X

n
GIGAT .,

TECHNICAL NOTE

GigaScience, 8, 2019, 1-7

doi: 10.1093/gigascience/giz094
Technical Note

SeQuiLa-cov: A fast and scalable library for depth of

coverage calculations

Marek Wiewiérka', Agnieszka Szmurto', Wiktor Kuémirek and

Tomasz Gambin

Institute of Computer Science, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw,

Poland

*Correspondence address. Tomasz Gambin, Institute of Computer Science, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw,

Poland. E-mail: tgambin@gmail.com © http://orcid.org/0000-0002-0941-4571
fContributed equally.

Abstract

Background: Depth of coverage calculation is an important and computationally intensive preprocessing step in a variety of
next-generation sequencing pipelines, including the analysis of RNA-sequencing data, detection of copy number variants,
or quality control procedures. Results: Building upon big data technologies, we have developed SeQuiLa-cov, an extension
to the recently released SeQuila platform, which provides efficient depth of coverage calculations, reaching >100x speedup
over the state-of-the-art tools. The performance and scalability of our solution allow for exome and genome-wide
calculations running locally or on a cluster while hiding the complexity of the distributed computing with Structured Query
Language Application Programming Interface. Conclusions: SeQuila-cov provides significant performance gain in depth of
coverage calculations streamlining the widely used bioinformatic processing pipelines.

Keywords: NGS data analysis; depth of coverage; big data; distributed computing; SQL; CNV-calling; RNA-seq; quality control

for sequencing data

Findings
Introduction

Given a set of sequencing reads and a genomic contig, depth of
coverage for a given position is defined as the total number of
reads overlapping the locus.

The coverage calculation is a frequently performed but time-
consuming step in the analysis of next-generation sequenc-
ing (NGS) data. In particular, copy number variant detection
pipelines require obtaining sufficient read depth of the analyzed
samples [1-3]. In other applications, the coverage is computed to
assess the quality of the sequencing data (e.g., to calculate the
percentage of genome with >30x read depth) or to identify ge-
nomic regions overlapped by an insufficient number of reads for
reliable variant calling [4]. Finally, depth of coverage is one of

the most computationally intensive parts of differential expres-
sion analysis using RNA-sequencing data at single-base resolu-
tion [5-7].

A number of tools supporting this operation have been
developed, with 22 of them specified in the Omictools cata-
log [8]. Well-known, state-of-the-art solutions include samtools
depth [9], bedtools genomecov [10], GATK DepthOfCoverage [11],
sambamba [12], and mosdepth [13] (see comparison presented
in Table 1).

Traditionally, these methods calculate the depth of cover-
age using a pileup-based approach (introduced in samtools [9]
and used in GATK [11]), which is inefficient because it iterates
through each nucleotide position at every read in a BAM file. An
optimized, event-bas10] and mosdepth [13]. These algorithms
use only specific "events,” i.e., start and end of the alignment

Received: 13 December 2018; Revised: 24 May 2019; Accepted: 10 July 2019

© The Author(s) 2019. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,

provided the original work is properly cited.

http://www.oxfordjournals.org
http://orcid.org/0000-0002-0941-4571
mailto:tgambin@gmail.com
http://orcid.org/0000-0002-0941-4571
http://orcid.org/0000-0002-0941-4571
http://creativecommons.org/licenses/by/4.0/

Table 1: Comparison of leading coverage calculation software tools

Functionality
Tool Approach Windows
Bases Blocks
samtools Pileup Yes No No
bedtools Events Yes Yes No
GATK! Pileup Yes No No
sambamba Pileup No Yes Yes
mosdepth Events No Yes Yes
SeQuiLa-cov Events Yes Yes Yes

1GATK DepthOfCoverage has not yet been ported to the latest version, i.e., GATK 4.x.

20nly for BAM decompression.

blocks within each read (Fig. 1A) instead of analyzing every base
of each read, which substantially reduces the overall computa-
tional complexity.

Samtools and bedtools depth of coverage modules do not
provide any support for a multi-core environment. Mosdepth
implements parallel BAM decompression, but its main algo-
rithm remains sequential. Sambamba, on the other hand, pro-
motes itself as a highly parallel tool, implementing depth of
coverage calculations in a map-reduce fashion using multiple
threads on a single node. Regardless of parallelization degree, all
of the aforementioned tools share a common bottleneck caused
by using a single thread for returning results. Finally, GATK was
the first genomic framework to provide support for distributed
computations; however, the DepthOfCoverage method has not
yet been ported to the current software release of the toolkit.

