
New Ways to Boost Molecular Dynamics Simulations

Elmar Krieger* and Gert Vriend

We describe a set of algorithms that allow to simulate dihydro-

folate reductase (DHFR, a common benchmark) with the AMBER

all-atom force field at 160 nanoseconds/day on a single Intel

Core i7 5960X CPU (no graphics processing unit (GPU), 23,786

atoms, particle mesh Ewald (PME), 8.0 Å cutoff, correct atom

masses, reproducible trajectory, CPU with 3.6 GHz, no turbo

boost, 8 AVX registers). The new features include a mixed multi-

ple time-step algorithm (reaching 5 fs), a tuned version of LINCS

to constrain bond angles, the fusion of pair list creation and

force calculation, pressure coupling with a “densostat,” and

exploitation of new CPU instruction sets like AVX2. The impact

of Intel’s new transactional memory, atomic instructions, and

sloppy pair lists is also analyzed. The algorithms map well to

GPUs and can automatically handle most Protein Data Bank

(PDB) files including ligands. An implementation is available as

part of the YASARA molecular modeling and simulation program

from www.YASARA.org. VC 2015 The Authors Journal of Compu-

tational Chemistry Published by Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23899

Introduction

Molecular simulations with empirical force fields like AMBER,[1]

CHARMM,[2] or OPLS[3] are enjoying a phase of enthusiastic

interest, thanks to the arrival of personal supercomputers,

that is, graphics processing units (GPUs) that can accelerate

science equally well as video games. As shown by AceMD[4]

and OpenMM,[5] classical force fields are ideally suited

for GPUs, because the calculations mainly require single preci-

sion floating point operations—which are the GPU’s home

game.

Although the slow transfer of data between CPU and GPU

initially led to the development of programs that perform all

computations on the GPU and let the CPU run idle, this trend

seems to reverse recently. CPU and GPU are increasingly often

fused on the same chip with unified memory (AMD Kaveri,

Intel Iris), solving the data transfer problem. Additionally, mod-

ern CPUs contain powerful vector instructions sets (SSE, AVX),

which are too valuable to be left unused. Consequently, the

GROMACS team recently achieved a very high molecular

dynamics (MD) performance using CPU and GPU in parallel.

We, therefore, believe that MD simulations are best

approached with a capable “home base” on the CPU, which

can handle the countless complications in real-life applications

(like knowledge-based force fields,[6] X-ray,[7] and nuclear mag-

netic resonance (NMR) refinement[8]) and offloads tasks to the

GPU when beneficial. In this work, we focus on this home

base and describe a number of algorithms to generally

improve simulation performance, and we benchmark them on

a single Intel Core i7 CPU with AVX2. Most of the algorithms

are equally well suited to accelerate simulations using multiple

CPUs and GPUs.

Although simulation performance is usually considered less

important than accuracy (which we focused on previously[6,9]),

only fast simulations allow an important accuracy check:

whether the force field can reproduce folding and structural

changes of proteins or not.[10]

Results and Discussion

A mixed multiple time-step algorithm

Raising the integration time-step to boost MD simulation speed

tends to reveal its disadvantages after a few hundred picosec-

onds—when the simulation suddenly blows up. Such blow-ups

originate from atoms that vibrate with high speed and acciden-

tally experience a larger than usual force, which accelerates

them to the point where the distance traveled per time-step is

so large, that reliable integration is no longer possible. The

vibration then becomes self-enforcing, until atoms jump around

randomly, “infecting” others and the simulation explodes. For a

given force, the acceleration is inversely proportional to the

atom mass, which puts hydrogens most at risk. In our experi-

ence, hydrogen bond vibrations blow up if the time-step

exceeds about 1.75 fs, hydrogen angle vibrations become criti-

cal at 2.5 fs (especially when the time-step for nonbonded

forces is larger), and heavy atom bond vibrations around 3.5 fs.

Four solutions to deal with these vibrations are commonly

used: first, one can simply increase the hydrogen masses,

which slows down the vibrations.[11] Second, one can integrate

the vibrations more accurately using multiple time-steps[12]: a

large time-step for the slowly varying intermolecular forces,

and a smaller time-step for the quickly varying intramolecular

forces (including the most critical bond and angle vibrations).

The stability of this approach can be improved in various

E. Krieger, G. Vriend

Centre for Molecular and Biomolecular Informatics, Radboudumc, PO Box

9101, 6500 HB Nijmegen, The Netherlands

E-mail: elmar@yasara.org

This is an open access article under the terms of the Creative Commons

Attribution License, which permits use, distribution and reproduction in

any medium, provided the original work is properly cited.

Contract grant sponsor: European Commission (within its FP7 Programme,

under the thematic area KBBE-2011-5); Contract grant number: 289350

VC 2015 The Authors Journal of Computational Chemistry Published by Wil-

ey Periodicals, Inc.

996 Journal of Computational Chemistry 2015, 36, 996–1007 WWW.CHEMISTRYVIEWS.COM

FULL PAPER WWW.C-CHEM.ORG

http://www.YASARA.org


ways, for example, with the mollified impulse method[13] used

in NAMD.[14] Third, one can totally remove bond vibrations by

constraining the bond lengths using algorithms like LINCS[15]

or SHAKE.[16] And finally, one can remove hydrogen angle

vibrations by “virtualizing” the hydrogen atoms[11] (i.e., by

treating them as dummy atoms without mass, whose position

is recalculated from the heavy atoms at each step).

We combine solutions two and three in a new way, which is

shown in Figure 1. While a normal multiple time-step algo-

rithm uses the same time-step for all atoms and a certain rec-

ipe to apply the forces (e.g., the quickly varying bonded forces

at each step, and the slowly varying nonbonded forces only at

every other step), we mix it with a single time-step algorithm

depending on the molecule type. Small molecules whose

internal degrees of freedom can be removed by applying con-

straints are propagated with a large single time-step (up to 5

fs). As all bonds and angles in such an internally frozen mole-

cule are at their equilibrium values, the corresponding forces

are zero and need not be calculated, only the nonbonded

interactions are required. For all the other molecules, a multi-

ple time-step algorithm is used.

This approach has three advantages: first, it is easy to imple-

ment, while virtual hydrogens are rather complicated to han-

dle (they require elaborate code for each hydrogen

configuration, so that it is often not possible to simulate

organic molecules “out of the box,” especially if they contain

less common hydrogen configurations). Second, it does not

require to change hydrogen masses (like the virtual hydrogens

with zero mass or the heavy hydrogens). While it is certainly

true that the effect of changing hydrogen masses is either

small (compared to the errors inherent in empirical force

fields) or completely absent (when looking at thermodynamic

properties, which do not depend on atom masses[11]), we sim-

ply consider it convenient not having to think about the

potential impact on a case-by-case basis. And third, it

improves performance compared to normal multiple time-step

algorithms, which need to move all atoms in several costly

integration steps. As shown in Figure 1, the majority of atoms

(typically waters) require only a single integration step.

Care must be taken when choosing the multiple time-step

recipe because of its impact on energy conservation and simu-

lation accuracy. In an extensive comparison study, Grubmueller

and Tavan[17] analyzed several different multiple time-step

schemes, some of which even extrapolate the nonbonded

forces from the current and previous forces. In comparison,

our setup shown in Figure 1 is rather simple: there are no dis-

tance classes (all the nonbonded Van der Waals and Coulomb

interactions are calculated together with a 5-fs time-step), and

there is only a single step in between (when just bond, angle,

and dihedral intra-actions are calculated). For this simple case,

we found that the method they named DC-i yielded the most

stable trajectories: the nonbonded forces are doubled in the

even steps, and totally ignored in the odd steps in between

(also called the “impulse method”[17] or “Verlet-I”[18]). Adding

nonbonded forces every second step is still in the safe range

of the impulse method, which has as advantage that it always

uses exact forces that match the atom positions.

