges and Limitations of the Study

This study presented some challenges and limitations which are worthy of a thorough discussion,
mostly concerning the data collection setup and data annotation procedure, both associated to
constraints of the surf activity itself. As such, the limitations of this study include the low percentage
of annotated data of some activities of interest, allied with an ambiguous annotation process in
some cases.

Video annotation was constrained by several difficulties, namely: (1) lack of direct sight of the
surfers at all times; (2) impossibility of determining with certainty the identity and/or on-going
activity of surfers standing too far away from the shore; and (3) ambiguous determination of ground
truth start and end times of some surfing events (e.g., exact moment when the surfer initiates a dive
or the moment when regular paddle becomes sprint paddle). Nonetheless, 44% of the data was
annotated—approximately 7.5 h—which was considered sufficient to successfully validate activity
classification.

The introduction of techniques that consider the sequential dependency between activities in
a surf session could be an appropriate next step to improve the performance of event detection.
Moreover, the addition of more cameras (another camera at a different location on the beach and/or a
drone for top view of the surfers) could assist the problem of data annotation.

In fact, a drone was used in some data collections; however, its utilisation also has some limitations:
(1) it is dependent on weather conditions, namely strong wind, making it impossible to use in every
scheduled data collection; (2) each flight only lasts 15–20 min due to the battery life of the device,
i.e., we cannot record the entire session with a single drone (even if we switch the batteries and send it
back, several minutes are lost); (3) several sessions took place with two surfers at once, whom often
cannot be spotted at the same time by the drone, i.e., we would not have ground truth data for both
surfers under analysis during most of the time of each flight. While it could be interesting to use both
beach video camera and drone images for annotation, the amount of data we would be able to annotate
based on drone images would be very little compared to the total amount of acquired data that we
can annotate with the beach video camera. Furthermore, it would imply the creation of different
annotation protocols within the same experiment, with different synchronisation processes, which
could be another source of error for little gain. Therefore, we opted for leaving all drone images out
of these experiments, and plan to use them later on in further developments of our work, namely to
study the surfers’ in-wave movements with great detail.

6. Conclusions

This manuscript conveys an extension of the work in [17] by bringing forward an extended
validation of the event detection algorithm with an enlarged and more mature dataset, and a new
method that improved the characterisation of laying events. The algorithm proved to be 88.1% accurate
in distinguishing seven surf-specific activities—wave riding, paddling, sprint paddling, diving, laying,
and sitting on the board—with second precision. Besides its promising results, our overall solution
is also user-independent and has a nearly real-time response, which reiterates its maturity and
market value.

As future work, the proposed solution will be integrated and validated in real-time and real-world
scenarios to ensure its reproducibility. Moreover, a manoeuvre detection block shall be implemented,
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aiming to characterise and evaluate in-wave events, and the potential of creating a model to assess
the correctness of the movements of each surfer will be explored. Different segmentation techniques
shall also be explored to assess their impact in the performance of our system. Finally, we shall
explore the use of top view images (collected using a drone) and/or a second camera fixed at the
beach to improve the process of data annotation, and perform a more thorough validation, not only
of the activity recognition module, but also of further extraction of metrics of surfing performance
(e.g., rotation angles).
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