We present the first fully scalable, distributed, SQL-oriented
solution designated for depth of coverage calculations. SeQuiLa-
cov, an extension to the recently released SeQuila [14] platform,
runs a redesigned event-based algorithm for the distributed
environment and provides a convenient, SQL-compliant
interface.

Consider an input data set, read_set, of aligned sequencing reads
sorted by genomic position from a BAM file partitioned into n
data slices (read_sety, read_set,, read_set,) (Fig. 1B).

In the most general case, the algorithm can be used in a dis-
tributed environment where each cluster node computes the
coverage for the subset of data slices using the event-based
method. Specifically, for the ith partition containing the set of
reads (read_set;), the set of events; 4, vectors (where chr is an
index of genomic contig represented in read-set) is allocated
and updated, based on the items from read_set;. For all reads,
the algorithm parses the concise idiosyncratic gapped align-
ment report (CIGAR) string, and for each continuous alignment
block characterized by start position and length len it incre-
ments by 1 the events; . (start) and decrements by 1 the value
of events; «,r(start + len). To compute the partial coverage vec-
tor for partition i and contig chr, a vector value at the index j is
calculated as follows:

partial_coverage; 4,.(j) = Z:nzl events; cnr(M).

The result of this stage is a set of partial_coverage;q, vec-
tors distributed among the computation nodes. To calculate the
final coverage for the whole read_set, an additional step of cor-

Implementation
Language Interface
Intel GKL Parallelism type

C No None Command line
C++ No None Command line
Java Yes Distributed Command line
D No Multithreaded Command line
Nim No Multithreaded? Command line

Scala Yes Distributed Scala, SQL

rection for overlaps between the partitions is required. An over-
lap overlap;q, of length I between vectors partial coverage; chr
and partial_coverage;, 1,y may occur on the partition boundaries
where [tailing genomic positions of partial_coverage; . are the
same as | heading genomic positions of partial_coverage; i cnr
(see Fig. 1C).

If an overlap is identified, then the coverage values from
the partial_coverage;q,’s I-length tail are added into the par-
tial_coveragei;1cnr’s head and subsequently the last I elements
of partial_coverage; .,y are removed. Once this correction step is
completed, non-overlapping coverage; ., vectors are collected
and yield the final coverage values for the whole input read_set.

The main characteristic of the described algorithm is its abil-
ity to distribute data and calculations (such as BAM decompres-
sion and main coverage procedure) among the available com-
putation nodes. Moreover, instead of simply performing the full
data reduction stage of the partial coverage vectors, our solution
minimizes required data shuffling among cluster nodes by lim-
iting it to the overlapping part of coverage vectors. Importantly,
the SeQuiLa-cov computation model supports fine-grained par-
allelism at a user-defined partition size in contrast to the tra-
ditional, coarse-grained parallelization strategies that involve
splitting input data at a contig level.

We have implemented SeQuiLa-cov in Scala programming lan-
guage using the Apache Spark framework. To efficiently access
the data from a BAM file we have prepared a custom data source
using Data Source API exposed by SparkSQL. Performance of the
read operation benefits from the Intel Genomics Kernel Library
(GKL) [15] used for decompressing the BAM file chunks and from
a predicate push-down mechanism that filters out data at the
earliest stage.

The implementation of the core coverage calculation algo-
rithm aimed to minimize the memory footprint whenever pos-
sible by using parsimonious data types, e.g., "Short” type instead
of "Integer,” and to implement an efficient memory allocation
strategy for large data structures, e.g., favoring static Arrays over
dynamic size ArrayBuffers. Additionally, to reduce the overhead
of data shuffling between the worker nodes in the correction for
overlap stage, we used Spark’s shared variables [16] "accumu-
lators” and "broadcast variables” (Fig. 1C). Accumulator is used
to gather information about the worker nodes’ coverage vector
ranges and coverage vector tail values, which are subsequently
read and processed by the driver. This information is then used
to construct a broadcast variable distributed to the worker nodes
in order to perform adequate trimming and summing operations
on partial coverage vectors.

Wiewiérka et al.

chromosome

I — E—

N —— | 1 E——
reads b : ' B ; n n .