A tuned version of LINCS to constrain bond angles

Figure 1 illustrates our goal to integrate bonded intra-actions

with a 2.5-fs time-step, and this means that vibrations of

Figure 1. Molecular dynamics simulation by mixing a multiple time-step algorithm (left) with a normal single time-step algorithm (right) depending on the

molecule type. The multiple time-step algorithm uses a pulsed approach, which calculates bonded intra-actions at each 2.5 fs step, and adds the non-

bonded interactions (scaled with 2) only every other step, in sync with the 5 fs single time-step algorithm. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2015, 36, 996–1007 997

http://wileyonlinelibrary.com
http://onlinelibrary.wiley.com/


bonds and angles involving hydrogens need to be constrained.

We use the very elegant LINCS algorithm,[15] which employs a

power series expansion to invert the constraint coupling

matrix and to determine how to move the atoms such that all

constraints are satisfied. Unfortunately, this fast approximate

inversion only works as long as the simplified coupling matrix

(which has zeroes along the diagonal) is sparse enough,

because all absolute eigenvalues must be smaller than 1.

When two constraints involve the same atom, the correspond-

ing element in the coupling matrix becomes nonzero, so the

sparsity shrinks as the connectivity between constraints grows.

Consequently, the LINCS authors noted that their approach

works fine for constraining bonds (also in rings), but adding

angle constraints quickly raises the eigenvalues above 1, which

creates a need for virtual hydrogen sites. Our alternative solu-

tion to this problem works as follows: thanks to the multiple

time-step algorithm, we can integrate the bonded intra-actions

with a 2.5-fs time-step (instead of the overall 5 fs time-step).

With 2.5 fs, bonds between heavy atoms are not yet critical and

do not need to be constrained, which increases the sparsity of

the simplified coupling matrix almost to the point where

enough hydrogen angle constraints can be added to permit sta-

ble simulations (Fig. 2). Constraining all hydrogen angles is not

possible, but also not necessary, as a single angle constraint per

hydrogen is usually enough. We wrote “almost” and “usually,”

because there is one exception: if a heavy atom has three

hydrogens bound (e.g., ACH3, ANH3
1 groups), adding con-

straints in a way that treats each atom equally yields a tetrahe-

dron of six constraints (three bonds and three angles). The

largest eigenvalue of the corresponding simplified coupling

matrix is unfortunately 1.35. We therefore implemented a ver-

sion of LINCS that handles this special case by inverting the 6

3 6 coupling matrix exactly. This requires only a few hundred

CPU cycles and has no noteworthy impact on performance. A

heavy atom with four hydrogens (e.g., methane) on the other

hand is easy to handle again, because one can simply add two

angle constraints between pairs of hydrogens (largest eigen-

value 0.82). The algorithm to decide which angles to constrain

is explained in the Materials and Methods section.

One might wonder why two constraints per hydrogen are

enough—after all, they cannot prevent vibrations perpendicular

to the plane spanned by the constraints. The reason is that with

a 2.5-fs time-step, not all directions are critical yet—mostly

those where other hydrogens separated by four covalent bonds

are close by and exert strong forces. These critical directions are

protected with constraints, for example, by placing angle con-

straints along a chain of CH2 groups, instead of constraining just

the HACAH angle (as shown for the Arg side-chain in Fig. 2).

Additional angle constraints generally yield larger eigenval-

ues, which in turn require to increase the accuracy of the LINCS

algorithm to keep the constraints satisfied. Apart from trivial

adjustments (like doubling the LINCS expansion order), we had

to tweak the algorithm for single precision calculations. Water

molecules are handled with the analytic SETTLE algorithm.[19]

A convenient aspect of our approach is that coupled con-

straints form small groups only. Because bonds between heavy

atoms are not constrained, these groups do not extend over

the entire protein, they usually do not even cross residue

boundaries (Fig. 2). Consequently, special considerations

regarding workload distribution (like those described for P-

LINCS[20]) are not needed when parallelizing the algorithm.

Mixing pair list creation and force calculation

The algorithms described here have been implemented in our

molecular modeling and simulation program YASARA.[21] While

there is an optional text mode interface to be run on servers, a

major goal has always been to visualize the simulation on

screen, allowing to dive into the system and pull atoms interac-

tively. When we implemented this feature in 1997, CPUs were

rather weak, and in order to provide a smooth interactive MD

experience, YASARA did not use pair lists (i.e., arrays containing

the nonbonded interaction partners for each atom). A simula-

tion with pair lists consists of a slow step (which includes pair

list creation) and a series of fast steps (using the pair lists). Such

an alteration of slow and fast steps caused stutter on the screen

during interactive MD runs. To ensure that each simulation step

takes an equal amount of time, a grid-based neighbor search

was done at each step, intertwined with the nonbonded force

calculation, so that no pair lists were needed. To maximize the

performance of the grid-search, the grid cubes should be small

enough to provide a decent approximation of the cutoff sphere,

Figure 2. Placement of constraints to reduce the degrees of freedom of hydrogen atoms and enable larger time-steps. The constrained distances and

angles are shown for five exemplary amino acids (orange in the electronic version). The algorithm that decides which angles to constrain such that the

coupling matrix can still be inverted quickly is not specific for amino acids (see Materials and Methods). [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

FULL PAPER WWW.C-CHEM.ORG

998 Journal of Computational Chemistry 2015, 36, 996–1007 WWW.CHEMISTRYVIEWS.COM

http://wileyonlinelibrary.com


and at the same time large enough to avoid useless tests of

empty cubes. We obtained best performance using a grid spac-

ing of cutoff/3 for cutoffs below 9.5 Å, and cutoff/4 above. Fig-

ure 3 shows a neighbor-search example for an 8 Å cutoff, that

is, the search space extends seven cubes along each axis. Com-

pared to a cubic neighbor-search volume of 7 3 7 3 7 cubes,

four cubes can be skipped in each of the eight corners, reduc-

ing the search space by 10%.

Apart from the constant execution time (which was impor-

tant in 1997, but has only a marginal impact on today’s hard-

ware) an algorithm that works without pair lists has two

performance advantages: first, it is trivial to make the algo-

rithm store pair lists on the fly to be used in the next steps.

The resulting pair list-based algorithm executes faster than the

usual approach of first creating the pair lists and then calculat-

ing the forces, which requires to load the atom coordinates

twice, possibly from slow main memory. And second, if the

user wants to update the pair list at every step, one can totally

skip the pair list creation.

