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Abstract

Background: Air pollution exposure has been shown to increase the risk of obesity and 

metabolic dysfunction in animal models and human studies. However, the metabolic pathways 

altered by air pollution exposure are unclear, especially in adolescents and young adults who are at 

a critical period in the development of cardio-metabolic diseases.

Objectives: The aim of this study was to examine the associations between air pollution 

exposure and indices of fatty acid and amino acid metabolism.

Methods: A total of 173 young adults (18–23 years) from eight Children’s Health Study (CHS) 

Southern California communities were examined from 2014–2018. Near-roadway air pollution 

(NRAP) exposure (freeway and non-freeway) and regional air pollution exposure (nitrogen 

dioxide, ozone and particulate matter) during one year before the study visit were estimated based 

on participants’ residential addresses. Serum concentrations of 64 targeted metabolites including 

amino acids, acylcarnitines, non-esterified fatty acid (NEFA) and glycerol were measured in 
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fasting serum samples. Principal component analysis of metabolites was performed to identify 

metabolite clusters that represent key metabolic pathways. Mixed effects models were used to 

analyze the associations of air pollution exposure with metabolomic principal component (PC) 

scores and individual metabolite concentrations adjusting for potential confounders.

Results: Higher lagged one-year averaged non-freeway NRAP exposure was associated with 

higher concentrations of NEFA oxidation byproducts and higher NEFA-related PC score (all 

p’s≤0.038). The effect sizes were larger among obese individuals (interaction p=0.047). Among 

females, higher freeway NRAP exposure was also associated with a higher NEFA-related PC score 

(p=0.042). Among all participants, higher freeway NRAP exposure was associated with a lower 

PC score for lower concentrations of short- and median-chain acylcarnitines (p=0.044).

Conclusions: Results of this study indicate that NRAP exposure is associated with altered fatty 

acid metabolism, which could contribute to the metabolic perturbation in obese youth.
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INTRODUCTION

Childhood obesity rates have steadily risen over the past few decades, contributing to the 

increased epidemic of cardio-metabolic diseases in children and adults.1–5 Unhealthy diet, 

inadequate exercise, and genetics are well-known risk factors in the burgeoning obesity 

epidemic, but recent work suggests an important role for environmental exposures, including 

air pollution. A growing body of evidence indicates that early-life near-roadway air pollution 

(NRAP) and regional air pollution exposures are associated with childhood obesity, higher 

growth trajectory of body mass index (BMI) and higher attained BMI at age 18 years.6,7 In 

addition, air pollution exposure has been associated with obesity-related metabolic 

dysfunction, including glucose intolerance and insulin resistance.8–12 However, the 

mechanism linking air pollution exposure and metabolic dysfunction remains unclear.

Air pollution exposure may increase the risk of obesity and metabolic dysfunction by 

altering key metabolic pathways. Application of metabolomics technology allows 

measurement of a broad array of metabolites, including amino acids, fatty acids, and 

acylcarnitines in biological fluids such as serum.13 A series of metabolomics studies have 

linked alterations in amino acid, fatty acid, glucose, bile acid, and choline metabolism with 

increased adiposity,14–18 including visceral and liver fat,19–25 glucose intolerance,26–30 and 

insulin resistance.31–35 Furthermore, mounting evidence suggests that increased NRAP and 

regional particulate matter with aerodynamic diameter <2.5 μm (PM2.5) exposures are 

associated with dysregulated metabolism of fatty acids, amino acids and leukotrienes,36–39 

which may contribute to the onset and progression of cardiovascular diseases and asthma. To 

our knowledge, no human study has used metabolomics to investigate links of NRAP and 

regional air pollution exposure to obesity and metabolic dysfunction, especially among 

adolescents and young adults.
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In this study, we leveraged an existing cohort of adolescents and young adults from the 

Southern California Children’s Health Study (CHS)6 to examine the influence of NRAP and 

regional air pollution exposures on serum concentrations of amino acids, ketones, non-

esterified free fatty acids, glycerol and acylcarnitine intermediates that report on 

mitochondrial metabolism, reflecting key metabolic pathways for three main classes of 

nutrients – carbohydrates, lipids and protein. We also investigated the relationship between 

metabolomic profiles and the outcome of obesity and BMI. Finally, increasing evidence 

suggests that there are potential sex and ethnicity disparities in the metabolic effect of air 

pollution exposure, possibly due to pollution inequity and physiology differences.40–43 

Furthermore, metabolomic profiles can also be sex-, ethnicity- and obesity-dependent.
19,44–46 Therefore, we explored whether the associations between air pollution and 

metabolomic profiles differed by obesity status, ethnicities and sex.

MATERIALS AND METHODS

Participants and Health Measures:

A total of 173 participants from eight Southern California communities were selected from 

the original CHS cohort6 for targeted metabolomics analysis. Because the main aim of this 

study was to examine the influence of air pollution exposures on metabolic dysfunction in 

adolescents, we first identified 1,154 participants who were overweight or obese (age- and 

sex-specific BMI of ≥85th percentile compared to the CDC 2000 BMI growth curves47) at 

their last in-school visit of the CHS follow-up (October 2011-June 2012). Among these 

participants who are at a higher risk for metabolic dysfunction, we further used a probability 

weighted sampling approach to enroll 137 participants with the selection probability as a 

logistic function of the quadratic form of percentiles of individual exposures to NRAP 

within each community during the last visit in the CHS. Therefore, participants with 

extremely high and low NRAP exposure within each community have the highest 

probability to be selected. To increase the generalizability to a normal weight population, a 

similar exposure-weighted sampling approach was used to additionally enroll 36 participants 

from a total of 1,957 CHS participants who were normal weight at their last CHS visit. 

