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Summary

� The plastid-encoded plastid RNA polymerase (PEP) represents the major transcription

machinery in mature chloroplasts. Proteomic studies identified four plastome- and at least ten

nuclear-encoded proteins making up this multimeric enzyme. Depletion of single subunits is

known to result in strongly diminished PEP activity causing severe defects in chloroplast

biogenesis.
� Here, we characterized one PEP subunit in maize, ZmpTAC12, and investigated the molec-

ular basis underlying PEP-deficiency in Zmptac12mutants.
� We show that the ZmpTAC12 gene encodes two different protein isoforms, both of which

localize dually in chloroplasts and nuclei. Moreover, both variants assemble into the PEP-com-

plex. Analysis of PEP-complex assembly in various maize mutants lacking different PEP-com-

plex components demonstrates that ZmpTAC12, ZmpTAC2, ZmpTAC10 and ZmMurE are

each required to accumulate a fully assembled PEP-complex. Antibodies to ZmpTAC12 coim-

munoprecipitate a subset of plastid RNAs that are synthesized by PEP-dependent transcrip-

tion. Gel mobility shift analyses with recombinant ZmpTAC12 revealed binding capabilities

with ssRNA and ssDNA, but not dsDNA.
� Collectively these data demonstrate that ZmpTAC12 is required for the proper build-up of

the PEP-complex and that it interacts with single-stranded nucleic acids.

Introduction

Plastids are of endosymbiotic origin and still resemble today’s cy-
anobacteria in many aspects. One prominent characteristic
among them is their genetic system which consists of the plastid
genome (the ‘plastome’) and a machinery for its inheritance and
expression (Lopez-Juez & Pyke, 2005). The plastome of vascular
plants is c. 120–150 kbp in size and encodes a highly conserved
set of c. 120 genes that are required to build up the photosyn-
thetic apparatus and the plastid gene expression machinery (Sugi-
ura, 1992). Although the coding capacity of the plastome is
limited in comparison to the nuclear genome, its proper expres-
sion is crucial to plant development and growth (Pogson &
Albrecht, 2011).

Plastid gene expression combines features derived from the cy-
anobacterial ancestor with mechanisms that evolved after incor-
poration into the eukaryotic host (Barkan, 2011). Similar to their
prokaryotic counterparts, most plastid genes are organized into
operons with -35 (TTGaca) and -10 (TAtaaT) -like cis- elements

in the promoter regions (Zhelyazkova et al., 2012). The plastome
is transcribed by two RNA polymerases (RNAPs), a nuclear-
encoded single-subunit phage-type (NEP; Liere et al., 2011) and
a multimeric eubacterial-type plastid-encoded (PEP) polymerase.
The PEP core enzyme is formed by the products of the four plas-
tid genes rpoA, rpoB, rpoC1 and rpoC2 (Hu & Bogorad, 1990;
Pfannschmidt et al., 2000; Suzuki et al., 2004; Steiner et al.,
2011). One hallmark of the PEP transcription machinery, how-
ever, is the recruitment of additional nuclear proteins that do not
resemble bacterial proteins. These novel subunits have been iden-
tified in a series of proteomic studies defining subunit composi-
tion of highly purified PEP-complex assemblies (Pfannschmidt
et al., 2000; Suzuki et al., 2004; Steiner et al., 2011) and the
‘transcriptionally active chromosome’ (TAC); the latter is a pro-
tein fraction that is composed of several multimeric protein
complexes which are functionally related to DNA and
RNA metabolism (Pfalz et al., 2006; Melonek et al., 2012).
In Arabidopsis, TAC preparations also included products of the
plastid rpo genes, as well as 18 proteins termed plastid

1024 New Phytologist (2015) 206: 1024–1037 � 2015 The Authors
New Phytologist � 2015 New Phytologist Trustwww.newphytologist.com

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.

Research

http://creativecommons.org/licenses/by/4.0/


transcriptionally active chromosome proteins pTACs 1–18 (Pfalz
et al., 2006). The proteins pTAC2, -3, -6, -10, -12, -14, MurE,
FLN1, FSD2, FSD3 and TrxZ of the pTAC proteins were found
to be tightly associated with the PEP enzyme (Suzuki et al., 2004;
Steiner et al., 2011). Mutations in Arabidopsis and maize genes
encoding these PEP-associated proteins (PAPs) exhibited a strong
inhibition of chloroplast biogenesis mainly owing to repression
of PEP-dependent plastid genes (Pfalz et al., 2006; Garcia et al.,
2008; Myouga et al., 2008; Arsova et al., 2010; Gao et al., 2011;
Steiner et al., 2011; Jeon et al., 2012; Yagi et al., 2012; Williams-
Carrier et al., 2014). By contrast, the expression of NEP-depen-
dent genes was elevated. This molecular phenotype is similar to
that of D-rpo deletion mutants of tobacco (Allison et al., 1996;
Hajdukiewicz et al., 1997; De Santis-MacIossek et al., 1999; Kra-
use et al., 2000; Legen et al., 2002). However, mutants lacking
other pTAC proteins (e.g. FLN2, pTAC4, pTAC5, pTAC9,
pTAC16, pTAC18) have different molecular phenotypes, not
related to deficient transcriptional activities (Pfalz & Pfannsch-
midt, 2013). For example, no or small changes in gene expression
and a modest decrease in the chlorophyll content have been
reported. A model has been put forward which explains the phe-
notypic effects described for mutants lacking PAPs as a conse-
quence of a defect in PEP-complex formation (Pfalz &
Pfannschmidt, 2013).

In an independent study, the protein pTAC12 has also been
identified in a phytochrome B-mislocalization screen in
Arabidopsis (Chen et al., 2010). The isolated defective allele was
called hemera and induces the same ivory phenotype as the
ptac12 T-DNA insertion allele. The mutant is devoid of early
phytochrome responses and the protein appears to be located to
the nucleus, where it acts in early phytochrome signaling. In
complementation experiments it was able to partially rescue the
mutant rad23 allele in yeast, suggesting that it is likely involved
in nuclear protein degradation. A subsequent study demonstrated
that pTAC12/HEMERA interacts with photo-activated phyto-
chromes by direct protein–protein interaction promoting
pTAC12/HEMERA accumulation in the light (Galv~ao et al.,
2012).

These findings suggest that pTAC12 belongs to a group of
dually targeted proteins (Krause & Krupinska, 2009) that act in
plastids and the nucleus. The protein pTAC1 is another represen-
tative of this group and is also known as Whirly1 (Why1). It has
been reported to play important roles in diverse cellular processes
including transcriptional regulation (Desveaux et al., 2002;
2004), plastid genome stability (Mar�echal et al., 2009), RNA
splicing (Prikryl et al., 2008; Melonek et al., 2010) and signal
transduction pathways (Isemer et al., 2012).