Why would a user choose to update the pair list at every

step? Apart from the interactive visualization purposes men-

tioned above, for example, to make sure that no interactions

within the cutoff distance are missed. While the literature

often mentions an idealized pair list, which is created for a

somewhat larger distance cutoff1x and updated whenever

the first atom traveled further than x/2, this approach is rather

slow in practice, because it updates the pair list more fre-

quently than really needed. As noted by the GROMACS team

(user manual 4.6, chapter 3.4.2), it is much more efficient to

just use the pair list for a certain number of steps, eventually

missing some interactions within the cutoff while the atoms

move. The energy drift associated with such “sloppy pair lists”

can be reduced at will by increasing the pair list cutoff used

during neighbor search, calculated, for example, from this

empirical formula:

Cut offPairList5Cut offForce

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Update Frequency21

p
3 Time Step 3 Temp 3 0:001

M

(1)

Our formula estimates how far particles with an average

velocity proportional to “Temp/M” travel between pair list

updates that are done every “UpdateFrequency” steps, given

the current simulation “TimeStep.” “M” is the average particle

mass in the simulation, water molecules are treated as single

particles. We assume that particles get either closer or further

away at each step, which boils down to a one-dimensional

random walk, for which the expected travel distance is propor-

tional to the square root of the number of steps. The empirical

proportionality constant 0.001 Å*Dalton/(Kelvin*fs) must be

chosen as small as possible (as it increases the pair list cutoff

and thus reduces the performance) and as large as necessary

to reduce the energy drift to an acceptable value.

Evaluation of simulation accuracy

Molecular dynamics simulations can be very sensitive to the pro-

tocol and algorithms used, especially when events that occur on

longer time scales are investigated, like protein folding or mem-

brane formation. Every new approximation made to gain perform-

ance must therefore be analyzed with great care. Our solution to

this problem is trivial—we avoid new approximations. The meth-

ods described here either allow to calculate the same forces faster

(and are thus not approximations), or recycle old approximations

that have become common scientific practice. Any problems with

these approaches would thus have been discovered by now.

These approximations are: reducing the degrees of freedom of

hydrogen atoms (e.g., with LINCS[15] and virtual hydrogen sites[11]),

sloppy pair lists (used and tested extensively in GROMACS[22]), a

time-step of 5 fs for the nonbonded interactions (the default in

Figure 3. Two examples of grid-based neighbor search in a triclinic simulation cell shown in stereo. The grid spacing is “nonbonded force cutoff/3,” so that

seven cubes need to be searched along each axis to find the neighbors of the atom in the center, but four cubes can be skipped in each of the eight cor-

ners. The atom in the bottom left corner is close to three periodic cell boundaries, so cubes on the other sides must be considered too, resulting in a rather

complex search pattern, which can of course be precalculated. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2015, 36, 996–1007 999

http://wileyonlinelibrary.com
http://onlinelibrary.wiley.com/


GROMACS when using virtual hydrogen sites), and the Verlet-I[18]

multiple time-step algorithm (used extensively in NAMD[14]). Most

simulations were run with an 8 Å cutoff for Van der Waals- and

direct space Coulomb forces, as this is a common choice, also

when posting DHFR benchmark results (e.g., by the AMBER[23]

and OpenMM[5] developers). This does not imply that an 8 Å cut-

off is ideally suited for all purposes.[24]

The first thing to check is that the actual implementation is

reliable and not suffering from problematic energy drifts, espe-

cially as it makes extensive use of single precision calculations,

which are much faster on CPUs as well as GPUs (Table 1).

Intuitively, one would expect the energy drift to increase with

each approximation made, but this is not the case. Drifts are

expressed per nanosecond and not per integration step, so if

a significant part of the drift is caused by the integration pro-

cedure itself, then one can reduce the drift by increasing the

time-step (as fewer integration steps are needed per nanosec-

ond). This allows a mixed multiple time-step integrator with

2.5 fs (0.005 in row 4) to outperform a single time-step inte-

grator with 1 fs (rows 1–3). Of course, this principle no longer

holds when the time-step is increased further and starts to

dominate the drift (row 5). It is also noteworthy that inaccura-

cies do not always cause positive drifts. Sloppy pair lists, for

example, cause a negative drift, which can be adjusted at will

by shifting the pair list cutoff. The resulting small negative drift

in row 6 is thus due to cancelation of errors, and could be

made zero or positive by increasing the 8.3 Å pair list cutoff,

that is, the empirical constant “0.001” in formula 1. One should

thus emphasize the importance of listing energy drifts in a

step-wise manner, while enabling the various acceleration

methods, so that the real accuracy is obvious and no cancela-

tion of errors goes unnoticed.

The various approximations listed above have been described

and validated in separate articles, using different methodolo-

gies. To facilitate a direct comparison, we tested each approach

with an accuracy benchmark described previously[9]: simulating

25 protein crystals with the AMBER03 force field[23] and calculat-

ing the average root-mean-square deviation (RMSD) from the

starting structures. Using complete crystallographic unit cells

ensures that all forces giving rise to the X-ray structures are

present, and RMSDs really depend on simulation accuracy and

not on differences between crystal and solution environments.[9]

The reference simulation (Fig. 4, blue) was run at the tempera-

ture of the experimental structure determination (as specified in

the PDB header, on average 176 K) with PME electrostatics,[25] a

10.5 Å cutoff for Van der Waals (VdW) and direct space electro-

static forces, a single 1 fs time-step and no constraints. Raising

the temperature to the standard 298 K heavily increased the

average RMSD during the last quarter of the simulation from

0.55 Å (blue) to 0.83 Å (magenta). As expected, the commonly

used MD approximations had no significant impact on the

RMSD: reducing the cutoff to 8.0 Å (red), additionally increasing

the time-step to 2.5 fs and using the impulse method (1.25 fs

for bonded intra-actions, orange), adding hydrogen constraints

and doubling the time-step to 5 fs (green, Fig. 1), and updating

the pair list only every 10th step (cyan).

The simulations in Figure 4 are computationally expensive,

because they involve 175 different trajectories, some with very

slow protocols. Extending the simulation time would not improve

the benchmark result, as the RMSD from the starting structures

is only a useful accuracy indicator during the initial phase of a

simulation—in the long term, proteins would undergo temporal

partial unfolding[26] and randomize the RMSDs. Fortunately,

Table 1. Energy drift per nanosecond and degree of freedom during a simulation of DHFR.

Cutoff (Å)

Pair list

update frequency

Interaction

time step (fs)

Intra-action

time step (fs) Constraints Energy drift (kBT/ns)

9.6 1 1.0 1.0 No 0.009

9.0 1 1.0 1.0 No 0.010

8.0 1 1.0 1.0 No 0.011

8.0 1 2.5 1.25 No 0.005

8.0 1 5 2.5 H bonds and angles 0.018

8.3/8.0 10 5 2.5 H bonds and angles 20.006

Time-steps for nonbonded interactions and bonded intra-actions are listed separately. The first two rows list values in the 9 Å cutoff range to facilitate

comparison with drifts reported for other MD programs.[22] The last row uses sloppy pair lists updated every 10 steps, and a larger pair list cutoff of 8.3

Å obtained using eq. (3) with an average particle mass of 14.55 Dalton.

Figure 4. Accuracies of seven simulation protocols, measured as the aver-

age Ca RMSD of 25 protein crystal simulations with the AMBER03 force

field. Error bars indicate the average and standard deviation of the RMSD

during the last quarter of the simulation, averaged over the 25 simulations.

The blue simulations are run at the temperature of experimental structure

determination (on average 176 K), while the others are run at 298 K. The

reference protocol (blue and magenta) uses PME electrostatics, a 10.5 Å

VdW and direct space electrostatic cutoff, a 1-fs time-step, no constraints,

and no pair list. The other protocols improve performance with a 8.0 Å cut-

off (red), additionally a 2.5-fs time-step (orange), or a 5-fs time-step with

constraints (green) and also sloppy pair lists (cyan) and have no significant

impact on the RMSD, unlike a further cutoff reduction to 5.0 Å (gray). The

actual performance of these protocols is shown in Figure 8.