P : : Lo : P
events [mIEIm | [Lol Tl L] LT Tl]
per base coverage LRl G L L el [Tzl e [s [s[s s [e e[z Te e s i i TeToToToTo[oTo o]
blocks coverage [l T 2 [s] 21 1 [= T[] = T s T 2 [+ T 3 |
fixed-length window coverage [15 | | 15 | 2375 | 1625 | o]

 CREATE TABLE read set
i USING org.biodatageeks.BAMDataSource

: OPTIONS (path '/data/samples/samplel.bam');

{SELECT contig, start, end, coverage

{ FROM bdg_coverage (' read_set', 'samplel’, 'blocks')

{WHERE contig='chr3' AND start <=160;

[sample | [start | flag | cigar | sequence | [coverage |
T 75 5 GoGAGT
4 83 98M GCCAGT read_set_1
50 B3 B AACAGT.
o1 % EY TGACAGT
[705 | 163 S| coore | (read_set_2
L) TIEM | AGeGTG]
F) 59 TIOM | TGACAGT,
2% | [l read_set 3
2% |
read_set_n
read._ read_set 2 read set.3
events —— —— ——
for data slices [TelelTeTol el oo el e e +]] [TeTeTol Tefoe o -ToT To e[oeT] [TeTeleTeTe o e o] -T-T]
ao 1oz a4 E) 99 100101 102103 104 ena 101 102 103 104 105 106 156157 159159 160 292 204 295 206 chva 294 295 296 207 208 404 405 406 407
events_1 events_2 events_3
overlap 1.2 overlap 1.2 overlap2. 3 overlap 2.3

[(HENEBEREEEREBRRENn)

LT TTeleleee D e e e Te]

[EENEBEEEE

IHEED]|
404 405 405 407

for data slices
aa 1oz a4 5 99 100 101 102103 104

partial_coverage._1

3 101102 103 104 105 106 156 157 158159 160

partial_coverage_2

chvs 294 295 296 297 266

partial_coverage_3

correction

Rl nnn|

204295 295

T 2]zl 2] 2= =]=] 2] =

99100 101 102103 104

for overlaps

aa 12 34 50

partial_coverage. 1

LT Telele ele T e T

156 157 158159 160

e 101 102 103 104 105 106, 203 204 295 296

partial_coverage_2

T el ===]°
chva 394 595 296 297 298 457 405 406 407

partial_coverage_3

final coverage [T T T2[=[=[s[=[¢[=]] Clelel Telelelee e] CleleleleTeTeTe]=]=] T]
e 204 295 296 207 298 05 408 407
s 1oz a4 5 9 100 101 102105 104 e 101102 103 104 105 105 156 157 150150 160 299

coverage_1

coverage_2

coverage_3

. S
—
2 overlaps_broadcast overlaps_broadcast 2
range_and_tail_accumulator
range_and_tail range_and_tail
worker node worker node
1, 1111 101711 1, 07711 11711
—_—> —_—
read_set_1 events_1 partial_coverage_1 reads_set_n events_n partial_coverage_n