Here we describe the analysis of maize ptac12 mutant alleles
(Zmptac12) and investigate ZmpTAC12 protein localization in
detail. Functional analyses focusing on the plastid-localized form
aim to specify its contribution to expression of PEP-targeted
genes. We show that ZmpTAC12 exists in two isoforms, both
dual localized to plastids and the nucleus, and that, within plast-
ids, both reside in the PEP-complex. We identify ZmpTAC12
in association with a subset of RNAs and demonstrate that
ZmpTAC12 exhibits both single-stranded (ss) RNA and

ssDNA-binding activity, but not double-stranded (ds) DNA-
binding. Studies of protein complexes reveal that ptac12, and
other maize ptac mutants lacking specific PAPs (e.g. Zmptac2,
Zmptac10 and ZmmurE), fail to accumulate the full PEP-com-
plex.

Materials and Methods

Nucleic acids

A cDNA clone (ZM_BFb0227G12) was obtained from the Ari-
zona maize cDNA project (http://www.maizecdna.org/). The
sequences of PCR primers and hybridization probes are listed in
Supporting Information Table S1 http://www.ncbi.nlm.nih.gov/
pmc/articles/PMC2718276/-S1.

Plant material and growth conditions

The recovery and basic phenotypic features of the mutants used
here were described in the following publications: hcf7 (Barkan,
1993); ppr10-2 (Pfalz et al., 2009); Zmptac12; Zmptac2-3,
Zmptac10-1/-2 and ZmmurE-1/-3 (Williams-Carrier et al., 2010,
2014); Zmwhy1-1/-2 (Prikryl et al., 2008); and w2 (ZmDNA-
polA-w2-mum2/w2-Burnham) (Udy et al., 2012). The inbred line
B73 was used for RIP-chip assays, cell fractionation experiments
and PEP-complex purification. Seedlings were grown in soil at
26–28°C in cycles of 16 h : 8 h, light : dark, and harvested
between 7 and 10 d after planting. Expression analyses of photo-
synthetic complex subunits and ZmpTAC12 accumulation along
the leaf gradient involved fully expanded second leaf blades (just
above the ligule). The lowermost part of elongating second leaf
blades (first 4 cm from the leaf insertion of 7 d-old seedlings) was
used for studies of protein complex assembly.

Antibody production

A PCR fragment covering the amino acids positions 80–394 of
the full ZmpTAC12 sequence was introduced into pet28b(+)
(Novagen, Madison, WI, USA). ZmpTAC12 was heterolo-
gously expressed from the construct pet28b/Zmptac12 in
Escherichia coli (E. coli) by isopropyl b-D-1-thiogalactopyranoside
(IPTG) induction for 4–5 h at 21°C. Recombinant protein was
purified by nickel affinity chromatography and used for antibody
production in rabbits (Biogenes, Berlin, Germany). The antigen
was used for affinity purification of the antiserum on a HiTrap
NHS-activated column (GE Healthcare Life Sciences, Waukesha,
WI, USA). Cloning, expression and purification of the
recombinant RpoA protein (1–261 aa) was carried out by
GenScript (Piscataway, NJ, USA). Anti-RpoA antibodies were
raised in rabbits (Biogenes).

Subcellular fractionation and protein analyses

Total leaf protein extracts were prepared and analyzed according
to Barkan (1998). Chloroplasts and stroma were prepared as
described previously (Schmitz-Linneweber et al., 2005).
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Thylakoid treatments were performed according to a protocol
described by Prikryl et al. (2008), including the non-ionic deter-
gents Triton X-100 (1%) and Chaps (1%), and sonication
(69 10 s on ice at 20% output; Sonopuls HD 2200, Bandelin,
Berlin, Germany) before centrifugation. Stromal proteins sedi-
mented through sucrose gradients were analyzed as described for
Why1 (Prikryl et al., 2008) except that aliquots of the stroma
fraction were treated with either 30 units AluI or 50 lg ml�1

RNase A in samples supplemented with protease inhibitor cock-
tail (Roche Applied Science, Mannheim, Germany) for 60 min at
37°C before centrifugation.

Nuclei (prepared as by-product of the purification of intact
chloroplast) were further isolated as described by Luthe & Quatr-
ano (1980). Solubilization of nuclear proteins was performed in
two sequential steps: (1) pelleted nuclei were resuspended in lysis
buffer (containing 80 mM (NH4)2SO4,) and sonicated (69 10 s
on ice at 20% output), and (2) nuclei obtained in step (1) were
resuspended in lysis buffer with (NH4)2SO4 adjusted to 0.8M.
Equal volumes of pellets and supernatants were analyzed by
immunoblotting.

PEP-complex enrichment, 2D-BN-PAGE and PEP-complex
assembly analyses

The enrichment procedure for PEP-associated proteins used a
two-step chromatographic method followed by two-dimensional
blue native polyacrylamide (2D-BN-PAGE). Methods were
established based on the procedure of Schr€oter et al. (2010).

Fractions containing the PEP-complex were identified by
immunoblotting with the anti-pTAC12 antibody and enzymati-
cally by determining the in-vitro transcriptional activity accord-
ing to Steiner et al. (2011). For 2D gel electrophoresis of the QS/
HS peak fraction, first dimension was performed as BN-PAGE in
a 4.5–14% acrylamide gradient gel followed by SDS-PAGE in a
10% acrylamide gel as second dimension. BN-PAGE was per-
formed as in Dietzel et al. (2011).

For PEP-complex assembly experiments, leaves were ground in
liquid nitrogen and proteins extracted with Triton X-100 lysis
buffer (100 mM Tris-HCl, pH 7.3, 10 mM MgCl2, 25% glyc-
erol, 1% Triton X-100, 5 mM b-mercaptoethanol and 19 prote-
ase inhibitor cocktail). Recovered protein complexes (c. 50 lg)
were separated by BN-PAGE in the first dimension on a gradient
gel of 4.5–14% acrylamide. The protein complexes in the gel were
subjected to immunodetection according to Wittig et al., 2006.

Sucrose gradient analysis of total leaf proteins used the same
extraction protocol as described for PEP-complex assembly
experiments including sonication treatments (39 10 s on ice at
20% output) and removal of insoluble plant material by centrifu-
gation at 4°C at 20 000 g for 30 min. Obtained homogenates
were then run through sucrose gradients (10–30%) at 4°C at
280 000 g for 15 h.