Participants were excluded if they had type 1 or type 2 diabetes or if they were using a 

medication or diagnosed with a condition known to influence insulin and/or glucose 

metabolism or body composition.

In this project, participants completed the study visit at Diabetes and Obesity Research 

Institute (DORI) or Clinical Trials Unit (CTU) at the University of Southern California 

between 2014 and 2018. The 7-hour clinical visit included several questionnaires as well as 

clinical measures. Questionnaires detailing demographic, health and occupational history, 

parental health information, updated residential history and smoking history were 

administered. Individual height and weight were measured by a trained technician where 

height was measured to the nearest centimeter and weight to the nearest 0.1 kilogram 

without shoes. These objective measures of height and weight were used to calculate BMI 

(kg/m2), as the primary obesity outcome. BMI was further categorized into normal weight, 

overweight and obese groups based on CDC criteria48,49 as a secondary outcome. In a subset 

of participants who were overweight or obese at their last in-school CHS visit (N=132), self-
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reported physical activity status was assessed by the questions of “Have you taken any 

exercise classes, lessons, or special programs (e.g., dance, martial arts, aerobics, gymnastics 

or tumbling and swimming) during the past 12 months?” and “Please place yourself on the 

scale (0–100) to rate your usual physical activity”. The self-evaluation of physical activity 

scale was further categorized into three categories of low- (0–40), moderate- (50–60) and 

high- (70–100) activity levels. Additionally, two non-consecutive 24-hour diet recalls50 

including serving sizes of 168 food items were collected among the subset of 132 

participants to estimate total calorie and macronutrient intake, as well as glycemic index. 

The 24-hour recalls were analyzed with the Nutrition Data System for Research (NDSR) 

software (Version 2014),51 which is based on Nutrition Coordinating Center (NCC) Food 

and Nutrient Database. Informed written consent was obtained from all participants for this 

study. The USC Institutional Review Board (IRB) approved this study.

Air Pollution Exposures:

NRAP exposure was estimated through detailed residential history obtained at the study 

visit. Residential addresses were standardized at street level and geocoded using the Texas 

A&M Geocoder (http://geoservices.tamu.edu/Services/Geocode/). Latitude and longitude of 

residences were given to Sonoma Technology Inc., who then provided monthly NRAP 

exposure data for up to 12 months prior to each visit for each participant. NRAP exposure 

from freeway and non-freeway roads was estimated using modelled nitrogen oxides (NOx) 

at residential addresses by applying the California line-source dispersion (CALINE4) model. 

CALINE4 dispersion model is an air quality model designed to estimate the incremental 

ambient concentration contributed by vehicle emissions on local roadways.52 The modeled 

annual concentration estimates (parts per billion, ppb) were based on roadway geometry, 

traffic counts, traffic volumes, vehicle NOx emission rates, and meteorological conditions. 

Traffic counts and road geometry were obtained from Caltrans and TeleAtlas/GDT. Annual 

average daily traffic volumes were assigned based on calendar year. All road emissions from 

freeway or non-freeway sources were calculated within 5-kilometer buffer of the residence. 

It is noted that the modeled NRAP exposures reflect the mixture of multiple pollutants from 

nearby traffic, and the high correlation of pollutants in the mixture precludes identifying the 

effect of any specific pollutant in the mixture, as described in previous publications.53,54

Regional air pollution exposure levels of each participant are estimated based on residential 

histories for three regional air pollutants: nitrogen dioxides (NO2), PM2.5 and ozone (O3).
55–57 Hourly air quality data from ambient monitoring stations were downloaded from the 

U.S. Environmental Protection Agency’s Air Quality System (AQS, http://www.epa.gov/ttn/

airs/airsaqs) from year 2011–2018 and averaged to daily level. In California, air monitor 

stations are spaced 20–30 km apart and provide a monitoring network with good 

characterization of the pollution gradients across Los Angeles. The gaseous pollutants were 

measured using Federal Reference Method (FRM) continuous monitors, whereas PM2.5 data 

was restricted to FRM or Federal Equivalent Method (FEM) monitors. Monthly averages 

were calculated from the daily data using a 75% completeness criterion, and monthly 

exposure values were spatially interpolated from the air quality monitoring station’s 

locations within 50 km of each residential address using an inverse distance-squared 

weighting (IDW2) algorithm, as previously described.58 Data from up to four monitors were 
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used to estimate exposure for each location. Prior work by our group59 has shown that the 

IDW2 method in California was robust to a leave one out validation for monthly monitoring 

AQS site data and performs as well as more sophisticated models that are limited by shorter 

spatial-temporal coverage.

Based on monthly air pollution exposure data, we further calculated lagged annual average 

exposures (as representatives of long-term exposures) to freeway, non-freeway and total 

(combined freeway and non-freeway) NRAP, as well as regional air pollutants (NO2, PM2.5 

and O3) as the cumulative averages of monthly exposure concentrations over one year prior 

to the DORI/CTU study visit and were weighted by time spent at each different address 

since some subjects began attending college and no longer lived at home. In these instances, 

one-year average air pollution exposure prior to the study visit accounts for both college and 

home air pollution exposures. Additionally, short-term air pollution exposures were 

represented by one-month exposure level prior to the clinical visit.