4

Spark driver

4

| 3

N 11711

final_coverage_n

LN o1

verlaps_broadcast final_coverage_1 loveriaps_broadcast

Figure 1: SeQuiLa-cov: functionality, algorithm, and implementation. (A) General concept of events-based algorithm for depth of coverage calculation. Given a genomic
chromosome and a set of aligned sequencing reads, the algorithm allocates "events” vector. Subsequently, it iterates the list of reads and increments/decrements by
1 the values of the events vector at the indexes corresponding to start/end positions of each read. The depth of coverage for a genomic locus is calculated using the
cumulative sum of all elements in the events vector preceding the specified position. The algorithm may produce 3 typically used coverage types: (i) per-base coverage,
which includes the coverage value for each genomic position separately, (ii) blocks, which lists adjacent positions with equal coverage values merged into a single
interval, and (iii) fixed-length windows coverage, which generates a set of equal-size, non-overlapping and tiling genomic ranges and outputs the arithmetic mean
of base coverage values for each region. (B) Provided SQL API to interact with NGS data. The first statement creates a relational table read_set over compressed BAM
files using the provided custom Data Source, whereas the second statement demonstrates the use of the bdg.coverage function to calculate depth of coverage for a
specified sample. The presented call for coverage method takes sample identifier (samplel) and result type (blocks) as input parameters. bdg_coverage is implemented
as a table-valued function. Therefore, it outputs a table as a result, allowing for customizing a query using Data Manipulation Language, e.g., in the SELECT or WHERE
clause. For the purpose of this example, we assume that the BAM file for samplel contains only reads from chr3. (C) Concept of distributed version of events-based
algorithm. Assuming that we run our calculations in a distributed environment, the computation nodes do not work on the whole input data set (table read.set) but on
n smaller data partitions (slice, slice, ..., slice,), each containing a subset of input aligned reads. The algorithm first calculates the partial events vector for available
data slices and subsequently produces a corresponding partial partial_coverage vector. Because of the possibility of overlapping of ranges between 2 consecutive data
slices, an additional correction step needs to be performed. When an overlap is identified, the corresponding coverage values from the preceding vector’s tail are cut
and added to the head values of the subsequent vector. On the figure, 2 overlaps are shown, one of them situated between partial-coverage; and partial_coverage,
(overlapy; of length 4) encompassing positions chr3:101-104. The coverage values from partial_coverage; for overlap;, are removed from partial_coverage; and added
to the head of partial_coverage,. As a result, a set of non-overlapping coverage vectors are calculated, which is further integrated into the depth of coverage for the
whole input data set. (D) Implementation details of SeQuiLa-cov. We have used the Apache Spark environment, where a single driver node runs the high-level driver
program, which schedules tasks for multiple worker nodes. On each worker node, a set of data partitions are accessed and manipulated in order to generate events
and partial_coverage vectors. To gather data about partial_.coverage vectors’ ranges along with tailing coverage values, and to distribute data needed for rearranging
coverage vector values and ranges, we have used Spark’s shared variables "accumulator” and "broadcast,” respectively.

SeQuilLa-cov features 3 distinct result types: "per-base,” "blocks,”
and "fixed-length windows” coverage (Fig. 1A). For per-base, the
depth of coverage is calculated and returned for each genomic
position, making it the most verbose output option. The method
producing block-level coverage (blocks) involves merging adja-
cent genomic positions with equal coverage values into genomic
intervals. As a consequence, fewer records than in the case of
per-base output type are generated, with no information loss.
For the fixed-length windows the algorithm generates set of
fixed-length, tiling, non-overlapping genomic intervals and re-
turns the arithmetic mean of coverage values over positions
within each window.

The SeQuilLa-cov solution promotes SQL as a data query and
manipulation language in genomic analysis. Data flows are per-
formed in SQL-like manner through the custom data source,
supporting the convenient Create Table as Select and Insert as
Select methods. SeQuiLa-cov provides a table abstraction over
existing alignment files, with no need of data conversion, which
can be further queried and manipulated in a declarative way.
The coverage calculation function bdg.coverage, as described
in the Algorithm subsection, has been implemented as a table-
valued function (Fig. 1D).

SeQuilLa-cov can be used as an extension to Apache Spark in the
form of an external JAR dependency or can be executed from the
command line as a Docker container. Both options can be run
locally (on a single node) or on a Hadoop cluster using YARN (see
project documentation for sample commands). The tool accepts
BAM/CRAM files as input and supports processing of short and
long reads. The tabular output of the coverage computations can
be stored in various file formats, e.g., binary (ORC, Parquet), as
well as text (CSV, TSV). The tool can be integrated with state-of-
the-art applications through text files or can be used directly as
an additional library in bioinformatics pipelines implemented in
Scala, R, or Python.

We have benchmarked SeQuila-cov solutions with leading
software for depth of coverage calculations, specifically sam-
tools depth, bedtools genomeCov, sambamba depth, and mos-
depth (results of DepthOfCOverage from outdated GATK ver-
sion are available at http://biodatageeks.org/sequila/benchma
rking/benchmarking. html#depth-of-coverage). The tests were
performed on the aligned whole-exome sequencing (WES) and
whole-genome sequencing (WGS) reads from the NA12878
sample (see Methods for details) and aimed at calculating
blocks and window coverage. To compare the performance
and scalability of each solution, we executed calculations for
1, 5, and 10 cores on a single computation node (see Ta-
ble 2).

Samtools depth and bedtools genomeCov are both natively
non-scalable and were run on a single thread only. Exome-
wide calculations exceeded 10 minutes and genome-wide anal-
yses took >2 hours in the case of samtools, while bedtools’

performance was substantially worse, i.e., ~1.9x for WES and
~4.7x for WGS. Sambamba depth claims that it can take ad-
vantage of fully parallelized data processing with the use of
multithreading. However, our results revealed that even when
additional threads were used, the total execution time of
coverage calculations remained nearly constant and greater
than samtools’ result. Mosdepth shows substantial speedup
(~1.3x) against samtools when using a single thread. This per-
formance gain increases to ~3.7x when using 5 decompres-
sion threads; however, it does not benefit from adding addi-
tional CPU power. In the case of fixed-length window cover-
age mosdepth achieves more than ~1.3 speedup against sam-
bamba.