RNA analyses

RNA analyses were carried out as in Pfalz et al. (2009). RT-PCR
used the Qiagen-Kit according to the manufacture’s instructions.

Analysis of nucleic acids that coimmunoprecipitate with
ZmpTAC12 were performed as in Schmitz-Linneweber et al.
(2005). Samples were treated with either 70 U DNase I (supple-
mented with 80 U RNasin) or RNase A/AluI (35 U)/EcoRI
(35 U) before immunoprecipitation.

Expression and purification of recombinant MBP-pTAC12

A sequence encoding ZmpTAC12 (amino acids 72–555)
appended to the C-terminus of MBP was introduced into Rosetta
2 (DE3) cells (New England Biolabs, Ipswich, MA, USA) and
the recombinant fusion protein was heterologously expressed by
isopropyl-b-D-1-thiogalactopyranoside (IPTG) induction. Purifi-
cation on amylose resin was performed according to the manu-
facturer’s instructions.

Nucleic acid binding assays

Electrophoretic mobility shift assays (EMSAs) were carried out
according to established techniques. RNA substrates were gener-
ated by in vitro transcription from synthetic DNA templates with
an annealed T7 promoter oligonucleotide at the 50 end. For
DNA probes, oligonucleotides were end-labeled with T4 polynu-
cleotide kinase. Before EMSAs, substrates were electrophoresed
in an 8% denaturing polyacrylamide gel and purified by gel
extraction. In competition assays, different amounts of nonradio-
labelled ssDNA and ssRNA were included in the reaction.

Accession numbers

Sequence data from this article can be found in the Arabidopsis
Genome initiative or GenBank/EMBL databases under the fol-
lowing accession numbers: ZM_BFb0227G12 (Zmptac12), At2g
34640 (Atptac12), NP_001044373 (Osptac12), XP_002298838
(Ptptac12), XP_001783761 (Ppptac12), XP_003569910 (Bd-
ptac12), DAA64282 (Zmptac2), AFW84282 (Zmptac10),
AFW87925 (ZmmurE), AFW59605 (ZmDNApolA) and
AFW75491 (ZmWhy1).

Results

Dual targeting of maize pTAC12 isoforms to nuclei and
chloroplasts

Genes homologous to the Arabidopsis pTAC12 (HEMERA) gene
have been found in all land plants, from bryophytes to angio-
sperms (Chen et al., 2010). Although the overall amino acid
identity across phylogenetically distinct species is rather low (32–
57% identity), a multi-species alignment revealed a short, highly
conserved region of unknown function (Fig. 1a, amino acids
336–415; Supporting Information Fig. S1). Most of the ortho-
logs include a predicted coiled coil motif, which has been shown
to mediate protein–protein interactions or homodimerization in
other systems (Rose et al., 2004).

Two rabbit polyclonal ZmpTAC12 antibodies were generated
using a 315 amino acid epitope as antigen (Fig. 1a). The affinity-
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purified antibodies detected two ZmpTAC12 isoforms in the
chloroplast stroma, with apparent molecular masses of c. 75 and
65 kDa (Fig. 1b). The identity of both was further confirmed by
mass spectrometry (Table S2; Fig. S1). The larger variant corre-
sponds in size to the predicted full-length mature protein, as it
co-migrates with purified recombinant ZmpTAC12 (rpTAC12)
protein lacking the predicted chloroplast transit peptide. Both
forms are missing in Zmptac12 mutants (Fig. 1c). To investigate
potential variations in ZmpTAC12 transcripts encoding the two
isoforms, RNA gel blot analyses were performed. We detected
only one RNA species, whose size matches that anticipated for
the annotated full-length ZmpTAC12 transcript (Fig. 1d). The
probes used were designed to hybridize with both potential
ZmpTAC12 variants if they were present (Fig. S2a). This result
was further verified by RT-PCR amplifying the complete coding
region (Fig. S2b). In addition, a specific HA-antibody recognized
the two C-terminally HA-tagged ZmpTAC12 isoforms stably
expressed in Arabidopsis by introducing the corresponding full
length cDNA (Fig. S2c; see Supporting Information Methods S1
for details). Immunoblot analysis following treatments with pro-
tease inhibitors did not reveal varying accumulation pattern of
the distinct isoforms (Fig. S2d). Thus, it seems reasonable to con-
clude that the smaller ZmpTAC12 form originates from post-
transcriptional processes, such as alternative initiation of
translation, differential proteolytic cleavage of the N-terminal
region, or post-translational modification affecting protein
mobility in the gel.

In order to determine whether the two isoforms accumulate
differentially during leaf development, we analyzed the
ZmpTAC12 accumulation profile along the natural leaf gradient

of the developing maize leaf (Leech et al., 1973). Immunodetec-
tion of ZmpTAC12 in total leaf extracts demonstrated develop-
ment-dependent accumulation, with reduced concentrations at
the leaf tip containing mature chloroplasts (Fig. 1e). This is in
accordance with the accumulation profile of the RpoA subunit of
the RNA polymerase, which was detected as control (Fig. 1e).
Moreover, the ratio of the larger to smaller form decreases from
the base (similar to leaf sheath) of the leaf blade to the tip. These
changes in the accumulation patterns may be related to differen-
tial protein stability. Both isoforms accumulated to similar con-
centrations in light and darkness (Fig. 1f), unlike the Arabidopsis
pTAC12 whose expression is light-dependent (Chen et al., 2010;
Galv~ao et al., 2012). These different expression patterns of
pTAC12 (and other PAPs) might be related to the known differ-
ences of the photomorphogenic developmental programs in
maize and Arabidopsis (Nemhauser & Chory, 2002). For exam-
ple, seedling leaf development is light-independent in maize but
is light-dependent in Arabidopsis.