FULL PAPER WWW.C-CHEM.ORG

1000 Journal of Computational Chemistry 2015, 36, 996–1007 WWW.CHEMISTRYVIEWS.COM



problems with simulation accuracy tend to show up early, as

demonstrated for a cutoff reduction to 5.0 Å (gray).

Pressure coupling without virial calculation

The most common way to run an MD simulation is the “real-

life” NPT ensemble, where the number of particles, the pres-

sure and the temperature are kept constant. While the current

temperature can simply be calculated from the atom velocities,

the pressure is not trivial to handle. The most common

approach is to calculate the pressure “P” using a formula

derived from the Clausius virial theorem:

P5
2

33Volume
3 Kinetic Energy1

1

2
3
XAtoms

i51

Positioni3Forcei

 !

(2)

Unfortunately, the resulting pressures fluctuate strongly

(by hundreds of atmospheres at each step), and even if the time

average pressure is used to rescale the cell, one arrives at den-

sities that are a bit off. For example, the density of water at

298 K using PME electrostatics was reported[27] to be 0.979 g/ml

instead of the expected 0.997 g/ml. Apart from changing the

water model,[27] these discrepancies can be dealt with in two

ways: one favors the density and applies corrections to the pres-

sure (e.g., to account for the truncation of attractive VdW forces

at the cutoff[28]), getting closer to the right density. The other

favors the pressure and argues against corrections, because they

might have a negative impact (if the cutoff for VdW interactions

makes waters “happy” at 0.979 g/ml, then compressing them to

0.997 g/ml could make them “feel stressed”).

Our approach does not choose a side, but lets the user

decide. It is based on an assumption that is implicit in all pres-

sure coupling protocols with cell rescaling—that pressure is

not a localized property, but spreads through the cell. The

pressure in the left half of the cell is the same as in the right

half, the pressure in the solute is the same as in the solvent.

This implies that one only needs to know the solvent pressure,

which allows to take the shortcut shown in Figure 5. Having

placed a grid in the simulation cell, all grid cubes that contain

just water atoms (and have 26 neighbors with just water

atoms) are tagged. Then, the masses of the water atoms in

the tagged cubes are summed and divided by the volume to

obtain the current water density. The grid is simply the neigh-

bor search grid with �2.6 Å spacing (Fig. 3). Contrary to the

virial, the water density shows only small variations (whenever

atoms change a cube), so that it is enough to calculate it

every 10 steps and then average 50 measurements to obtain a

stable result that can be plugged into a “densostat” (similar to

a Berendsen barostat[29]), which defines a scaling factor “S” for

the atom coordinates to reach the desired water density:

S5max 0:999;min 1:001;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11C3

Densitymeasured

Densityset

21

� �
3

s
Þ

 ! 

(3)

The “max” and “min” functions make sure that the cell is

never scaled by more than 0.1%, even if the user chooses a

large coupling strength “C” or if the density difference is large

(we found 0.1% to be a reasonable limit to avoid a tempera-

ture rise caused by scaled bond lengths). The time average

Figure 5. Stereo image of crambin, ions, and the grid of cubes that contain just water and can be used to quickly calculate the current water density to

rescale the cell with a “densostat.” The grid was obtained by excluding the 3 3 3 3 3 5 27 cubes around each nonwater atom, which mostly covers the

first hydration shell. The ions shown correspond to a physiological NaCl concentration of 0.9% (154 mM). At this concentration, �78% of the solvent cubes

can be included in the density calculation. The fraction of useful cubes drops slowly with increasing NaCl concentration, reaching 50% at about 4.5% NaCl

(770 mM). We also tested the exclusion of larger parts of the hydration shells (57 cubes around each nonwater atom, that is, the big cube of 3 3 3 3 3

cubes above, plus a cross of five cubes on each of its six sides), and found that the accuracy of the density calculation did not improve significantly, while

considerably fewer cubes could be used (70% at 0.9% NaCl, reaching 50% already at �2.3% NaCl). In case of very high salt concentrations or mixed sol-

vents, where not enough water cubes are available, one can of course run a reference simulation with a barostat to measure the density of the entire sol-

vent and plug that value into the densostat, which is then based on solvent cubes instead of water cubes. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2015, 36, 996–1007 1001

http://wileyonlinelibrary.com
http://onlinelibrary.wiley.com/


density is used so that fluctuations are not artificially sup-

pressed (which can be a problem with weak coupling meth-

ods, especially if the simulated system is small[30]).

Our “densostat” has two advantages: first, it lets simulations

run about 8% faster. The reason is that the virial calculation—

even though it looks fast and simple in eq. (1)—requires special

care when handling forces that cross periodic boundaries, which

effectively pulls it into the inner loops of the force calculation.

And second, the densostat makes it trivial to reach exactly the

right density (if that is desired). Those who prefer the right

pressure can simply run a reference simulation of water with a

barostat, and their favorite cutoff and temperature, and use the

resulting water density as the densostat target value.

The disadvantage is obvious: as the density is a scalar, the

densostat fails when the pressure cannot be expressed as a

scalar, that is, when the three values along the trace of the

pressure tensor deviate from each other. This happens when

the solute spans the entire cell, so that solvent molecules can-

not travel freely to spread the pressure uniformly. The most

common examples are proteins embedded in a membrane or

protein crystals. These need to be handled the classic “virial”

way, using different scaling factors for each cell axis. We do not

claim that the densostat can replace the virial calculation in all

the other applications of molecular dynamics simulations, but

we found no influence on the dynamics of the simulated

system. Table 2 shows an analysis of atomic B-factors extracted

from 150 ns simulations of DHFR in solution at 298 K (using

the cyan protocol in Fig. 4). With a barostat (Materials and

Methods), the average heavy atom B-factor was 78 Å2. Running

the same 150 ns simulation a second time, but with a different

random number seed for the initial velocities, yielded heavy

atom B-factors that differed on average by 218 6 59 Å2. With

the densostat, B-factors differed by 5 6 48 Å2, so the densostat

had no larger impact than the random number seed. However,

after changing the force field from AMBER03 to AMBER99,[31] B-

factors differed by 26 6 58 Å2. Also, the cell volume during the

last 75% of the simulation was not significantly different.

These data reflect the common observation that simulation

time-scales of proteins are usually too short to reach exhaus-

tive sampling, so that the results often depend considerably

on the initial conditions. This dependence can easily mask var-

iations in the simulation protocol, like the switch between

barostat and densostat shown in Table 2.

To verify that the densostat also works for small systems,

which can be sampled well and thus show a stronger depend-

ence on the simulation protocol, we ran microsecond simula-

tions of a well known model system—the alanine dipeptide—

and extracted the free energy landscape.

Early simulations of the alanine dipeptide lasted a few nano-

seconds and required tricks to enhance sampling, like thermo-

dynamic integration of perturbed trajectories.[32] Fortunately,

the microsecond simulations possible on today’s hardware pro-

vide sufficient sampling—the plot of the u/w free energy map

shows only marginal dependence on the initial conditions

(Figs. 6A and 6B). Enabling the fast simulation methods

described here (including the densostat) yields comparable

Table 2. Influence of force field, pressure coupling method, and random number seed on the B-factors and cell volume extracted from 150-ns simula-

tions of DHFR in solution at 298 K (at room temperature and without crystal packing, B-factors are higher than those found in X-ray structures).