Metabolomic Signatures:

Concentrations of 64 endogenous metabolites were assayed in fasting serum samples as 

previously described.31,38,60–62 These 64 targeted metabolites have been successfully used 

in many studies of obesity and cardiometabolic diseases,13,61,63,64 and have been linked to 

increased adiposity,31,32 insulin resistance,61,64 as well as air pollution exposures.38 In order 

to assure the stability of analyzed serum metabolites,65 all unthawed serum samples were 

stored at −80 °C and were transferred to the laboratory at Duke University on dry ice. 

Targeted analyses included three analytic modules: 1) 15 amino acids, 2) 45 acylcarnitines, 

and 3) three conventional metabolites: non-esterified free fatty acids (NEFA), lactate, beta-

hydroxybutyrate were assayed across three batches with samples block randomized by sex 

on each assay plate. Later, we measured glycerol using the leftover samples that had been 

freeze-thawed once in a separate batch as an additional measurement of lipolysis. Lipolysis 

is a process of degrading triglycerides into fatty acids and glycerol,66 therefore, serum 

NEFA and glycerol are expected to increase with enhanced adipocyte lipolysis.

Proteins were first removed by precipitation with methanol. Aliquoted supernatants were 

dried, and then esterified with hot acidic methanol (acylcarnitines) or n-butanol (amino 

acids). Acylcarnitines and amino acids were analyzed by flow injection-tandem mass 

spectrometry (MS/MS).31,67,68 Quantitative and reproducible measurement of metabolites 

was achieved by inclusion of stable isotope-labeled internal standards for the amino acid and 

acylcarnitine modules,31,38,60–62 with data expressed in molarities rather than relative units. 

A Beckman Unicel DxC 600 autoanalyzer was used for analysis of conventional 

metabolites.31

Based on the concentration data of all metabolites, principal components analysis (PCA) 

with varimax orthogonal rotation was used for dimension reduction and to classify 

correlated metabolites into clusters of fewer uncorrelated factors, principal components 

(PC).69,70 To eliminate the influence of variations across batches and freeze-thaw cycles of 

serum samples in the final PC classifications, glycerol was not included in the PCA. There 

were two acylcarnitines (C6 and C7-DC) with >20% zero-value due to their concentrations 

below the lower limits of quantification for that assay (Supplemental Table 1). To further 
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assess the influence of zero-value data, we applied a Markov chain Monte Carlo-based 

multiple imputation (MI)71,72 for C6, C7-DC, and calculated averaged concentrations from 

1000 imputation samples before the PCA to verify the consistency of PC classifications. The 

scree plot was used to determine the number of prioritized PCs for the main association 

analyses. Metabolites with a factor load of an absolute value ≥ 0.4 were reported as the main 

components of a given PC. Scoring coefficients were used to calculate metabolomic PC 

scores for each individual.

Statistical Methods:

Details of model forms of the regression models are presented in the supplemental material. 

Briefly, a generalized additive model with a cubic smoothing spline of the exposure variable 

was used to assess nonlinear relationships between air pollution exposures and metabolomic 

factor scores, as well as relationships of exposure variables of metabolomic factor scores 

with BMI as the outcome. If no nonlinear relationships were found, linear regression models 

were applied in subsequent analyses. Generally, mixed effects models were used to examine 

the associations of long-term and short-term NRAP and regional air pollution exposures 

with the outcome of each metabolomic PC score and individual metabolite concentrations 

after adjusting for potential confounders including age, sex, race/ethnicity, parental 

education (proxy for social economic status), BMI, whether or not the participant smoked 

cigarettes during the last week, ever/never smoked electronic cigarettes, season of the study 

visit and random intercepts for CHS communities and metabolomics analytical batches. 

Beyond the analysis of individual pollutants, multi-pollutant models with exposures to 

multiple air pollutants as independent variables were used to assess the independent effects 

of each air pollutant on metabolomic outcomes adjusting for exposures to other air 

pollutants.

For the analyses of individual metabolite concentrations, we focused on the metabolites that 

were representative of significant PCs (a factor loading of an absolute value ≥ 0.4, 

Supplemental Table 2) that had significant associations with air pollution exposures. The 

false discovery rate (FDR) method73 was used to adjust for multiple testing that could inflate 

type 1 error. Statistical tests were considered significant with an FDR-adjusted p-value less 

than 0.1.

Next, the mixed effects model was used to assess the joint associations between all 

prioritized metabolomic PC scores and the primary obesity outcome of BMI as a continuous 

variable after adjusting for potential confounders including age, sex, ethnicity, parental 

education levels as a proxy for socioeconomic status, whether or not cigarettes were smoked 

during the last week, ever/never smoked electronic cigarettes, and random intercepts for 

CHS communities and metabolomics analytical batches. In addition, BMI categories 

[normal weight (BMI<25 kg/m2), overweight (25⩽BMI<30 kg/m2) and obese (BMI⩾30 

kg/m2)] were used as a secondary outcome for obesity. Multinomial logistic regression with 

random intercepts for CHS communities and metabolomics analytical batches was used to 

analyze the associations between metabolomic PC scores and BMI categories.