ZmpTAC12 is predicted to harbor a nuclear localization signal
and an N-terminal plastid-directing transit peptide (Emanuelsson
et al., 1999) (Fig. 1a). Indeed, the Arabidopsis protein was
recently shown to be dually localized to chloroplasts and nuclei as
observed by immunofluorescent labeling and immunoblotting
(Chen et al., 2010). Furthermore, proteomic studies identified
pTAC12 in chloroplast nucleoids in Arabidopsis and maize (Pfalz
et al., 2006; Majeran et al., 2012). To address the localization of
the two ZmpTAC12 isoforms experimentally we analyzed sub-
cellular fractions from light-grown seedlings by immunoblotting
(Fig. 2a). Compared to the total leaf extract, both ZmpTAC12
isoforms were substantially enriched in chloroplasts. We also
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Fig. 1 Schematic protein structure and expression of maize ZmpTAC12 RNA and protein. (a) Predicted protein structure illustrating conserved region and
domains. Recombinant proteins used for rabbit vaccination and production of rpTAC12 are indicated as light gray and dark bars, respectively. Numbers
represent amino acids. TP, transit peptide, NLS, bipartite nuclear localization signal. (b) Immunoblot analysis demonstrating expression of two different
isoforms of the ZmpTAC12 protein detected by affinity-purified antibodies. Arrows denote both ZmpTAC12 proteins. Numbers on the left represent Mr of
molecular weight standards. (c) Immunoblot analysis of ZmpTAC12. Ponceau staining is shown to demonstrate equal loading of protein samples (25 lg)
taken from the second leaf. The hcf7mutant was used to control for pleiotropic defects. (d) ZmpTAC12 transcript size determined by Northern blot
analysis. Total leaf RNA (c. 50 lg) was hybridized to cDNA probes (Supporting Information Fig. S1). (e) Immunoblots (25 lg protein) showing ZmpTAC12
expression along the leaf developmental gradient of leaf 2 of a 10-d-old seedling. Shown image is representative of three independent experiments. The
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expression in second leaves of light- and dark-grown seedlings. The Ponceau staining of the membrane is shown below.
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detected significant amounts in nuclei. Analysis of chloroplast
subfractions localized ZmpTAC12 to both the stroma and chlo-
roplast membranes. Purity of the chloroplasts and nuclei was
tested by using antibodies raised against organelle-specific pro-
teins. To assess possible cross-contamination of nuclei with plas-
tid TAC-proteins, fractions were analyzed with an antibody
specific for pTAC3 (Yagi et al., 2012). The pTAC3 antibody

detected a c. 100-kDa protein only in chloroplasts, demonstrat-
ing that there is not significant contamination of the nuclear
fraction with chloroplasts (Fig. 2a). These results provide evi-
dence that ZmpTAC12 is dually localized to the nucleus and
chloroplasts in maize, as in Arabidopsis. The nuclear located
ZmpTAC12 isoforms appear to be the same size as the chloro-
plast proteins, where the longer variant has a size consistent with
the full-length mature form lacking the transit peptide. The fact
that the nuclear form comigrates with the plastid form suggests
that it may lack the N-terminal transit peptide, implicating a
mechanism for nucleus targeting different from that of classic
NLS-containing proteins.

In order to explore the basis for the association of
ZmpTAC12 to the membrane, the membrane fraction was sub-
jected to a variety of extraction procedures (Fig. 2b). Membrane-
association of ZmpTAC12 as well as of RpoA was resistant to
low concentration of non-ionic detergents (e.g. 1% Triton
X-100 and 1% CHAPS). DNAse I released a small portion
(approximately one quarter) of ZmpTAC12 and RpoA to the
soluble fraction. The majority of the control protein Why1,
which is known to be associated with nucleoids and TAC,
remained largely associated with membranes after washes with
non-ionic detergents but could be extracted from chloroplast
membranes with DNase and RNase treatments, as shown previ-
ously (Prikryl et al., 2008). The lower sensitivity to nuclease
treatments of ZmpTAC12, as compared to Why1, may be due
to steric hindrance within plastid nucleoids, making the PEP-
complex less accessible to nucleases. Finally, plastidic
ZmpTAC12 was released into soluble fractions after brief soni-
cation of membrane pellets in buffer containing 1% Triton
X-100 and 80 mM (NH4)2SO4 (Fig. 2c). The same procedure,
however, did not release large quantities of ZmpTAC12 from
the nuclear pellet, which is consistent with the behavior of the
nuclear proteins H3 and Why1. In the presence of high salt con-
centrations (e.g. 0.8 M (NH4)2SO4) c. 50% of H3 and Why1
were solubilized, but not ZmpTAC12. This is consistent with
known differences in the solubility of nuclear proteins
(Nov�akov�a et al., 2006). Together, these data support the identi-
fication of pTAC12 as a nuclear localized protein.

Both ZmpTAC12 isoforms assemble into the PEP-complex
in maize

In order to analyze the association of the two ZmpTAC12 iso-
forms with macromolecular complexes, stromal extracts were
fractionated by sedimentation through sucrose gradients
(Fig. 3a). Before centrifugation, stromal aliquots were treated
either with RNase A or the restriction endonuclease AluI, or
incubated under the same conditions but without enzyme treat-
ments (Mock). Both ZmpTAC12 isoforms co-sedimented over a
wide range of fractions, with distinct peaks recovered in the size
range of 800–1000 kDa and also in pelleted material at the bot-
tom of the gradient (> 1200 kDa). AluI treatments eliminated
the pelleted ZmpTAC12 material and increased the recovery of
ZmpTAC12 in smaller particles, whereas RNase treatment had
little effect. Notable, lower molecular weight fractions (fraction
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Fig. 2 Dual localization of ZmpTAC12 to the plastids and the nucleus in
maize. (a) Subcellular localization of ZmpTAC12. Protein extracts (25 lg)
from leaves, nuclei (Nuc), chloroplasts (Cp) and plastid subfractions were
resolved by SDS–polyacrylamide gel electrophoresis (PAGE). Proteins were
detected by immunoblot analysis with the indicated antibodies. The
Ponceau staining of the membrane is shown below. The photosystem II
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were used as marker proteins for thylakoids (thy), stroma and nuclei,
respectively. Anti-pTAC3 was used to monitor contaminations of nuclear
fractions with TAC-proteins. (b) Membrane association of ZmpTAC12. An
equal proportion of pelleted thylakoids (as indicated above) and
supernatant were subjected to SDS-PAGE and examined by
immunodetection with pTAC12 and RpoA antibodies. Anti-Why1 was
used as control for protein release. (c) ZmpTAC12 solubility. An equal
proportion of pelleted material (as indicated above) and supernatant were
subjected to SDS-PAGE. Immunodetection was perform with pTAC12,
Why1 and H3 antibodies. Proteins were isolated from 10-d-old maize
seedlings. P, pellet; S, supernatant.
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3) contained predominantly the larger isoform that became more
evident after AluI treatments. Nonetheless, the two isoforms gen-
erally behaved similarly during sucrose gradient sedimentation,
suggesting that both pTAC12 isoforms are found in the same
protein complexes.