Force field

Pressure

coupling Random seed

Average

B-factor (Å2)

Average B-factor

difference from first row (Å2)

Cell volume (Å3)

with 23,786 atoms

AMBER03 Barostat 0 78 0 6 0 240,645 6 218

AMBER03 Barostat 1 60 218 6 59 240,700 6 220

AMBER03 Densostat 0 83 5 6 48 240,560 6 342

AMBER99 Barostat 0 104 26 6 58 240,744 6 223

Figure 6. The free energy landscape of the alanine dipeptide, showing the u/w map of the first alanine. (A) Microsecond simulation at 298 K with a con-

servative protocol (single 1 fs time-step, exact pair list updated each step, no constraints, barostat with 1 bar). (B) The same simulation again, but with dif-

ferent random seed and different initial conformation of the peptide. (C) Simulation with our fast protocol (multiple 5 fs time-step, sloppy pair list updated

every 10 steps, bond and angle constraints, densostat with 0.97 g/ml water density[27]). (D) For comparison, the corresponding u/w map of alanine,

extracted from high-resolution X-ray structures in the PDB, with an additional round of smoothing to provide knowledge-based torsion forces in the

YASARA force field.[6] [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

FULL PAPER WWW.C-CHEM.ORG

1002 Journal of Computational Chemistry 2015, 36, 996–1007 WWW.CHEMISTRYVIEWS.COM

http://wileyonlinelibrary.com


differences (Fig. 6C). In contrast, Figure 6D shows the free

energy map of alanine, extracted from high-resolution X-ray

structures in the PDB. Differences are of course expected, but

we note that the positions of the energy minima match well.

Multithreaded force calculation methods and overall

performance

We evaluated the performance of the various methods by run-

ning the well-known DHFR benchmark, a simulation of dihydro-

folate reductase (3158 protein atoms and 20,628 water atoms)

with PME electrostatics.[25] Today’s CPUs can execute a steadily

growing number of parallel threads, so performance depends to

a large extent on the way the nonbonded force calculation is

distributed. We analyzed four different approaches, all of which

distribute atoms among threads by dividing the cell into “thread

regions,” from left to right. Atoms are reordered such that those

in the same region are stored next to each other in memory

(which optimizes cache usage and nonunified memory access).

The easiest approach is shown in Figure 7A. It is based on a sin-

gle table of atomic force vectors, one for each atom, which is

shared among the threads. Each thread calculates and adds the

forces acting on its atoms. If an interacting atom belongs to the

same thread, the force is immediately subtracted (i.e., added in

reverse direction) there too. Otherwise the force needs to be

calculated twice (once by each thread), because one thread can-

not simply change forces belonging to other threads (which

would cause a “race condition”).

With the most conservative simulation parameters (10.5 Å

VdW and direct space electrostatic cutoff, 1 fs time-step), using

the AVX instruction set and a classic virial-based barostat,

method A yields 7.5 ns/day on an Intel Core i7 5960X CPU

with 16 threads and 3.6 GHz (Fig. 8, magenta). If the cutoff is

reduced to 8.0 Å, performance increases to 13.3 ns/day (red).

Activating the mixed multiple time-step without constraints

(2.5 fs) yields 30.2 ns/day (127% more, orange). Constraints (5

fs time-step) almost double the speed (56.9 ns/day, green),

and sloppy pair lists add 52% to 86.7 ns/day (cyan).

Method B (Fig. 7B) uses two force tables. Forces are always

calculated once and added in force table 1. If the interacting

atom belongs to the same thread, the force is also subtracted in

force table 1, otherwise it is atomically subtracted in force table

2. “Atomic” means that the subtraction cannot be interrupted

by another thread, avoiding race conditions. This is achieved by

acquiring a simple spinlock (using the x86 instruction sequence

“loop: xor eax,eax/pause/lock cmpxchg/jnz loop”), performing

the force subtraction, and releasing the lock. We use one lock

per atom, which is placed as the fourth element of the force

vector (a force vector normally needs 3 3 4 bytes storage, but

SSE requires 16-byte alignment, so a fourth element is included

for padding). Both tables need to be added in the end. Method

B increases performance by 32% to 114.1 ns/day.

Method C (Fig. 7C) also uses two force tables and employs

the new transactional memory extension TSX, introduced by

Intel with the Haswell CPU architecure. TSX provides an

instruction “xbegin,” which starts a memory transaction. Right

afterward, the program is allowed to behave as if no other

threads were present, adding and subtracting forces in table 2

at will. When done, the program issues the “xend” instruction,

which tells the CPU to commit the transaction. If another

thread just by chance tries to access the same force vectors at

the same time, the transaction fails, the CPU restores the state

before the transaction and executes a fallback path instead,

which is simply method B. The fraction of aborted transactions

depends on the number of atoms and the number of threads

Figure 7. Four methods to parallelize nonbonded force calculation. In this

example, three threads (red, cyan, and blue) calculate the forces acting on

nine atoms. Each arrow corresponds to one interaction within the cutoff

range (which includes direct and diagonal neighbors). The arrow color

shows which thread calculates the force, which is added to the atom

pointed at. If the arrow has a single head, the force is also subtracted from

the other atom (and thus needs to be calculated once only). If the arrow

has two heads, the same force needs to be calculated twice (by two

threads), which reduces performance. The colors of the rectangles indicate

which thread owns the force table(s). (A) Single force table, forces that

cross thread boundaries need to be calculated twice. (B) Two force tables

with atomic subtractions of forces that cross thread boundaries in Table 2.

(C) Two force tables using transactional memory, the first table is only

needed if a transaction fails. (D) One separate force table per thread, which

need to be summed in the end.

Figure 8. Performance of 10 simulation protocols in the DHFR benchmark.

The reference protocol (top) uses a 10.5 Å cutoff, a 1-fs time-step, no con-

straints, no pair list, a barostat, and a single force table shared among

threads (Fig. 7A). [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2015, 36, 996–1007 1003

http://wileyonlinelibrary.com
http://onlinelibrary.wiley.com/


working on the atoms. When simulating DHFR with eight

threads, 5% of the transactions fail. With increasing system

size, the failure rate approaches 2%. As TSX has a considerable

overhead, it is not trivial to outperform method B. Intel recom-

mends that a transaction should last about 400 ns, we got

good results by bundling 8 to 16 force additions (and the cor-

responding subtractions) in a single transaction. This yields an

improvement of 5% (measured on a Core i7 4770, as Intel

unfortunately disabled TSX in the Core i7 5960X due to a hard-

ware issue).

Method D (Fig. 7D) uses one force table per thread. Each

thread can thus add and subtract forces without any danger

of collisions. The drawback is that this approach requires more

memory to store forces, and the forces for each atom have to

be summed in the end. The good news is that—if the system

is large compared to the number of threads—a certain atom

is usually only touched by 2–4 threads, so that only 2–4 forces

per atom need to be stored and summed. Method D performs

best, improving simulation times by 19% to 142.7 ns/day.

Methods A and D have the inherent advantage of being

reproducible, so that one can obtain the very same MD trajec-

tory twice in a row. Methods B and C add forces in random

order, and as A1B1C does not exactly equal A1C1B in float-

ing point operations, they yield marginally different forces,

which quickly causes trajectories to diverge.[33]

Only time will tell which of the four methods wins on future

CPU generations. Four-socket systems with Haswell Xeon CPUs

may support up to 144 threads, requiring method D to store

and sum so many forces per atom, that method C could run

faster. Intel’s new Xeon Phi “Knights Landing” should arrive in

2015 with 288 threads and no TSX, which could make method

A or B win.