Additionally, in a subset of 132 participants, we assessed the influence of physical activity 

(whether or not exercise classes were taken outside of the school in the previous year and 
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self-rated physical activity scale) and diet (total calorie intake, percent calorie intake from 

fat and protein, and glycemic index estimated from the 24-hr recalls) in the association of 

metabolomics factor scores with air pollution exposures or the obesity outcomes of BMI as a 

continuous variable or BMI categories.

Lastly, we investigated whether sex, race/ethnicity and BMI categories could modify the 

effects of air pollution exposure and metabolomic PC scores by including multiplicative 

interaction terms in the model. All independent statistical tests were considered significant 

with a two-sided p-value less than 0.05. SAS version 9.4 (SAS Institute Inc., Cary, North 

Carolina) was used for data analysis.

RESULTS

This study included 173 participants who had complete metabolomic data, weight and height 

measures, and at least exposure data for one air pollutant. Sociodemographic characteristics 

are described in Table 1. The age range of our participants at the study enrollment was 18–

23 years old with a mean age (standard deviation, SD) of 19.8 (1.1) years. The mean BMI 

(SD) was 28.2 (5.2) kg/m2, and 73.4% participants were overweight or obese.

Means (SDs) of air pollution exposure concentrations are presented in Table 2. Correlations 

among long-term and short-term air pollution exposures are presented in Supplemental 

Table 3. Generally, lagged 1-month (short-term) NRAP and regional air pollution exposures 

were highly correlated with lagged 1-year averages (long-term) of exposures (all R2≥0.5), 

except O3. However, the correlations between NRAP exposures and regional air pollution 

exposures were relatively small (all R2<0.3).

Classifications of Metabolomic PCs

Means (SDs) of serum concentrations of all metabolites analyzed from 173 samples are 

presented in Supplemental Table 1. Similar PC patterns were identified comparing raw 

metabolomic data and the MI-imputed data (Supplemental Table 2). Therefore, we used PCs 

classified from the raw metabolomic data for all the following analyses. Overall, principal 

component analysis identified 14 orthogonal factors with eigenvalues ≥1.0. In our main 

analysis, we focused on the top five PCs, which explained a total of 52.6% variance of serum 

concentrations of 63 metabolites (Figure 1, Supplemental Table 2 and Supplemental Figure 

1). Among these five PCs, PC1 mainly represents a group of short- and median-chain 

acylcarnitines, PC2 is characterized by NEFA and its oxidation by-products, PC3 represents 

metabolites involved in branched-chain amino-acid (BCAA) catabolism, PC4 represents 

amino acids involved in general amino acid catabolism and the urea cycle, and PC5 

represents metabolites related to glycine metabolism.

NRAP exposure was associated with lower concentrations of short- and median-chain 
acylcarnitines and higher concentrations of NEFA oxidation by-products

No significant departure from a linear relationship was observed between short-term or long-

term NRAP and regional air pollution exposures with the outcome variables of metabolomic 

factor PC scores (all p’s for cubic spline terms>0.10). Therefore, results described below are 

based on the linear relationships between air pollution exposure and PC scores.
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Table 3 presents the associations between NRAP exposure and metabolomic PC1-PC5 

scores. After adjusting for potential confounders, higher long-term (lagged one-year 

average) freeway NRAP and total NRAP (a combination of freeway and non-freeway 

NRAP) exposure was associated with lower PC1 score, which represents lower 

concentrations of various short- and median-chain acylcarnitines (p=0.044 and 0.049, 

respectively). Meanwhile, higher exposure to long-term non-freeway NRAP was associated 

with higher NEFA-related PC2 score (p=0.038). Similar associations were found for short-

term (lagged one-month) exposures to freeway, non-freeway and total NRAP with 

metabolomic PC scores (Supplemental Table 4). However, due to the relatively small sample 

size, none of the associations were statistically significant after multiple testing adjustment 

for five PC scores (all FDR’s >0.19).

Findings from single pollutant models were further supported by the multi-pollutant 

regression analyses, which included both freeway and non-freeway NRAP exposure in one 

model for each PC (Supplemental Table 5). Among all study participants, long-term freeway 

NRAP exposure was negatively associated with PC1 score and non-freeway NRAP exposure 

was positively associated with PC2 score (p=0.05 and 0.025, respectively). No significant 

associations were found between NRAP exposure and other PC scores.

Next, we explored long-term NRAP exposure association with concentrations of individual 

metabolites among 32 metabolites that have loadings>0.4 in either PC1 or PC2 

(Supplemental Table 6). Glycerol was also included in the single metabolite analyses as an 

additional measurement of lipolysis.66 Higher long-term and short-term non-freeway NRAP 

exposures were significantly associated with increased circulating glycerol and higher 

concentrations of NEFA-oxidation products: two long-chain acylcarnitines (C18:1-DC and 

C20-OH/C18-DC), 3-Hydroxybutyrylcarnitine (C4-OH) (FDR-adjusted p≤0.1). No other 

NRAP exposures were found to be significantly associated with concentrations of individual 

metabolites after adjusting for multiple testing (data not shown).