In order to further clarify whether both maize variants reside
in the PEP-complex, ZmpTAC12 protein composition was
investigated by a two-step chromatographic method followed by
2D-gel-electrophoresis with a native first dimension, the estab-
lished method for PEP-complex purification (Fig. 3b). We
detected both protein isoforms associated with the PEP-complex
purified from stromal extracts (Fig. 3c,d). Migration of
ZmpTAC12 on BN gels showed that it resided in a complex of c.
1000 kDa (Fig. 3c), corresponding to the size reported for the
purified full PEP-complex in tobacco and mustard (Suzuki et al.,
2004; Schr€oter et al., 2010).

Genome-wide analysis of nucleic acids associated with
ZmpTAC12 in vivo suggests selective binding of subsets
of PEP-dependent genes

The observation that ZmpTAC12 co-purifies with high molecu-
lar weight complexes containing DNA and possibly RNA
prompted us to explore associated nucleic acid sequences using
established RIP/DIP-chip protocols for an initial screen (Prikryl
et al., 2008). For RNA detection, the co-immunoprecipitations
were treated with DNase I to remove DNA from the samples
(Fig. S2e,f). RNAs recovered in the pellet and supernatant were
then labeled with different fluorescent dyes, and co-hybridized to
a tiling microarray of the maize chloroplast genome (Schmitz-
Linneweber et al., 2005). We calculated the median ratio of sig-
nal in the pellet vs supernatant for each spot on the microarray
and compared those ratios to corresponding values from a control
immunoprecipitation using antibody against PsaAB (a subunit of
Photosystem I that is, not expected to bind RNA). Replicate
experiments were performed with the two pTAC12 antibodies. A
summary plot, presented in Fig. 4(a), reveals that the PEP-depen-
dent transcripts from the psbA, psaA-psaB-rps14 and psbE/psbF
loci are significantly enriched in the pTAC12 assays in compari-
son to the control. Most other RNAs known to be transcribed
primarily by PEP were enriched among the sequences identified
in the immunoprecipitate (e.g. atpF/atpA, atpI/atpH, petL, psaC,
psbJ/L/F/E, psbB/psbT/psbN and others). Furthermore, high signal
peaks were also detected for gene loci, which are targeted by both
PEP and NEP-polymerase (e.g. ycf3, rps12, rpl20, rpl2, ndhB,
ndhD, clpP and others). By contrast, rrn16 and some tRNAs (e.g.
trnG-UCC; trnV-UAC; trnA-UGC; trnR-ACG, trnL-UAA) are
believed to be transcribed primarily by PEP (Kanamaru et al.,
2001; Legen et al., 2002; Ishizaki et al., 2005; Williams-Carrier
et al., 2014), but these RNAs appeared not to be significantly
enriched in the pTAC12 RIP-chip experiments. The small
enrichment peaks of latter genes could be a result of signal satura-
tion caused by high RNA abundance in the supernatants. A sum-
mary of the pTAC12 RIP-chip data is provided in Table S3.

The RIP-chip data were validated by slot blot hybridization
assays using the same coimmunoprecipitation conditions as for

RIP-chip assays (Fig. 4b). From the set of tested sequences, most
of the highly enriched RNAs in the RIP-chip assays (psbA, psaAB,
rps12, rpl2 and petB) were confirmed by the slot-blot data; psbB,
rps14 and psbE coimmunoprecipitated with ZmpTAC12 to a rel-
ative moderate degree (c. 50%). Consistently with the RIP-chip
data, several tRNAs showed little or no enrichment. Taken
together, these data provide support for the hypothesis that
ZmpTAC12 associates with a subset of PEP-derived transcripts,
either directly or indirectly through its association with PEP.
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Fig. 3 Both ZmpTAC12 isoforms are components of the PEP-complex. (a)
Sucrose-gradient sedimentation demonstrating that ZmpTAC12 is
associated in high molecular weight complexes containing nucleic acids.
Stromal extracts of 7-d-old maize seedlings were sedimented through
sucrose gradients after treatment with RNase A, or AluI, or incubated
without nucleases (mock) using identical conditions. Equal proportions of
gradient fractions were analyzed by immunoblotting with the indicated
antibodies. Ponceau staining is shown to demonstrate the position of
Rubisco (c. 550 kDa). Str, stroma; P, pelleted material. (b) Scheme of
subcellular fractionation and purification. Intact chloroplasts were isolated
from 10-d-old seedlings and lysed for stroma preparation.
Transcriptionally active fractions were subsequently enriched by QS and
HS chromatography, and analyzed by BN/SDS-PAGE. (c) Blue native gel in
the first dimension. Protein complexes from chloroplasts (50 lg crude
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In an attempt toward delineating plastid DNA loci associated
with pTAC12 (and potentially loci of high PEP-activity), DNAs
were extracted from the immunoprecipitation pellet and superna-
tant and subjected to DIP-chip analyses. In this assay, DNAs
were fragmented including the restriction enzymes AluI and Eco-
RI before immunoprecipitation. Additionally, stromal extracts
were treated with ribonucleases, and alkali hydrolysis was
included to remove RNA after the immunoprecipitation. The
signal ratio of the two DNA populations (pellet and supernatant)
was calculated in order to reflect the enrichment of respective
DNA segments precipitated by the pTAC12 antibodies (Fig. S3).

Overall, nearly all of the input DNA was recovered in pelleted
material. The most abundant sequences map to tRNAs, matK
and genes encoding ribosomal subunits. Some of these were also
identified among top ranked genes (e.g. trnV-UAC, matK, trnL-
UAA and trnG-UCC) using antibodies against the HA-tagged
RpoA subunit in tobacco (Finster et al., 2013). It is interesting,
however, that DNA encoding tRNAs and ribosomal protein
mRNAs appeared enriched, in comparison to their representation
in the RIP-chip data. These results suggest that ZmpTAC12, as
an intrinsic subunit of the multimeric PEP-complex, may associ-
ate preferentially with particular DNA regions, but additional
experiments that include a crosslinking step would be required to
clarify this point.

ZmpTAC12 contributes to PEP-complex formation

Zmptac12 mutants were described previously to display a similar
yellowish phenotype (Williams-Carrier et al., 2010, 2014) as
reported for the corresponding Arabidopsis mutants (Pfalz et al.,
2006). Our allelic series of Zmptac12 mutants includes mutants
with various degrees of loss-of-function, reflected by a range of
phenotypic severity. Here, we studied the molecular and bio-
chemical defects associated with the Zmptac12 allelic series (e.g.
homozygous Zmptac12-1 and Zmptac12-2 mutants and the het-
eroallelic progeny Zmptac12-1/-2) in comparison with hcf7
mutants, which have a moderate deficiency for plastid ribosomes
(Barkan, 1993), and are similar in pigmentation and protein con-
tent to the Zmptac12. Defects in plastid gene expression parallel
closely those previously shown for mutants with reduced PEP-
activity (Williams-Carrier et al., 2014). Changes noted in
Zmptac12 include altered levels of PEP- and NEP-dependent
transcripts as well as low expression of photosynthetic enzyme
complexes (Figs 5a,S4a). The most severe defects were observed
in plants homozygous for the Zmptac12-2 allele, consistent with
the position of this insertion within the protein-coding region
(Fig. S2a). Therefore, the latter was used in the following studies.