SeQuilLa-cov achieves performance similar to mosdepth
when run using a single core. However, SeQuilLa-cov is ~1.3x
and ~2.5x as fast as mosdepth when using 5 and 10 CPU cores,
respectively, demonstrating its better scalability. Similar per-
formance is observed for both block and fixed-length window
methods.

To fully assess the scalability profile of our solution, we
performed additional tests in a cluster environment (see Meth-
ods for details). Our results show that when utilizing additional
resources (i.e., >10 CPU cores), SeQuiLa-cov is able to reduce the
total computation time to 15 seconds for WES and <1 minute
for WGS data (Fig. 2). The scalability limit is achieved for 200 and
~500 CPU cores for WES and WGS data, respectively.

To evaluate the impact of the Intel GKL library on the deflate
operation (BAM bzgf block decompression), we performed block
coverage calculations on WES data on 50 CPU cores. The results
showed on average ~1.18x speedup when running with the Intel
GKL deflate implementation.

Finally, our comprehensive functional unit testing showed
that the results calculated by SeQuiLa-cov and samtools depth
are identical.

Recent advances in big data technologies and distributed com-
puting can contribute to speeding up both genomic data pro-
cessing and management. Analysis of large genomic data sets
requires efficient, accurate, and scalable algorithms to perform
calculations using the computing power of multiple cluster
nodes. In this work, we show that with a sufficiently large clus-
ter, genome-wide coverage calculations may last <1 minute and
at the same time be >100x faster than the best single-threaded
solution.

Although the tool can be integrated with non-distributed
software, our primary aim is to support large-scale processing
pipelines, and the full advantage of SeQuiLa-cov’s scalability and
performance will be available once it is deployed and executed in
a distributed environment. We expect that there will be a grow-
ing number of scalable solutions (Big Data Genomics project [17]
with tools DECA and Cannoli as well as GATK4 [18]) that can take
advantage of reading input data directly from distributed storage
systems.

SeQuila-cov is one of the building blocks of the SeQuila
[14] ecosystem, which initiated the move towards efficient, dis-
tributed processing of genomic data and providing SQL-oriented
API for convenient and elastic querying. We foresee that follow-
ing this direction will enable the evolution of genomic data anal-
ysis from file-oriented to table-oriented processing.

http://biodatageeks.org/sequila/benchmarking/benchmarking.html#depth-of-coverage
https://software.broadinstitute.org/gatk/gatk4

Wiewiérkaetal. | 5

Table 2: Benchmarking leading solutions against SeQuiLa-cov on WES/WGS data in execution time of block and window calculations

Data Operation type Cores samtools bedtools sambamba mosdepth SeQuilLa-cov
WGS Blocks 1 2h 14m 58s! 10h 41m 27s 2h 44m 0s 1h 46m 27s 1h 47m 5s
5 2h 47m 53s 36m 13s 26m 59s
10 2h 50m 47s 34m 34s 13m 54s
Fixed-length windows 1 1h 46m 50s 1h 22m 49s 1h 24m 8s
5 1h 41m 23s 20m 3s 18m 43s
10 1h 50m 35s 17m 49s 9m 14s
WES Blocks 1 12m 26st 23m 25s 25m 42s 6m 43s 6m 54s
5 25m 46s 2m 25s 1m 47s
10 25m 49s 2m 20s 1m 4s
Fixed-length windows 1 14m 36s 6m 11s 6m 29s
5 14m 54s 2m 8s 1m 42s
10 14m 40s 2m 14s 1m 1s

Both samtools and bedtools calculate coverage using only a single thread; however, their results differ significantly, with samtools being approximately twice as fast.
Sambamba positions itself as a multithreaded solution, although our tests revealed that its execution time is nearly constant, regardless of the number of CPU cores
used, and even twice as slow as samtools. Mosdepth achieved speedup against samtools in blocks coverage and against sambamba in windows coverage calculations;
however, its scalability reaches its limit at 5 CPU cores. Finally, SeQuiLa-cov achieves performance nearly identical to that of mosdepth for the single core, but the
execution time decreases substantially for greater number of available computing resources, which makes this solution the fastest when run on multiple cores and

nodes.