The AVX2 instruction set released by Intel in 2013 helps a

bit (4% to 147.8 ns/day), thanks to the doubled register space

for integers, which is needed when calculating force-table

lookup indices. The densostat finally adds 8% to 160.2 ns/day.

The performance of this protocol for a wide range of system

sizes is shown in Figure 9.

The benchmark results shown in Figures 8 and 9 have been

obtained with the 32bit version of YASARA, because the 64bit

version was not completely finished at the time of writing. As

64bit operating systems happily run 32bit software, this is not

an issue in practice. 64bit mode offers twice as many CPU

registers, which could boost performance beyond 200 ns/day

(estimated from the observation that the GROMACS 64bit ver-

sion runs about 30% faster than the 32bit version).

Materials and Methods

Choice of programming language

To exploit the full potential of today’s CPUs, one needs to make

extensive use of the various vector instruction sets (e.g., SSE and

AVX), where a single instruction operates on multiple data ele-

ments in parallel (SIMD approach). Although compilers could in

theory do that automatically, it does not work well enough in

practice. Instead, the developer must write code that explicitly

uses these instruction sets, either by programming directly in

assembly language, or by using “intrinsics,” small C/C11 func-

tions that operate on vector data types and map almost directly

to the corresponding assembly instructions, so that the compiler

has an easy job. Both approaches have disadvantages: assembly

language is hard to maintain (especially with respect to local varia-

bles and register spilling), while intrinsics are rather cryptic and

require to disassemble the code to check that the compiler really

did what it was supposed to (which is very difficult for large func-

tions), and both suffer from the major problem that one needs to

rewrite or at least adapt the code for each SIMD instruction set

(and almost every new CPU comes with additional SIMD instruc-

tions). For a general molecular modeling application like YASARA,

which uses high-performance code throughout (including molec-

ular graphics), both approaches are impractical.

Our solution to this problem was to develop a “meta assembly

language” named PVL (portable vector language), which sup-

ports all the low-level performance tricks possible in assembly,

but keeps the administration of the code nevertheless simple. As

PVL is not publicly available, we briefly describe the main features

to help reproducing the results: PVL hides the complexity of the

various SIMD instruction sets by providing its own simple vector

data types and instructions. As a result, one needs to write the

code only once, and PVL translates it to currently 16 different ver-

sions (SSE, SSE2, SSE3, SSSE3, SSE4, AVX, AVX1FMA3, AVX2, each

for 32 and 64bit mode. Support for various 3DNow! combina-

tions, for example, SSE213DNow!, was dropped only recently,

when AMD discontinued the latter). The different code paths can

be packed into the same executable and chosen at run-time, so

that a single executable runs optimally on all CPU architectures

(intrinsics normally require to provide a separate executable for

each CPU type). PVL can create multiple similar functions from a

single parent (e.g., to calculate nonbonded forces with and with-

out the virial, with PME or with a switching function etc.). PVL

allows to define vectors with variable length to optimally fill the

Figure 9. Molecular dynamics performance on a Core i7 5960X CPU for eight

proteins, their PDB IDs are shown. The simulation protocol is the last (fast-

est) from Figure 8. Both axes use logarithmic scaling, the system size approx-

imately doubles each step. While the structures in the middle show a linear

O(N) scaling, the small structures 2B88 and 4DNN do not perform ideally,

because the cost to launch and synchronize 16 threads starts to dominate

the computation. For very large structures like 3GYR, the performance is

reduced because the fast Fourier transform of the PME calculation has only

O(N 3 log N) scaling and becomes the bottleneck. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

FULL PAPER WWW.C-CHEM.ORG

1004 Journal of Computational Chemistry 2015, 36, 996–1007 WWW.CHEMISTRYVIEWS.COM

http://wileyonlinelibrary.com


available registers (AVX registers can store eight floats, while SSE

registers can only store 4, and 64bit mode has twice as many

registers as 32bit mode). For example, nonbonded forces are cal-

culated for 8 atoms in parallel in 32bit SSE code, for 16 atoms in

32bit AVX code, and for 32 atoms in 64bit AVX code. PVL takes

care of local variables and function parameters, addressing them

via the stack pointer, so that no frame pointer is needed (reduc-

ing register shortage in 32bit mode). PVL supports position inde-

pendent code (needed on Android), automatic register spilling,

loop unrolling, and nested functions: when using SIMD instruc-

tions, loop unrolling is not optional but obligatory (because it is

very slow to access the ith element of a vector register if “i” is a

variable). This quickly blows up the code beyond the instruction

cache size (e.g., for a nonbonded force kernel, PVL creates 50,000

lines of assembly code, taking �115 kb memory). Consequently,

in-lining functions is a hopeless task, and one needs a way to

quickly call functions without overhead. PVL allows to embed a

function inside another function, so that the callee can access all

the local variables and function parameters of the caller without

having to pass them explicitly.

Choice of data structure layout

Programming for SIMD architectures involves the difficult choice

between two competing approaches to arrange the data in

memory: structures of arrays and arrays of structures. The first

places all data of the same type next to each other (e.g., all

atom X-coordinates), so that loading a SIMD register from mem-

ory fills it with data of the same type (e.g., one AVX register with

the X-coordinates of eight atoms, one register with the Y-

coordinates etc.). Operating on these data is then trivial, for

example, one would perform three multiplications and two

additions to calculate eight dot products in parallel. The second

approach places all data belonging together next to each other

(e.g., an atom’s X, Y, Z coordinates and charge), so that loading a

SIMD register from memory fills it with the data of one or more

atoms (e.g., one AVX register with the positions and charges of

two atoms). The second approach is far less convenient, because

it requires cumbersome shuffling and “horizontal operations”

(like adding two neighbor values in the same SIMD register), for

example, one would perform one multiplication and two hori-

zontal additions to calculate just two dot products in parallel.

Nevertheless, we chose this approach in our MD algorithms, for

three good reasons: first, it improves memory locality and thus

cache hit rate (the position of an atom can be loaded with a sin-

gle instruction from the same cache line and does not have to

be gathered from three different locations). Second, current

SIMD instruction sets provide good support for the difficult hori-

zontal operations within a register, for example, the AVX “vdpps”

instruction calculates two dot products in one shot. And third, it

requires far fewer registers, which avoids expensive register

spilling to memory. For example, to store the position of a water

molecule, the “structures of arrays” approach needs nine AVX

registers (to store the X/Y/Z coordinates of one O and two Hs),

while the “array of structures” approach only needs 1.5 (half a

register for the oxygen position, and one register for the two

hydrogen positions). As the CPU only has 8 registers in 32bit

and 16 registers in 64bit mode, this helps a lot.

Force interpolation

Force calculation in accurate and fast MD simulations involves

interpolation from lookup tables, because the treatment of long-

range electrostatics with PME requires to evaluate the Gauss

error function to determine the real space damping factor,[25]

which cannot be done fast enough. As lookup tables “pollute”

the cache and induce slow main memory accesses, our imple-

mentation uses only four: one table with the general PME damp-

ing factors as a function of distance, and three tables with OAO,

OAH, and HAH forces between water molecules. Lennard Jones

forces involving solute atoms are thus calculated explicitly. We

use linear interpolation, which has become common practice in

many popular MD programs thanks to GPUs and their built-in

linear interpolation hardware (normally used for texture map-

ping). As described in detail previously,[4] the linear interpolation

error is about 1e26. This matches the difference one gets when

summing up the forces acting on an atom in a different order

using single precision floats (which only have �7 significant dig-

its). The interpolation is performed using the AVX2 “vcvtps2dq”

instruction to convert the distance to an integer index for the

look-up table, two “vgatherdps” instructions to fetch the two

boundary values, “vpand” and “vcvtdq2ps” to calculate the two

scaling factors, and one multiplication combined with a fused

multiply-add to calculate the result. The drawback of

“vgatherdps” is that it blocks three of the eight AVX registers

and runs only marginally faster than manual gathering.