The nuclear localization of ZmpTAC12 suggests that it might
function in phytochrome (PHY) signaling as reported for the
Arabidopsis ortholog ptac12/hemera (Chen et al., 2010). To
address its potential role in phytochrome responses during
seedling development we examined the effect of light on mesoco-
tyl elongation, which in maize is triggered by PHYB1 (and in
part by PHYA and PHYC) in response to red light (Sawers et al.,
2002; Sheehan et al., 2007). Similar light conditions repress cole-
optile elongation in rice and hypocotyl elongation in Arabidopsis
(Takano et al., 2005; Nagatani et al., 1993). Interestingly,
Zmptac12-2 seedlings showed no apparent difference from the
wild-type (WT) in light-dependent mesocotyl elongation (Fig.
S4b). This experiment suggests that ZmpTAC12 is not required
for phytochrome-mediated signaling in developing seedlings.
However, further experimental validation is required to put a
more accurate figure on the nuclear role of pTAC12 in maize.

Plastid RNA synthesis is carried out mainly by the PEP-tran-
scription machinery, whose assembly and molecular regulation
are still largely uncharacterized. To address the roles of specific
subunits in the assembly of the complex, we examined the
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Fig. 4 Coimmunoprecipitation assays identifying chloroplast RNAs (RIP)
associated with ZmpTAC12 in maize seedlings. (a) Summary of RIP-chip
data. Stroma was treated with DNase I before immunoprecipitation. The
median log2 (F635/F532) for replicate spots is plotted as a function of
chromosomal position after subtracting the corresponding values for
control immunoprecipitation with PsaAB antibody. The two ZmpTAC12
immunoprecipitations (a and b) used sera from different immunized
rabbits. (b) Validation of RIP-chip data by slot blot hybridization.
Immunoprecipitations (with antibodies indicated above) and RNA
extractions were performed as for RIP-chip assays. One-sixth of the RNA
from each immunoprecipitation pellet and one-twelfth of the RNA from
the corresponding supernatant (Sup) were applied to replicate slot blots.
Two replicate experiments were performed, using pTAC12 antibodies (a
and b) from different immunized rabbits. RNAs purified from
immunoprecipitations with antibodies against PsaAB were analyzed as
controls. Blots were probed with the probes indicated below.
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accumulation and assembly status of various PEP subunits in
mutant lines lacking other subunits. For these experiments, we
took advantage of maize mutants lacking PEP-complex subunits
pTAC12, pTAC2, pTAC10 or MurE (Williams-Carrier et al.,
2014) and a mutant deficient for Why1 (Prikryl et al., 2008).
The latter was selected because it associates with plastid nucleoids
but appears not to be an integral component of the PEP. In addi-
tion, the contribution of plastid DNA to the abundance and
assembly of the complex was addressed by analyzing PEP assem-
blies in maize w2 mutants, which have a c. 5-fold decrease in
cpDNA amounts due to a mutation in the gene encoding the
plastid DNA polymerase (Udy et al., 2012). Hcf7 with global
defects in plastid translation, and ppr10-2 with specific defects in
the expression of the ATP synthase and PSI (Barkan, 1993; Pfalz
et al., 2009) served as controls to address effects of plastid gene
expression defects on PEP-complex assembly. First, protein
abundance was investigated by immunoblot analysis. Because the
buildup of the multimeric PEP-complex occurs early during
chloroplast development, total protein extracts were prepared
from the base of second leaves. We observed a decline of the
RpoA protein concentration in all mutants in relation to the
amount in WT (Fig. 5b). RpoA was most severely reduced in

Zmptac2-2 null mutants (Fig. 5b), but was only minimally
decreased in the hypomorphic Zmptac2-3 allele (Fig. S5a). The
total content of ZmpTAC12, ZmpTAC3 or WHY1 was unal-
tered in mutants lacking other PAPs (Fig. 5b). To determine the
effect of each protein on assembly of the PEP complex, we
explored by blue native PAGE analysis whether the assembly of
the full complex was affected in mutants lacking specific PEP-
associated proteins. BN-PAGE showed that hcf7 and ppr10-2
mutants contained the full supramolecular PEP-complex, and
that this complex is slightly reduced in mutant alleles of Why1
and W2 (Fig. 5c,d). The impact of W2 depletion is interesting, as
it suggest that a reduction in cpDNA influences the amount of
the complex, but the assembly is not impaired. By contrast, in
mutants deficient in subunits of the PEP-complex (Zmptac2-2
and Zmptac10-1/-2), pTAC12 failed to assemble into a complex
of normal size (c. 1000 kDa; Schr€oter et al., 2010). This PEP
deficiency was less pronounced in ZmmurE-1/-3 mutants, which
is most likely due to different strengths of the mutant alleles
(Williams-Carrier et al., 2014). Additional bands corresponding
to the free, unassembled form or to smaller weight complexes
were not detectable in any of the mutants, except for one very
faint band in Zmptac10-1/-2. Perhaps the amount of distinct
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forms of ZmpTAC12 is below the detection limit in blue native
gels. From these results, we conclude that pTAC2, pTAC10 and
MurE are required for the accumulation of the full PEP-complex
and that an arrest in chloroplast biogenesis does not generally
affect its stable assembly.

Next, we performed sucrose gradient sedimentation analysis to
further evaluate the PEP-assembly status in Zmptac12-2 in com-
parison to that in the hcf7 control and mutants lacking
ZmpTAC2 and ZmpTAC10. For this experiment, crude protein
extracts were sonicated in presence of low salt concentrations and
Triton X-100 to completely release thylakoid-bound
ZmpTAC12 to soluble fractions (note, the majority of the
nuclear ZmpTAC12 is not released by this treatment). Solubili-
zation efficiency and maintenance of assembled protein com-
plexes were monitored by immunoblotting before sedimentation
of the soluble supernatant through sucrose gradients (Fig. S5b–
d). The status of PEP complex assembly was then assayed with
antibodies against the PEP core (Fig. 5e). The bulk of RpoA pro-
tein in the Zmptac12-2 extract was found at the top of the gradi-
ents and was nearly undetectable in peak fractions compared to
the WT. A strong defect in PEP complex formation was also
observed in hypomorphic alleles of Zmptac2 and Zmptac10. By
contrast, parallel analysis revealed intact PEP assembly processes
in the hcf7 mutant, indicating that ZmpTAC12 as well as Zmp-
TAC2 and ZmpTAC10 are essential for the stable assembly of
the core PEP polymerase. Interestingly, RpoA was detected in
complexes of intermediate size in extracts from Zmptac2-3 and
Zmptac10-1 mutants suggesting the buildup of partially formed
complexes, whereas these complexes were not observed in the
Zmptac12-2 mutant (Fig. 5e). ZmpTAC12 appears also to be
part of lower molecular weight complexes that are most domi-
nant in gradient fractions of similar size (Figs 5e,S5e). These
studies show that ZmpTAC12, ZmpTAC2 and ZmpTAC10 are
each required to assemble PEP into a high molecular weight com-
plex, and suggest that the loss of PEP activity in these mutants is
a consequence of these assembly defects.