Furthermore, multi-pollutant analysis including exposures to three regional and near-

roadway air pollutants in one model for each PC showed that higher lagged one-month 

exposure to regional PM2.5 was associated with lower PC1 score, while higher lagged one-

month exposure to regional NO2 was associated with higher PC1 score (Supplemental Table 

7, p=0.041 and 0.002, respectively). We further confirmed that the previously observed 

associations between freeway NRAP exposure with PC1 score were not significantly 

influenced by adjustment for regional air pollution exposures. However, adjustment for 

regional air pollution exposure attenuates the association between nonfreeway NRAP 

exposure and metabolomic PC2 score. No other significant associations were observed for 

long-term or short-term exposures to regional air pollutants with metabolomic PCs in this 

study. It was not possible to disentangle the relative importance of short- versus long- term 

exposures due to the high collinearity between these two exposure metrics (Supplemental 

Table 3).

Lastly, in a subset of 132 participants who had data from 24-hr diet recalls and self-reported 

physical activity status in the previous year (detailed characteristics are presented in 

Supplemental Table 8), we confirmed that the associations between nonfreeway NRAP 
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exposure and PC2 score remained significant after additionally adjusting for total calorie 

intake, percent calorie intake from fat and protein, glycemic index in the daily diet, whether 

or not participating in exercise classes in the previous year and self-rated physical activity 

scale (Supplemental Table 9). The associations between freeway and total NRAP exposures 

with PC1 score were still negative but not statistically significant among this subset of 

participants. It is noted that sociodemographic characteristics among this subset of 

participants were not significantly different from the entire study sample, though there was a 

10% higher frequency of overweight and obese participants in the subset of participants 

compared to the entire study sample.

Associations between NRAP exposure and metabolomic PCs are differentiated by BMI 
categories and sex

The associations of long-term non-freeway NRAP exposure with NEFA oxidation-related 

PC2 score were different across BMI categories (interaction p=0.047) (Table 3). Non-

freeway NRAP exposure had the strongest positive association with PC2 score among 

overweight and obese participants. Two standard deviations (2.02 ppb) increase in lagged 

one-year average of non-freeway NRAP exposure was associated with 0.5 and 0.7 unit 

increase in PC2 score among overweight and obese participants [β (p) for overweight: 

0.51(0.039) and obese 0.68 (0.007)]. While associations between non-freeway NRAP 

exposure and PC2 score had smaller effect size and was not statistically significant among 

normal-weight participants (β=−0.21, p=0.51). Similar effect modifications by BMI 

categories were also found for the associations of short-term non-freeway NRAP exposure 

with PC2 score (Supplemental Table 4). In addition, although there was no significant 

association between NRAP exposure and the BCAA-related PC3 score, higher freeway and 

total NRAP exposure was associated with lower BCAA-related PC3 score in obese 

participants (p=0.006 and 0.005, respectively).

Associations of long-term freeway NRAP exposure with NEFA-related PC2 score were 

more evident in females than in males (Table 4, interaction p=0.049). Two standard 

deviations (12.4 ppb) increase in lagged one-year average of freeway NRAP exposure was 

associated with 0.5 unit increase in PC2 score among females (β=0.52, p=0.042), but there 

was no significant association between freeway NRAP exposure and PC2 score among 

males (β=−0.13, p=0.55). Similar effect modification was found for short-term freeway 

NRAP exposure and PC2 score [β (p) for females: 0.71 (0.008) and for males: −0.15 

(0.51)]. Along with these results, the mean concentration of NEFA was 0.39 mmol/L higher 

in females than males (p=0.011). However, there was no significant difference in mean BMI 

between males and females [mean BMI (SD) for males: 28.1 (5.2) kg/m2 and for females: 

28.5 (5.3) kg/m2]. Lastly, no significant difference was found for associations between 

NRAP exposure and metabolomic PC2 score between non-Hispanic white and Hispanic 

white participants.
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Lower concentrations of short- and median-chain acylcarnitines and higher 
concentrations of BCAA-related metabolites were associated with higher BMI and an 
increased odd of obesity.

We found that lower metabolomic PC1 score (i.e., lower concentrations of short- and 

median-chain acylcarnitines), higher PC3 score (i.e., higher concentrations of BCAA and 

related metabolites), higher PC4 score (i.e., higher concentrations of intermediates involved 

in catabolism of multiple amino acids), and lower PC5 scores (i.e., lower concentrations of 

glycine and other related amino acids) were all significantly associated with higher BMI 

after adjusting for potential confounders (Table 5, all p’s≤0.001). A one-unit increases in the 

PC1 score was associated with 44% and 57% lower odds for an individual to be overweight 

and obese rather than normal weight [Figure 2, odds ratios (ORs) and 95% confidence 

intervals (CIs)=0.56 (0.34, 0.94) and 0.43 (0.23, 0.84), respectively]. Meanwhile, individuals 

with one-unit increases in the PC3 score were 2–4 fold more likely to be overweight and 

obese compared to normal weight [Figure 2, ORs (95% CIs) = 2.09 (1.12, 3.89) and 3.86 

(1.82, 8.15), respectively].

We further explored the associations between individual metabolite concentrations and odds 

of being overweight and obese (Figure 3). After adjusting for multiple testing across 33 

metabolites that had the loadings in PC1, PC3, PC4 and PC5 greater than 0.4, as well as 

glycerol, we found that increased concentrations of eight acylcarnitines had significant 

associations with reduced odds of being overweight or obese (all FDR-adjusted p’s<0.1). 