Algorithm used to constrain distances and angles

All bonds and selected angles involving hydrogens are con-

strained with a tuned variant of the LINCS method. “Constraining

the bond angle A-B-C” means that the distance between atoms A

and C is constrained to sqrt(sqr(AB)1sqr(BC)22*AB*BC*cos(ABC)),

where AB, BC, and ABC are the equilibrium distances and angle

assigned by the force field. The tuning involves optimization for

single precision calculations (next paragraph) and the handling of

heavy atoms with three bound hydrogens (e.g., the CH3 groups

in Fig. 2). In this case, the six constraints (three bonds and three

angles) form a tetrahedron, and the largest absolute eigenvalue

of the simplified coupling matrix A is 1.35, so that the approxi-

mate LINCS matrix inversion (1-A)21 5 11A1A21A31. fails. We

therefore invert the 6 3 6 matrix 1-A exactly, noting that the

same inverse can be used in both LINCS steps (the initial projec-

tion and the correction for rotational lengthening). We do not

take advantage of the fact that 1-A is symmetric, contains a few

zeroes and only ones along the diagonal, but instead simply use

the fastest of Intel’s SSE-optimized 6 3 6 matrix inversion routines

(document AP-929, order number 245044-001).

To apply the constraints with sufficient accuracy (i.e., yield-

ing a sufficiently small energy drift), we use a LINCS matrix

expansion order of 8 and perform the correction for rotational

lengthening three times in a row. The LINCS algorithm origi-

nally described[15] takes as input the old and new atom coordi-

nates (obtained from the MD integrator) and then iteratively

adjusts the new coordinates until the constraints are satisfied.

Unfortunately, single precision floating point numbers are a

troublesome but unavoidable way of storing absolute atom

coordinates, which get less accurate the further they are away

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2015, 36, 996–1007 1005

http://onlinelibrary.wiley.com/


from the origin. Every coordinate change is thus coupled with

a loss of accuracy and should be avoided, which makes the

many LINCS iterations required to handle angle constraints

problematic. Relative coordinates on the other hand make

optimal use of the 32 bits available. We therefore changed the

MD integrator to provide LINCS with the old positions and the

steps to the new positions instead. The steps are then

adjusted by LINCS, and only added to the old positions in the

end, yielding more accurate results and smaller drifts.

Algorithm used to select constrained angles

The angles to constrain must be chosen carefully so that the

eigenvalues of the simplified constraint coupling matrix stay

below 1. We use a recursive algorithm, which is centered on the

function FixHydrogenAngles, whose pseudocode is given below:*

FixHydrogenAngles(done[],atm,lastatm)

{// ’done’ is a table that flags atoms which

have already been analyzed.

// The analysis starts at ’atm’ and should not

recurse to ’lastatm’.

// First make sure that each atom is analyzed

only once:

if (done[atm]) return

done[atm]51

// Maybe we will recurse to ’nextatm’, but not

yet

nextatm5NONE

// Store the bound hydrogens in ’hydtab’ and

their number in ’hydrogens’

GetBoundHydrogens(hydtab,&hydrogens,atm)

if (hydrogens554)

{// Handle four hydrogens like methane with

two constraints

FixAngle(hydtab[0],atm,hydtab[1])

FixAngle(hydtab[2],atm,hydtab[3])}

if (hydrogens553)

{// Handle three hydrogens like CH3,NH3 groups

with three constraints

FixAngle(hydtab[0],atm,hydtab[1])

FixAngle(hydtab[1],atm,hydtab[2])

FixAngle(hydtab[2],atm,hydtab[0])

// Don’t recurse if the heavy atom bound to atm

is sp3 with <51 hydrogens

nextatm5BoundHeavyAtom(atm)

if (nextatm!5NONE and BoundHydrogens(nex-

tatm) <51 and Bonds(nextatm)>3)

nextatm5NONE}

if (hydrogens552)

{if (Bonds(atm)>3)

{// Two hydrogens bound to sp3 atom. These need

constraints to the next heavy atom:

nextatm5A heavy atom bound to atm, which is

not lastatm, which has <3 hydrogens,

which does not already have an angle

constraint atm-nextatm-x,

and which has the highest score. The

score is 3 if nextatm has two bound

hydrogens (it’s best if we continue

along a -CH2- chain), 2 if it has 0

hydrogens (but also OK to end at an

atom without hydrogens), 1 if it has

1 hydrogen and 3 bonds, otherwise 0.}

if (nextatm!5NONE)

{// Found a bound heavy atom that can take the

constraints

FixAngle(hydtab[0],atm,nextatm)

FixAngle(hydtab[1],atm,nextatm)

// Again, don’t recurse if nextatm is sp3 with

<51 hydrogens, these are handled

later

if (BoundHydrogens(nextatm)<51 and

Bonds(nextatm)>3)

nextatm5NONE}

else

{// Two hydrogens bound to sp2 atom (or no nex-

tatm found), these can safely be

coupled

FixAngle(hydtab[0],atm,hydtab[1])}}

if (hydrogens551)

{// A single hydrogen gets a single constraint.

Find best partner atom.

nextatm5A heavy atom bound to atm, which has

<3 hydrogens and the best score.

The score is -(number of bound hydrogens1num-

ber of angle constraints

nextatm-x-y)*4. If nextatm55lastatm or there

already is an angle constraint

atm-nextatm-x, then score5score-20. If nex-

tatm is not in the same residue

as atm, then score5score-10.

if (nextatm!5NONE) FixAngle(hydtab[0],atm,

nextatm)}

// Recurse if it makes sense

if (nextatm!5NONE) FixHydAngles(done,nextatm,

atm)}

The function FixHydrogenAngles is called first for all atoms

with three bound hydrogens (ACH3, ANH31), second for all

atoms with one hydrogen and two bonds (AOH, ASH), third for

all atoms with two hydrogens that have at least one atom with a

single and at most one atom with two hydrogens bound (this tra-

verses along ACH2A chains, leaving maximum options for the

atoms with a single hydrogen), fourth for all atoms with two

hydrogens that have at most one atom with two hydrogens

bound (this traverses along the remaining ACH2A chains), fifth

for all atoms with a single hydrogen that have at most one atom

with a single hydrogen bound (this traverses along AXHA chains

in rings), and finally for all remaining atoms.

The above heuristic recipe was tuned by analyzing a large

number of organic molecules, and was the easiest approach
*You can view this pseudocode in the following link www.yasara.org/

constraints.

FULL PAPER WWW.C-CHEM.ORG

1006 Journal of Computational Chemistry 2015, 36, 996–1007 WWW.CHEMISTRYVIEWS.COM

http://www.yasara.org/constraints
http://www.yasara.org/constraints


that gave optimum results (i.e., the largest number of con-

straints below the eigenvalue limit 1) without resorting to a

global optimizer, which would have raised the complexity of

the approach.