ZmpTAC12 interacts with ssRNA and ssDNA

In the RNA coimmunoprecipitation experiments (Fig. 4), the
psbA and psaAB RNAs appeared to be the most enriched RNAs.
We next asked whether the recombinant ZmpTAC12 (rMBP-
pTAC12) exhibits intrinsic binding properties for sequences cor-
responding to the tri-cistronic transcript psaA-psaB-rps14
(Fig. 6a–f). For this purpose we used mobility-shift experiments.
Sequences being studied cover the 50UTRs of psaAB beginning at
each of two potential transcription start sites (TSS1 and TSS2),
the upstream located prokaryotic-like ‘-35’ and ‘-10’ promoter
elements, and the coding region (Figs 6b,S6). A sequence within
the 50UTR of rrtf1 (a nuclear gene encoding the redox-responsive
transcription factor 1) was used as control template. Recombinant
ZmpTAC12 protein was expressed in E. coli as a maltose-binding
protein fusion (rMBP-pTAC12) and incubated with single-
stranded (ss) RNA in the presence of high concentrations of hep-
arin (1 lg ll�1) to reduce nonspecific binding. Binding activities
to ssDNA was assessed in parallel. As shown in Fig. 6(c,d),

ZmpTAC12 binds to both ssRNA and ssDNA. Overall, the
binding abilities to particular nucleotide sequence were very simi-
lar, suggesting rather a nonspecific binding mode. However,
comparing the amount of free nucleic acids in each reaction, a
slightly higher preference appears for the site surrounding TSS2
within psaAB relative to the adjacent sites. The binding to this
sequence was confirmed by competing with cold ssDNA and
ssRNA of the same sequence (Fig. 6e). Thus, it might be possible
that ZmpTAC12 possesses weak binding preferences for
sequences or structures in the psaAB-150 substrate, but additional
experiments that include several other substrates would be
required to clarify this point. Furthermore, binding to the corre-
sponding double-stranded (ds) DNA sequence was tested. We
did not observe any differences between the samples without and
with increasing amounts of the recombinant protein (Fig. 6f),
suggesting that ZmpTAC12 is only capable to interact with ss
but not dsDNA.

Discussion

The PEP core enzyme exhibits overall structural and functional
similarities to the eubacterial transcription system (Liere et al.,
2011). Over the past few years, however, biochemical and genetic
studies have uncovered several nuclear encoded proteins that
appear to have a fundamental role in PEP-mediated transcription
(Pfalz & Pfannschmidt, 2013). Although it is known that the
genetic disruption of these subunits in Arabidopsis compromises
PEP-mediated transcription, the specific roles of these subunits
in plastid transcription remain to be characterized. In this study,
we have investigated the function of the dual targeted protein
pTAC12 (PAP5) in maize, with emphasis placed on its role in
chloroplasts.

Role of ZmpTAC12 in plastid gene expression

The assembly of the PEP-polymerase is a complex process involv-
ing at least 16 subunits encoded by both nuclear and plastid
genes (Suzuki et al., 2004; Steiner et al., 2011). To date, very
little is known about the order in which subunits assemble into
the multimeric PEP-complex. In mustard cotyledons, for exam-
ple, developmental stage-specific variants of the PEP complex
with different subunit composition were identified (Pfannsch-
midt et al., 2000). This might delineate a possible order of PEP-
assembly during early light-dependent chloroplast development,
whereby the Rpo subunits generate the core complex (PEP-B)
and which then is coated by additional proteins building the
larger PEP-A complex (Steiner et al., 2011; Pfalz & Pfannsch-
midt, 2013). However, our analysis of PEP-assembly in young
leaf tissue detected PEP-complex amounts in hcf7 similar to that
in WT but not or significantly reduced in mutants lacking PEP-
associated proteins (Fig. 5b–e). A proper assembly of the PEP
was also observed in a mutant lacking the plastid ATP synthase
(ppr10-2) (Pfalz et al., 2009), in a mutant with reduced plastid
DNA content (w2) (Udy et al., 2012), or in a mutant deficient
for the nucleoid-associated protein Why1 (Prikryl et al., 2008).
Taken together, these data indicate that the absence of a
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Zhelyazkova et al., 2012), and Arabidopsis (Fey et al., 2005) with that of maize, of which the TSS has not been mapped (Supporting Information Fig. S6).
The positions of probes used in assays are diagrammed below. (c) and (d) Gel mobility shift assays showing binding of rMBP-pTAC12 to ssRNA and ssDNA,
respectively. Binding specificity was examined with indicated radiolabeled 50mer RNA or DNA (c. 100 pM) and with increasing amounts of rMBP-pTAC12
and MBP, respectively. MBP was used as control. (e) Binding activity in absence and presence (10–100-fold molar excess) of the non-radiolabelled
competitor ssRNA or ssDNA (psaAB-150). (f) Gel mobility shift assay of dsDNA. 100 pM of psaAB-150 dsDNA was incubated with increasing amounts of
rMBP-pTAC12. The gel was run in parallel with ssDNA substrates shown in (d).
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multimeric PEP-complex in pap mutants is not attributable to an
arrest of chloroplast development. Furthermore, neither the
Zmptac12-2 nor hcf7 mutants accumulated PEP complexes of
intermediate size, whereas the latter were present in the hypomor-
phic Zmptac2-3 and Zmptac10-1 mutants (Fig. 5e). This observa-
tion may reflect at which stage the PEP assembly process is
impaired. However, the failure to accumulate the PEP core
enzyme could also be due to the absence of the RpoC1 and
RpoC2 subunits, despite high mRNA expression levels (Fig.
S4a).