1per-base results are treated as block output. Samtools lacks the functionality of block coverage calculations; however, we included this tool in our benchmark for
completeness, treating its per-base results as block outcome assuming that both result types require nearly the same resources.

10000-

7500-

5000-

2500-

Execution time [s]

750-

500-

250-

9
&
g
&
s
I £8
)
NS
s
@
& &
Q§ L
¢
&
&
&
[|
9
o
&
3
& J
3
&
9
g,
T &6
N ¥
\s @
&
|
i 5 10 25

samtools ll mosdepth [l SeQuiLa-cov

blocks fixed—length windows
2
s&z@%
n‘/‘/;\bw
<
=
(0]
]
s ¥ &
SRS
A S "
g
% L) £
L I P O O - 2 L 8 ¢ ¥ F
& -
9
2 o
s8¢
v & o
N
- i - o - - | o = e i i -
50 100 200 300 400 500 1 5 10 25 50 100 200 300 400 500

Number of CPU cores

Figure 2: Performance and scalability comparison of samtools, mosdepth, and SeQuiLa-cov. Each experiment setting was repeated several times. Bar height and error
bars indicate mean and range of execution time, respectively. The best pileup-based solution is definitely slower (2 times for WGS calculations) than both event-based
solutions, which clearly shows the superiority of the latter one. Mosdepth execution time scales up to 5 cores; afterwards it shows no further gain in performance.
SeQuila-cov has nearly the same execution time results as mosdepth for both block and window calculations for a single core, but scales out desirably using all 500
CPU cores on cluster nodes and at the same time performing WGS calculations in <1 minute.

We tested our solution using reads from the NA12878 sample,
which were aligned to the hgl8 genome. The WES data con-
tained >161 million reads (17 GB of disk space) and WGS data
included >2.6 billion reads (272 GB of disk space). Both BAM files
were compressed at the default BAM compression level (5).

To perform comprehensive performance evaluation, we set up a
test cluster consisting of 28 Hadoop nodes (1 edge node, 3 master
nodes, and 24 data nodes) with Hortonworks Data Platform 3.0.1
installed. Each data node has 28 cores (56 with hyper-threading)
and 512 GB of RAM; YARN resource pool has been configured
with 2,640 virtual cores and 9,671 GB RAM.

In our benchmark we used the most recent versions of the in-
vestigated tools, i.e., samtools version 1.9, bedtools 2.27.0, sam-
bamba 0.6.8, mosdepth version 0.2.3, and SeQuila-cov version
0.5.1.

¢ Project name: SeQuilLa-cov

¢ Project home page: http://biodatageeks.org/sequila/

e Source code repository: https://github.com/ZSI-Bio/bdg-sequi
la

o Operating system: Platform independent

e Programming language: Scala

o Other requirements: Docker

o License: Apache License 2.0

e RRID: SCR_017220

The Docker image is available at https://hub.docker.com/r/bioda
tageeks/. Supplementary information on benchmarking proce-
dure as well as test data are publicly accessible at the project
documentation site http://biodatageeks.org/sequila/benchmark
ing/benchmarking html#depth- of-coverage. An archival copy of
the code and supporting data is also available via the Giga-
Science database GigaDB [19].

API: Application Programming Interface; BAM: Binary Alignment
Map; CPU: central processing unit; CSV: comma-separated val-
ues; GKL: Genomics Kernel Library; NGS: next-generation se-
quencing; ORC: optimized row columnar; RAM: random access
memory; SQL: Structured Query Language; TSV: tab-separated
values; YARN: Yet Another Resource Negotiator; WES: whole-
exome sequencing; WGS: whole-genome sequencing.

The authors declare that they have no competing interests.

This work has been supported by the Polish budget funds for
science in years 2016-2019 (Iuventus Plus grant IP2015 019874),
as well as Polish National Science Center grant Preludium
2014/13/N/ST6/01843.

M.W.: conceptualization, formal analysis, investigation, soft-
ware, and writing. A.S.: data curation, formal analysis, investiga-
tion, software, visualization, and writing. W.K.: formal analysis,
investigation, writing. T.G.: formal analysis, supervision, investi-
gation, visualization, and writing. All authors approved the final
manuscript.