Conversely, increased concentrations of six amino acids (including valine, leucine/

isoleucine) and byproducts of BCAA metabolism, C3 and C5 acylcarnitines, were associated 

with increased odds of being overweight or obese (all FDR-adjusted p’s <0.1).

In the subset of 132 participants who had complete dietary and physical activity data 

collected, we verified that the association of lower PC1 and PC5 scores, as well as higher 

PC3 and PC4 scores with higher BMI and increased odds of obesity remained statistically 

significant after adjustment for total calorie intake, percent calorie intake from fat and 

protein, glycemic index in the daily diet, whether or not participating exercise classes in the 

previous year and self-rated physical activity scale (Supplemental Table 10 and 

Supplemental Figure 2).

CONCLUSIONS

A main finding of this study is that higher NRAP exposure, especially non-freeway NRAP, 

was associated with higher concentrations of glycerol and metabolites related to NEFA 

oxidation. This finding provides parallel evidence for our previous observations from the 

longitudinal CHS cohort that increased NRAP exposure during early life and childhood 

periods was associated with increased risk of obesity in later life.6,54,74 It is well-known that 

plasma levels of NEFA and its oxidation byproducts such as C4-OH are associated with 

increased adiposity and insulin resistance.75–78 Expanding fat mass releases correlate with 

increases in circulating NEFA and glycerol, which serve to induce insulin resistance and 

inflammation.75–77 Accordingly, we found that higher NRAP exposure was associated with 

an increased PC score related to increased concentrations of a mixture of metabolites 

including NEFA and its oxidation byproducts (C2, C4-OH and several long-chain 
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acylcarnitines). Higher NRAP exposure was also associated with increased serum glycerol. 

These results suggest that NRAP exposure could contribute to increased demand for 

mitochondrial NEFA oxidation. However, the association between air pollution exposure and 

serum NEFA concentration was not statistically significant in this study, which suggests that 

adolescents and young adults may still have adequate mitochondrial capacity to compensate 

for environmental stressors such as air pollution exposures.

Consistent with the foregoing constructs, we also found that the positive association between 

NRAP exposure and NEFA-related PC was strongest among obese participants. The effect 

modification by obesity status indicates that increased NRAP exposure could exacerbate 

obesity-induced inflammation and metabolic dysfunction. NRAP exposure can stimulate 

lung and systemic inflammation through the activation of immunomodulatory pattern-

recognition receptors such as Toll-like receptors (TLRs).79–82 Meanwhile, NEFA plays an 

important role in obesity-induced inflammation.75–78 One pathway for NEFA to activate 

systemic inflammation is through its activation of proinflammatory nuclear factor (NF)-κB 

pathway, which was partially mediated by the TLR-4.83–85 Therefore, NRAP exposure could 

share similar inflammatory pathways as NEFA and have far-reaching impact on systemic 

inflammation and insulin resistance in obese individuals.

Another interesting finding about the NEFA oxidation-related PC is that even though 

freeway NRAP exposure was not significantly associated with NEFA-related PC score in the 

entire sample, there was a statistically significant positive association between freeway 

NRAP exposure and NEFA-related PC score among females. Previous studies showed that 

sex differences in metabolomic patterns were observed in childhood and may persist in 

adolescents and adults.86,87 In this study, we also observed that female participants had 

higher mean serum NEFA concentrations than males. Although the overall BMI was not 

significantly different between males and females, differences in body fat distribution19,88,89 

and sex steroids90 may contribute to differential impacts of NRAP exposure on NEFA-

related metabolomic profiles.

Meanwhile, we also found that lower concentrations of a variety of short- and medium-chain 

acylcarnitines were associated with an increased risk of obesity. The lower levels of 

acylcarnitines in obese subjects observed here are consistent with observations from another 

metabolomics study.91 One possible interpretation of these findings is that with increased 

demand for mitochondrial NEFA oxidation, early oxidative intermediates (embodied by the 

long-chain acylcarnitines) begin to accumulate, while levels of downstream metabolites 

decrease, possibly suggesting saturation of early steps in the β-oxidative pathway. This 

signature in adolescence may eventually give way to a more complete dysregulation of fatty 

acid metabolism as has been observed in adults, involving accumulation of essentially all 

lipid-derived acylcarnitine intermediates, suggested to be a signal of mitochondrial substrate 

overload.92

Our study also confirms the association of BCAAs and metabolites generated by their 

oxidation, C3, C5 acylcarnitines, with BMI. Similar associations between dysregulated 

metabolism of BCAAs, obesity and insulin resistance have been widely observed in adult 

animal31,64 and human studies.13–16,31–35,93 We also found freeway NRAP exposure was 
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associated with lower BCAA and related metabolites only among obese participants, 

suggesting that NRAP exposure could interact with obesity in the BCAA profile. The 

inverse relationship between NRAP and BCAA may be confounded by diet and other 

uncontrolled socio-behavior factors.94–97 Therefore, more studies are needed to explore the 

associations between NRAP exposure and BCAA-related metabolism.

Based on the above findings, we summarized the potential pathways for NRAP exposure to 

influence lipid and amino acid metabolism in Figure 4. NRAP exposure might increase 

adipose lipolysis and release of NEFA and glycerol, contributing to activation of oxidative 

stress and inflammation pathways.98–102 Increased circulating NEFA increases demand for 

fatty acid oxidation. Even though adolescents and young adults have generally normal 

mitochondrial function to compensate for the increased demand of NEFA oxidation, this 

early adaptive metabolic plasticity is very likely to be diminished over time from youth to 

adulthood, especially for obese individuals. Finally, it is expected that persistent NRAP 

exposure and obesity from childhood to adulthood will eventually cause mitochondrial 

dysfunction and the development of metabolic diseases.