A regulatory function for PAPs has been widely suggested
based on the PEP-deficiency observed in the corresponding inac-
tivation mutants (Pfalz et al., 2006; Garcia et al., 2008; Myouga
et al., 2008; Arsova et al., 2010; Gao et al., 2011; Jeon et al.,
2012; Yagi et al., 2012; Yu et al., 2012). However, deletions of
most known regulators of chloroplast transcription (such as
sigma factors) do not result in such strong phenotypes but,
rather, compromise the expression of a few genes or have only
minor impact on plastidial metabolism (Barkan, 2011; Lerbs-
Mache, 2011; Liere et al., 2011). The PEP-deficiency in pap
mutants, thus, is not a conclusive indication for PAPs being
important regulators; however, it does not exclude it either. Inter-
estingly, pTAC2, pTAC3, pTAC10 and pTAC14 possess pre-
dicted protein domains (PPR, MutS, SAP, S1 and SET) that
typically function to mediate RNA or DNA metabolism, and
thus potentially could control PEP activity by modulating the
conformation of targeted DNA/RNA during transcription.
Indeed, pTAC10 of Nicotiana benthamiana has been shown to
convey transcription-stimulating activities and to bind RNA in
vitro (Jeon et al., 2012). Another factor important for transcrip-
tional activity is pTAC3; it associates with PEP-dependent tran-
scribed regions in a light-dependent manner and, thus, could be
important for transcription initiation and elongation (Yagi et al.,
2012), respectively.

ZmpTAC12 associates in vivo with subsets of PEP-derived
transcripts

Our initial RIP-chip analysis suggested that ZmpTAC12 associ-
ated with a subset of RNA sequences in vivo, whereas an associa-
tion with specific plastid DNA sequences was only modestly
evident. The latter observation is perhaps not surprising, consid-
ering the physical linkage to the PEP-complex and nucleoids.
Nevertheless, the enrichment peaks could represent positions of
the PEP-complex along plastid DNA, and thus, highlight regions
of higher transcriptional activities. However, we found RNAs to
be enriched in immunoprecipitates from throughout the chloro-
plast genome. The strongest enrichment signals map to genes
containing either solely sequence motifs of bacterial promoters
(e.g. psaAB, psbA, psbE/F, psbB, atpF) or along with NEP promot-
ers (e.g. rps12, rpl2). These findings are supported by genetic
analysis which uncovered characteristic features of PEP-deficiency
in ptac12 mutants (Pfalz et al., 2006; Williams-Carrier et al.,
2014; Fig. S4). The high coverage of transcripts throughout the
entire chloroplast genome is also consistent with the fact that the
RNA majority originates from PEP activity. In green barley

leaves, for example, at least 88% of all primary transcripts appear
to be PEP-transcribed (Zhelyazkova et al., 2012). Surprisingly, a
few prominent PEP-transcribed genes, such as rrn16 and several
tRNAs were only slightly or not enriched in immunoprecipitation
pellets in RIP-chip or slot blot assays. With respect to the overall
enrichment, it seems possible that ZmpTAC12 associates with
selected fractions of PEP-derived transcripts, either directly or
indirectly through its association with PEP. Furthermore, the
results raise also the possibility that the PEP-machinery might
recruit proteins for specific RNA interactions to directly stabilize/
process nascent transcripts or to couple mRNA to ribosomes, as
emphasized by the finding of numerous RNA-binding proteins
co-purifying with the nucleoid (Majeran et al., 2012). In this case,
signals from immunoprecipitated DNAs and RNAs would pro-
duce different enrichment profiles. Reliable interpretation of
RIP-chip data for the highly abundant rRNAs and tRNAs, how-
ever, is difficult due to saturation of the probes and the fact that
the bound form might represent only a minute fraction of the
total. Therefore, the apparent absence of some tRNAs and rRNAs
from the bound fraction should be interpreted with caution.

Our in vitro analysis of nucleic acid binding activities revealed
that ZmpTAC12 interacts with both ssRNA and ssDNA but pos-
sesses only a weak binding preference for substrates with a partic-
ular nucleotide sequence or structure. These rather nonspecific
binding properties are consistent with the large number of identi-
fied DNAs/RNAs in immunoprecipitates and might be linked to
a general role in transcription (with multiple binding sites for
PEP-derived transcripts). As such pTAC12 could contribute to
proper positioning of tethered DNA and/or RNA to active sites
of transcriptional or post-transcriptional processes, rather than
being a specific modulator.

Implication of dual-targeting to chloroplasts and nuclei

Several features of the maize pTAC12 protein are similar to those
reported previously for Arabidopsis in particular, its aforemen-
tioned subcellular distribution properties to nuclei and chloro-
plast. Interestingly, we immunodetected two ZmpTAC12
isoforms, each being dually targeted into both compartments
(Fig. 2a). Proteins with multiple locations have been reported for
a variety of phylogenetically distinct species (Carrie & Small,
2013; Krause & Krupinska, 2009). One frequent mechanism of
dual localization involves alternative gene expression processes
producing structurally different proteins from a single gene (Yo-
gev & Pines, 2011). Other proteins possess sorting sequences for
more than one compartment and consequently accumulate in
forms of different molecular mass. If this holds true for
ZmpTAC12, both the nuclear and plastid form should show
clear differences in electrophoretic mobility in gels, considering
the average size of a plastid transit peptide of c. 6 kDa. Contro-
versially, our immunological analyses of subcellular fractions
indicated that the nuclear ZmpTAC12 isoforms both have a sim-
ilar molecular mass as the plastidic proteins (Fig. 2a), consistent
with the localization data of pTAC12/Hemera in Arabidopsis
(Chen et al., 2010). This finding is surprising as it points to a
translocation mechanism toward the nucleus acting subsequently
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to the processing of the transit peptide within the plastids.
Indeed, translocation from chloroplasts to the nucleus has been
demonstrated for Why1 in transplastomic tobacco plants encod-
ing the protein inside the chloroplasts (Isemer et al., 2012). For
ZmpTAC12 the theoretical conjecture, however, still needs to be
confirmed experimentally.

Furthermore, it remains to be investigated whether the
detected ssRNA/ssDNA binding activities of ZmpTAC12 are
active also in the nucleus. Although an action of the RAD23-like
multi-ubiquitin binding activity appears unlikely in the plastids,
because this degradation pathway does not exist in this compart-
ment, an interaction of pTAC12 with nucleic acids within the
nuclear compartment is highly likely. Early phytochrome signal-
ing events seem not to be pTAC12-dependent in maize, but
ZmpTAC12 nevertheless could be involved in phytochrome sig-
naling at a later stage of development.
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