1. Fromer M, Purcell SM. Using XHMM software to detect copy
number variation in whole-exome sequencing data. Curr
Protoc Hum Genet 2014;81:1-21.

2. Jiang Y, Oldridge DA, Diskin §J, et al. CODEX: a normaliza-
tion and copy number variation detection method for whole
exome sequencing. Nucleic Acids Res 2015;43(6):e39.

3. Gambin T, Akdemir ZC, Yuan B, et al. Homozygous
and hemizygous CNV detection from exome sequencing
data in a Mendelian disease cohort. Nucleic Acids Res
2017;45(4):1633-48.

4. Okonechnikov K, Conesa A, Garcia-Alcalde F. Qualimap 2:
advanced multi-sample quality control for high-throughput
sequencing data. Bioinformatics 2015;32(2):btv566.

5. Frazee AC, Sabunciyan S, Hansen KD, et al. Differential ex-
pression analysis of RNA-seq data at single-base resolution.
Biostatistics 2014;15(3):413-26.

6. Nellore A, Collado-Torres L, Jaffe AE, et al. Rail-RNA: scalable
analysis of RNA-seq splicing and coverage. Bioinformatics
2016;33(24):btw575.

7. Collado-Torres L, Nellore A, Frazee AC, et al. Flexible ex-
pressed region analysis for RNA-seq with derfinder. Nucleic
Acids Res 2017;45(2):e9-e9.

8. Coverage/Depth analysis bioinformatics tools | Next-
generation sequencing analysis - OMICtools. https:
//omictools.com/depth-of-coverage-category.Accessed
24 May 2019.

9. Li H, Handsaker B, Wysoker A, et al. The Sequence
Alignment/Map format and SAMtools. Bioinformatics
2009;25(16):2078-9.

10. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for
comparing genomic features. Bioinformatics 2010;26(6):841—
2.

11. McKenna A, Hanna M, Banks E, et al. The Genome
Analysis Toolkit: a MapReduce framework for analyz-
ing next-generation DNA sequencing data. Genome Res
2010;20(9):1297-303.

12. Tarasov A, Vilella AJ, Cuppen E, et al. Sambamba: fast
processing of NGS alignment formats. Bioinformatics
2015;31(12):2032-4.

13. Pedersen BS, Quinlan AR. Mosdepth: quick coverage
calculation for genomes and exomes. Bioinformatics
2018;34(5):867-8.

14. Wiewidrka M, Le$niewska A, Szmurto A, et al. SeQuila: an
elastic, fast and scalable SQL-oriented solution for process-
ing and querying genomic intervals. Bioinformatics 2019 25,
12, 2156-8.

http://biodatageeks.org/sequila/
https://github.com/ZSI-Bio/bdg-sequila
https://hub.docker.com/r/biodatageeks/
http://biodatageeks.org/sequila/benchmarking/benchmarking.html#depth-of-coverage
https://omictools.com/depth-of-coverage-category

15.

16.

Guilford J, Powley G, Tucker G, et al. Accelerating the com-
pression and decompression of genomics data using GKL
provided by Intel. 2017. https://www.intel.com/content/da
m/www/public/us/en/documents/white-papers/accelerati
ng-genomics-data-gkl-white-paper.pdf. Accessed 24 May
2019.

Zaharia M, Chowdhury MJ, Franklin M, et al. Spark: Cluster
computing with working sets. In: HotCloud’10 Proceedings
of the 2nd USENIX conference on Hot Topics in Cloud Com-
puting, Boston, MA, 2010. Berkeley, CA: USENIX Association;
2010:10.

17.

18.

19.

Massie M, Nothaft F, Hartl C, et al.. Adam: Genomics Formats
and Processing Patterns for Cloud Scale Computing. Univer-
sity of California, Berkeley, Technical Report No. UCB/EECS-
2013-207; 2013. https://www?2.eecs.berkeley.edu/Pubs/Tech
Rpts/2013/EECS-2013-207.html. Accessed 23 July 2019.
GATK. https://software.broadinstitute.org/gatk/gatk4. Ac-
cessed 24 May 2019.

Wiewiérka M, Szmurto A, KuSmirek W, et al.. Support-
ing data for “SeQuila-cov: a fast and scalable library
for depth of coverage calculations.” GigaScience Database
2019.http://dx.doi.org/10.5524/100617. Accessed 23 July 2019.

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/accelerating-genomics-data-gkl-white-paper.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-207.html
https://software.broadinstitute.org/gatk/gatk4

