Skip to main content
. 2019 Jul 13;24(14):2559. doi: 10.3390/molecules24142559

Table 2.

The classification efficiency values and total accuracy of independent decision making with Partial least squares discriminant analysis (PLS-DA) and random forest (RF) models. RFE: Recursive feature elimination.

Model Calibration Set Validation Set
Class1 Class2 Class3 Class4 Class5 Accuracy Class1 Class2 Class3 Class4 Class5 Accuracy
FT-MIR PLS-DA 0.961 1.000 0.995 0.981 0.990 97.66% 1.000 0.991 0.913 1.000 0.991 97.06%
RF 0.772 0.888 0.801 0.829 0.790 71.88% 0.886 0.964 0.973 1.000 0.946 92.65%
NIR PLS-DA 1.000 1.000 1.000 1.000 1.000 100% 0.870 0.964 0.940 0.936 0.964 89.71%
RF 0.803 0.854 0.775 0.837 0.834 72.66% 0.813 0.917 0.491 0.923 0.955 76.47%
FT-MIR (RFE) PLS-DA 0.911 0.990 0.881 0.961 0.975 91.41% 0.794 1.000 0.694 0.955 0.923 82.35%
RF 0.947 0.951 0.853 0.876 0.942 86.72% 0.845 0.917 0.964 0.964 0.936 88.24%
FT-MIR (Bo) PLS-DA 0.951 0.961 0.995 0.961 0.985 95.31% 0.886 0.991 0.905 0.964 0.962 91.18%
RF 0.890 0.942 0.829 0.881 0.922 83.59% 0.886 0.964 0.973 1.000 0.946 92.65%
FT-MIR (PCs) PLS-DA 0.906 0.911 0.868 0.927 0.863 83.59% 0.926 0.991 0.843 0.926 0.972 89.71%
RF 0.780 0.922 0.730 0.764 0.772 68.75% 0.964 1.000 0.991 0.917 0.991 95.59%
NIR (RFE) PLS-DA 0.807 0.922 0.926 0.902 0.966 85.16% 0.779 0.845 0.675 0.891 0.953 75%
RF 0.733 0.888 0.791 0.888 0.942 77.34% 0.813 0.964 0.567 0.889 0.955 77.94%
NIR (Bo) PLS-DA 0.807 0.922 0.858 0.906 0.947 82.81% 0.779 0.837 0.551 0.962 0.962 75%
RF 0.729 0.878 0.764 0.893 0.922 75.78% 0.772 0.878 0.486 0.870 0.955 72.06%
NIR (PCs) PLS-DA 0.860 0.937 0.974 0.915 0.990 89.84% 0.927 0.926 0.991 0.878 0.955 90%
RF 0.745 0.922 0.881 0.881 0.951 81.25% 0.955 0.964 1.000 1.000 0.991 97.06%

Bo: Boruta, PCs: Principal components.