Alanine dipeptide simulations

The alanine dipeptide was built with YASARA,[21] adding acetyl-

and N-methyl capping groups. The system consisted of �3000

atoms (32 peptide atoms, 981 water molecules, and three ion

pairs, that is, 0.98% NaCl). The force field was AMBER03, simu-

lations were run at 298 K with the protocols described in the

caption of Figure 6. After an equilibration period of 1 ns, the

current u/w dihedrals were calculated every 50 fs and mapped

to a two-dimensional grid with a resolution of 5� (72 3 72

bins), then the corresponding counter was incremented. After

a microsecond, the probability in each grid bin was obtained

by dividing with the total number of counts, converted to a

free energy using the well known Boltzmann formula Ener-

gy 5 2BoltzmannConstant 3 298 3 ln(Probability), shifted so

that the energy minimum was at 0, and visualized using the

marching squares algorithm for seven contour levels with a

spacing of 4 kJ/mol. The YASARA macro used to perform

these tasks can be found in the documentation of the

free YASARA View program version 15 or later, at

Commands>Options> Tables> Tabulate.

DHFR benchmark details

All dihydrofolate reductase benchmark results were obtained

by compiling and running on an Intel Core i7 5960X CPU with

3.6 GHz, the latest RedHat Enterprise Linux 7 (free CentOS ver-

sion) and GCC 4.8. Turbo boost (Intel’s dynamic overclocking

feature) was disabled to ensure consistent timings. Hyper-

threading was enabled, so that 16 threads were available. PME

electrostatics were calculated with a grid spacing< 1 Å and

fourth-order B-splines. Pressure coupling was done as indi-

cated, either based on the density (see Results section), or on

the pressure calculated from the virial. In the latter case, the

Berendsen barostat[29] was fed with the time average pressure

to avoid the suppression of fluctuations, which have been ana-

lyzed in detail for the weak coupling methods.[30]

Acknowledgments

The simulation algorithms are used for protein refinement tasks in

the NewProt protein modeling project (www.newprot.eu). E. Krieger

is the owner of the company that distributes YASARA, and would

like to thank the YASARA users for providing invaluable feedback

and financial support, Prof. Herman Berendsen for joining the PhD

committee at the CMBI during the early YASARA development

phase, and Dr. Gavin Seddon for his kind hardware donation.

Keywords: multiple time-step � LINCS constraints � pair lists �
transactional memory � YASARA

How to cite this article: E. Krieger, G. Vriend. J. Comput. Chem.

2015, 36, 996–1007. DOI: 10.1002/jcc.23899

[1] Y. Duan, C. Wu, S. Chowdhury, M. C. Lee, G. Xiong, W. Zhang, R. Yang,
P. Cieplak, R. Luo, T. Lee, J. Comput. Chem. 2003, 24, 1999.

[2] B. R. Brooks, C. L. R. Brooks, A. D. J. Mackerell, L. Nilsson, R. J. Petrella, B. Roux,
Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R.
Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis,
J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B.
Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, M. Karplus,
J. Comput. Chem. 2009, 30, 1545.

[3] G. Kaminski, R. A. Friesner, J. Tirado-Rives, W. L. Jorgensen, J. Phys.
Chem. B 2001, 105, 6474.

[4] M. J. Harvey, G. Giupponi, G. De Fabritiis, J. Chem. Theory Comput.
2009, 5, 1632.

[5] P. Eastman, M. S. Friedrichs, J. D. Chodera, R. J. Radmer, C. M. Bruns, J.
P. Ku, K. A. Beauchamp, T. J. Lane, L. P. Wang, D. Shukla, T. Tye, M.
Houston, T. Stich, C. Klein, M. R. Shirts, V. S. Pande, J. Chem. Theory
Comput. 2013, 9, 461.

[6] E. Krieger, K. Joo, J. Lee, J. Lee, S. Raman, J. Thompson, M. Tyka, D.
Baker, K. Karplus, Proteins 2009, 77 (Suppl 9), 114.

[7] A. Brunger, X-PLOR Version 3.1: A System for X-ray Crystallography
and NMR; Yale University Press: New Haven, CT, 1992.

[8] J. Kuszewski, A. M. Gronenborn, G. M. Clore, J. Magn. Reson. 1997, 125, 171.

[9] E. Krieger, T. Darden, S. B. Nabuurs, A. Finkelstein, G. Vriend, Proteins
2004, 57, 678.

[10] K. Lindorff-Larsen, P. Maragakis, S. Piana, M. P. Eastwood, R. O. Dror, D.
E. Shaw, PLoS One 2012, 7, e32131.

[11] K. A. Feenstra, B. Hess, H. J. Berendsen, J. Comput. Chem. 1999, 20, 786.

[12] W. B. Streett, D. J. Tildesley, Mol. Phys. 1978, 35, 639.

[13] J. A. Izaguirre, Q. Ma, T. Matthey, J. Willcock, T. Slabach, B. Moore, G.
Viamontes, Lecture Notes in Computational Science and Engineering;
T. Schlick, H. H. Gan, Eds.; Springer Verlag: Berlin, 2002; pp. 146–174.

[14] J. C. Phillips, R. Braun, E. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot,
R. D. Skeel, L. Kale, K. Schulten, J. Comput. Chem. 2005, 26, 1781.

[15] B. Hess, H. Bekker, H. J. C. Berendsen, J. G. E. M. Fraaije, J. Comput.
Chem. 1997, 18, 1463.

[16] J. P. Ryckaert, G. Ciccotti, H. J. Berendsen, J. Comput. Phys. 1977, 23, 327.

[17] H. Grubmueller, P. Tavan. J. Comput. Chem. 1998, 19, 1534.

[18] H. Grubmueller, H. Heller, A. Windemuth, K. Schulten, Mol. Simul.
1991, 6, 121.

[19] M. Shuichi, P. A. Kollman, J. Comput. Chem. 1992, 13, 952.

[20] B. Hess, J. Chem. Theory Comput. 2008, 4, 116.

[21] E. Krieger, G. Vriend, Bioinformatics 2014, 30, 2981.

[22] B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theory Com-
put. 2008, 4, 435.

[23] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case, J. Comput.
Chem. 2004, 25, 1157.

[24] S. Piana, K. Lindorff-Larsen, R. M. Dirks, J. K. Salmon, R. O. Dror, D. E.
Shaw, PLoS One 2012, 7, e39918.

[25] U. Essman, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen,
J. Chem. Phys. 1995, 103, 8577.

[26] S. Piana, K. Lindorff-Larsen, D. E. Shaw, Biophys. J. 2011, 100, L47.

[27] D. J. Price, C. L. R. Brooks, J. Chem. Phys. 2004, 121, 10096.

[28] P. Lague, R. W. Pastor, B. R. Brooks, J. Phys. Chem. B 2004, 108, 363.

[29] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, J. R.
Haak, J. Chem. Phys. 1984, 81, 3684.

[30] T. Morishita, J. Chem. Phys. 2000, 113, 2976.

[31] J. Wang, P. Cieplak, P. A. Kollman, J. Comput. Chem. 2000, 21, 1049.

[32] A. G. Anderson, J. Hermans, Proteins 1988, 3, 262.

[33] M. Braxenthaler, R. Unger, D. Auerbach, J. A. Given, J. Moult, Proteins
1997, 29, 417.

Received: 4 December 2014
Revised: 14 February 2015
Accepted: 18 February 2015
Published online on 30 March 2015

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2015, 36, 996–1007 1007

http://www.newprot.eu
info:doi/10.1002/jcc.23899
http://onlinelibrary.wiley.com/

	l
	l