To our knowledge, this is the first targeted-metabolomics study in adolescents and young 

adults that investigates the role of metabolomic profiles in the impact of air pollution 

exposure on metabolic dysfunction. Several advantages of this study include 1) robust 

measures of targeted metabolites that participate in metabolic pathways of the three major 

classes of macronutrients—lipids, carbohydrates, and protein, 2) unique study population of 

adolescents and young adults who are at the initial stage in developing metabolic diseases, 

and 3) state-of-the-art air pollution exposure assessment and detailed sociodemographic and 

health behavior covariates. Overall, results of this study support the link between air 

pollution exposure and dysregulated lipid metabolism, which was observed in several other 

non-targeted and targeted metabolomics studies.36–39 More importantly, results of this study 

further provide evidence that dysregulated fatty acid metabolism could be an essential 

pathway in obese youth for NRAP exposure to influence metabolism and trigger the 

development of cardio-metabolic diseases in later life.

We also acknowledge that the current study has several limitations. First, the cross-sectional 

and observational design of our study precludes us from conclusions inferring any causal 

relationship between air pollution exposures, metabolomic changes, and the development of 

metabolic dysfunction. Directionality cannot be discerned - i.e., whether the metabolites are 

leading to obesity or obesity is modifying metabolism cannot be distinguished from this 

study. Future longitudinal studies and animal models are needed to verify the mediation role 

of metabolomic changes in the relationship between air pollution exposure and the 

development of obesity and metabolic diseases. Also, the sample size of this study is 

relatively small. Findings of this study will need to be verified by other large replication 

cohorts. Second, we were not able to discriminate the impact of short-term and long-term air 

pollution exposures on metabolomic outcomes because the short-term and long-term air 

pollution exposures were highly correlated in this study. Furthermore, future longitudinal 

studies with dynamic assessment of life-time air pollution exposure and health outcomes are 

warranted to identify critical exposure window during life time for the adverse effect of air 

pollution exposures on metabolomic dysfunction in children and youth. Third, there could 
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be residual confounders not included in the analysis such as geospatial clustering and early-

life socio-behavioral factors, which may explain our observation of the opposing effect of 

NO2 on the PC1 score of short- and median-chain acylcarnitines compared to the effect of 

PM2.5 and freeway NRAP exposures. Finally, most of our significant findings of NRAP 

associations with altering fatty acid metabolism were related to non-freeway NRAP 

exposure. It has been shown that chemical composition of NARP exposure from freeway 

versus non-freeway roads are different due to differences in vehicle types and vehicle 

volume.103 Non-freeway NRAP exposure also contains more non-exhaust particles (e.g. 

brake wear and tire wear). It is also possible that non-freeway NRAP exposures capture 

other neighborhood characteristics (e.g. housing and built environment) that introduce some 

residual confounding. Future studies are needed to identify which specific components or 

chemicals of NRAP are detrimental to metabolic dysfunction.

In conclusion, our study suggests that NRAP exposure contributes to lipolysis and the 

altered fatty acid metabolism, manifest by increased circulating glycerol and NEFA 

oxidation byproducts. This pollution-triggered alteration in fatty acid metabolism may 

contribute to greater susceptibility of pollutant-exposed adolescents to metabolic diseases 

associated with obesity. However, these findings warrant future larger cohorts to replicate 

and explore these associations. Also, future studies are needed to account for sex and racial/

ethnic differences in studying the impact of air pollution exposure on metabolic 

perturbations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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CDC Centers for Disease Control and Prevention

NDSR Nutrition Data System for Research

NCC Nutrition Coordinating Center

IRB Institutional Review Board

NOx nitrogen oxides

CALINE4 California line-source dispersion
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Highlights:

• Near-roadway air pollution exposure is associated with altered fatty acid 

metabolism

• Near-roadway air pollution exposure interacts with obesity and sex in the 

association with fatty acid metabolism.

• Air pollution-triggered alteration in fatty acid metabolism may contribute to 

greater susceptibility of pollutant-exposed adolescents to metabolic diseases 

associated with obesity
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Figure1. 
Heatmap of loadings for the first five principal components identified from targeted 

metabolite concentrations among 173 adolescents and young adults enrolled in the 

Children’s Health Study.
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Figure 2. 
Associations between metabolomic principal component (PC) scores and relative odds to be 

overweight or obese compared to normal weight. Odds ratios and 95% confidence intervals 

are presented for comparing odds to be overweight and obese compared to normal weight 

with one unit increase in metabolomic PC scores (PC1-PC5) among 173 adolescents and 

young adults.
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Figure 3. 
Significant associations of concentrations of individual metabolites that represent principal 

components (PC) - PC1, PC3 and PC5 with relative odds of being overweight or obese 

compared to normal weight. Odds ratios and 95% confidence intervals are presented for 

comparing odds to be overweight and obese compared to normal weight with one standard 

deviation increase in each metabolite among 173 adolescents and young adults. Significant 

associations are selected based on the criterion of FDR-adjusted p-values<0.1.
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Figure 4. 
The potential pathways for near-roadway air pollution (NRAP) exposure to influence lipid 

and amino acid metabolism. NEFA: Non-esterified fatty acids; BCAA: branched-chain 

amino acids. Increased NRAP exposure might increase adipose lipolysis and release of 

NEFA and glycerol. Increased circulating NEFA requires increased mitochondrial function 

for NEFA oxidation, which competes the mitochondrial capacity of amino acid metabolism. 

