Skip to main content
. 2019 Jul 13;24(14):2559. doi: 10.3390/molecules24142559

Table 3.

The classification efficiency values and total accuracy of low-, mid-, and high-level data fusion strategies decision making with PLS-DA and RF models. RFE: Recursive feature elimination, Bo: Boruta, PCs: Principal components, VIP: Variable importance in the projection.

Model Calibration Set Validation Set
Class1 Class2 Class3 Class4 Class5 Accuracy Class1 Class2 Class3 Class4 Class5 Accuracy
Low-level PLS-DA 1.000 1.000 1.000 1.000 1.000 100% 0.926 1.000 0.949 1.000 0.981 95.59%
RF 0.872 0.885 0.858 0.897 0.932 82.81% 0.886 1.000 0.905 0.972 0.991 92.65%
Low-level (VIP) PLS-DA 1.000 1.000 1.000 1.000 1.000 100% 0.926 1.000 0.991 1.000 0.991 97.06%
RF 0.927 0.927 0.849 0.922 0.947 86.72% 0.926 1.000 0.991 1.000 0.991 97.06%
Mid-level (RFE) PLS-DA 0.946 0.712 0.764 0.864 0.878 75% 0.705 0.794 0.000 0.727 0.798 55.88%
RF 0.966 0.888 0.868 0.894 0.881 84.38% 0.764 0.861 0.491 0.900 0.854 69.12%
Mid-level (Bo) PLS-DA 0.961 1.000 1.000 0.995 0.995 98.44% 0.926 1.000 0.991 0.991 1.000 97.06%
RF 0.947 0.942 0.885 0.922 0.951 89.06% 0.926 1.000 0.949 0.991 0.991 95.59%
Mid-level (PCs) PLS-DA 0.951 0.961 0.974 0.995 0.995 96.09% 1.000 1.000 0.957 0.991 1.000 98.53%
RF 0.927 0.951 0.922 0.922 0.981 90.63% 0.886 1.000 0.991 0.981 0.955 94.12%
High-level (RFE) PLS-DA 0.951 0.981 0.953 1.000 0.990 96.09% 0.870 1.000 0.802 0.991 0.981 89.71%
RF 0.976 0.976 0.904 0.922 0.995 91.21% 0.926 1.000 0.991 1.000 0.991 97.06%
High-level (Bo) PLS-DA 0.976 0.981 0.979 1.000 0.990 97.66% 0.926 0.991 0.850 1.000 0.981 92.65%
RF 0.966 0.976 0.904 0.902 0.951 90.63% 0.917 0.964 0.850 0.972 1.000 91.18%
High-level (PCs) PLS-DA 0.981 1.000 0.990 0.981 1.000 98.44% 0.964 1.000 1.000 0.991 1.000 98.53%
RF 0.881 0.971 0.872 0.911 0.961 87.5% 0.966 1.000 1.000 0.991 1.000 100%