Therefore, serum concentrations of BCAAs and other amino acids can be elevated at the 

same time.
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Table 1.

Sociodemographic characteristics of 173 Children’s Health Study (CHS) adolescents and young adults 

enrolled during year 2014–2018.

Entire sample
(N=173)

N %

Sex

 Female 79 45.7

 Male 94 54.3

Race/Ethnicity

 Non-Hispanic White 50 28.9

 Hispanic White 97 56.1

 Other
1 26 15.0

Parental education

 Less than high school 58 33.5

 Completed high school 52 30.1

 Some college or higher 59 34.1

 Unknown 4 3.3

Ever used e-cigarette

 Yes 46 26.6

 No 127 73.4

Cigarette smoke in the last week

 Yes 9 5. 2

 No 164 94.8

Body mass index (BMI) categories

 Normal weight (<25 kg/m2) 46 26.6

 Overweight (≥25 and <30 kg/m2) 77 44.5

 Obese (≥30 kg/m2) 50 28.9

1.
Other race/ethnicity includes African American, Asian/Pacific Islander, mixed three or more races, other Non-White race/ethnicity and unknown 

race/ethnicity.
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Table 2.

Means and standard deviations of short-term
1
 and long-term

2
 near-roadway and regional air pollution 

exposure levels among 173 adolescents and young adults enrolled from the Southern California Children’s 

Health Study during year 2014–2018.

Mean Standard Deviation

Short-term Exposures

 Near-roadway air pollutants (NRAP)

 Freeway NRAP (ppb)
3 4.8 6. 3

 Non-freeway NRAP (ppb)
3 1.5 1.0

 Total NRAP (ppb)
3 6.3 6.6

 Regional air pollutants

 NO2 (ppb)
3 15.4 5. 9

 O3 (ppb)
3 48.3 14.3

 PM10 (μg/m3) 29.5 10.2

 PM2.5 (μg/m3) 12.0 4.4

Long-term Exposures

 Near-roadway air pollutants (NRAP)

 Freeway NRAP (ppb)
3 5.1 6. 2

 Non-freeway NRAP (ppb)
3 1.5 1.0

 Total NRAP (ppb)
3 6.6 6.6

 Regional air pollutants

 NO2 (ppb)
3 15.7 4. 0

 O3 (ppb)
3 48.2 6.4

 PM10 (μg/m3) 30.2 7.3

 PM2.5 (μg/m3) 12.0 2.6

1.
Short-term air pollution exposure was estimated from the individual residential history for lagged 1-month exposure level prior to the study visit.

2.
Long-term air pollution exposure was estimated from the individual residential history for lagged 1-year exposure level prior to the study visit.

3.
ppb: parts per billion, as the unit of NRAP, NO2 and O3 exposure
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Table 5.

Associations between metabolomic principal component (PC) scores and body mass index (BMI) among 173 

adolescents and young adults.

Independent Variables β6 p

Metabolomic PCs

 PC1
1 −1.21 <0.001

 PC2
2 0.30 0.42

 PC3
3 1.51 <0.001

 PC4
4 2.34 <0.001

 PC5
5 −1.01 0.001

Race/Ethnicity

 Non-Hispanic White ref

 Hispanic White 0.44 0.56

 Other 0.95 0.34

Sex

 Male ref

 Female −0.42 0.55

Age −0.01 0.96

Parental education

 Less than high school ref

 Completed high school −0.21 0.79

 Some college or higher −0.87 0.30

 Unknown −2.04 0.35

Ever used e-cigarette

 No ref

 Yes 0.87 0.25

Cigarette smoke in the last week

 No ref

 Yes −1.15 0.40

1.
Metabolomic principal component (PC) 1 represents a variety of short- and median-chain acylcarnitines and explains 26.3% variance of 

concentrations of all metabolites analyzed in the study samples. More details of the loadings of specific metabolites for each PC are described in 
Supplemental Table 4.

2.
PC2 represents non-esterified fatty acids (NEFA) and NEFA oxidation by-products including long-chain acylcarnitines, acetylcarnitine (C2) and 

3-Hydroxybutyrylcarnitine (C4-OH), which explains 10.2% variance of concentrations of all metabolites analyzed in the study samples.

3.
PC3 represents metabolites involved in branched-chain amino-acid (BCAA) catabolism, which explains 7.2% variance of concentrations of all 

metabolites analyzed in the study samples.

4.
PC4 represents amino acids involved in general amino acid catabolism and the urea cycle, which explains 4.9% variance of concentrations of all 

metabolites analyzed in the study samples.

5.
PC5 represents amino acids involved in glycine metabolism, which explains 4.1% variance of concentrations of all metabolites analyzed in the 

study samples.
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6.
Mixed effects model with all five PCs in one regression model and adjustment for socio-demographic confounders was used to estimate 

independent association of each metabolomic PC with BMI as a continuous outcome variable. Association estimates (β) and p-values are presented 
for each independent variable in the analysis model.
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